50641

Найти кинематический закон движения точки

Лабораторная работа

Физика

Найти кинематический закон движения точки. Спроецируем точки на координатные оси с учетом масштаба и выпишем таблицу координат точки считая что фотографирование началось при t=0. Окончательно найденный кинематический закон движения материальной точки: x=xt= 296t55 и y=yt= 182t225t5 Задание№2. Найти модуль скорости точки в середине интервала наблюдения и углы составляемые вектором скорости с осями координат в этот момент.

Русский

2014-01-27

230 KB

1 чел.

Задание№1.

Найти кинематический закон движения точки.

Спроецируем точки на координатные оси с учетом масштаба и выпишем таблицу координат точки, считая, что фотографирование началось при t=0.

t,  см

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

x, см

5

35

65

94

124

154

183

213

242

y, см

5

7

12

21

33

50

69

93

120

Δxразбрyразбр=0;

Δxокр=0,5 мм.

Δxприб=·0,2=0,13 мм.

Δxпроект=0,5 мм.

Δx=Δy=;

После подставления результирующая погрешность будет равна:

Δxy=

Для установленной функциональной зависимости x=x(t) изобразим данные таблицы, откладывая время t по горизонтали, а координату x по вертикали.

Пусть уравнение искомой прямой имеет вид  x=a·t+b, где a и b – постоянные. Найдем такие значения a и b, при которых достигается минимум суммы S. Условия минимума имеют вид , что дает систему уравнений:

Подставляя численные значения и решая данную систему относительно a и b, получим:

a=296,33≈296 см. и b=5,36≈5,5 см.

Таким образом искомая зависимость x=x(t) имеет вид:

x=x(t)=296·t+5,5.

Для нахождения функциональной зависимости y=y(t) поступим аналогичным образом:

Решая данную систему относительно a0, a1 и a2, получим:

a0=182,4≈182 см, a1= –2,4≈ –2,5 см. и a2=5,2≈5 см.

Таким образом искомая зависимость y=y(t) имеет вид:

y=y(t)=182·t2–2,5·t+5.

Для определения доверительной вероятности y(t) рассчитаем критерий Пирсона:

. Подставляя значения, получим: χ2=

n – число степеней свободы. n=9-(3+1)=5. Доверительная вероятность Р≈97%.

Окончательно найденный кинематический закон движения материальной точки:

x=x(t)= 296·t+5,5 и y=y(t)= 182·t2–2,5·t+5

Задание№2.

Найти модуль скорости точки в середине интервала наблюдения и углы, составляемые вектором скорости с осями координат в этот момент. Изобразить вектор скорости.

Скорость найдем при t=0,5с. Используя формулы  и , получим:

Vx=296 см/с;

Vy=182·t–2,5 см/с;

Из формулы  получим:

. Полагая, что t=0,5с. получим:

Vx=296 см/с.

Vy=89 см/с.

V=310 см/с.

Найдем углы, которые составляет вектор скорости с системой координат.

Из формул и  получим:

=0,86;

30;

;

70;

Рассчитаем погрешности при проведении расчетов:

При Vx=296 см/с.

ΔVx=5 см/с.

Vx=(296±5) см/с.

Для нахождения ΔVy запишем выражение Vy=182·t–2,5 в следующем виде:

Vy=2C0+C1, где C0=91 см/с. C1=–2,5 см/с. ΔC0=5 см/с. ΔC1 =0,05 см/с. Δt=0,05 с.

Найдем   ΔVy    следующим   образом: == =5см/с.

Таким образом, следует записать:

Vx =(296±5) см/с; Vy =(89±5) см/с.

Задание№3.

Найти ускорение точки в тот же момент времени и углы, составляемые вектором ускорения, с осями координат. Изобразить вектор ускорения.

Используя формулы  и , получим: ax=0 см/с2; ay=182 см/с2; Δax=0см/с2, Δay=5см/с2 =182 см/с2.

=== = = 5 см/с2.

a=(182±5) см/с2.

 

Задание№4.

Найти тангенциальное и нормальное ускорение точки в тот же момент времени. Показать векторы ā1τ и ā1n.

;

52 см/с2.

Δa1τ= =

=

=см/с2.

a=(52±3,4) см/с2;

a1n=

a1n=174 см/с2.

Δan=

==5,3см/с2.

a1n=(174±5,3) см/с2.

Задание№5.

Найти радиус кривизны траектории в точке, соответствующей тому же моменту времени.

Используя формулу , найдем:

R=см

= см.

R=(552±24,5) см.

Задание№6.

Найти зависимость пройденного пути S от времени t, т. е. функцию S=S(t).

Задание№7.

Найти среднюю скорость и ускорение за весь интервал наблюдения.

Среднюю скорость найдем по формуле:

Vср=, где t1=0c, t2=0,8c.

r(t)=x(t)+y(t);

r(t)=182·t2–2,5·t+5+296·t+5,5=182·t2+293,5·t+10,5;

Vср=см/с.

aср=

;

V1= см/с.

V2=см/с.

aср=см/с2.

Задание№8.

Написать уравнение траектории точки.

x(t)=296·t+5,5

y(t)=182·t2–2,5·t+5

 

y==

=0,002·x2–0,031·x+5,109;

y=0,002·x2–0,031·x+5,109.

Вывод:

Изучил основы теории погрешностей и методов обработки экспериментальных результатов. Определил кинематические характеристики по стробоскопическим фотографиям.

1) Нашел кинематический закон движения:

x(t)= 296·t+5,5.

y(t)= 182·t2–2,5·t+5.

2) Нашел зависимость y(t) с доверительной вероятностью 97%.

3) Нашел модуль скорости в середине интервала

Vx =(296±5) см/с.

Vy =(89±5) см/с.

 V=(310±5) см/с.

и углы, составляемые вектором скорости с осями координат в этот момент

30;

70;

4) Нашел ускорение в этот момент времени

ax=0 см/с2;

 ay=(182±5) см/с2.

 a=(182±5) см/с2.

5) Нашел тангенциальное и нормальное ускорение точки в тот же момент времени

aτ=(52±3,4) см/с2;

an=(174±5,3) см/с2.

6) Нашел радиус кривизны траектории в точке, соответствующей тому же моменту времени

R=(552±24,5) см.

7) Нашел среднюю скорость и ускорение

Vср≈439 см/с.

aср ≈41 см/с2.

8) Написал уравнение траектории точки

y=0,002·x2–0,031·x+5,109.

7


 

А также другие работы, которые могут Вас заинтересовать

83256. Конструктивные особенности тормозной системы автомобиля Audi A7 101.18 KB
  Запасная система служит для остановки автомобиля при выходе из строя рабочей тормозной системы. Ею в основном пользуются для удержания стоящего автомобиля но можно применять и в качестве аварийной при выходе из строя рабочей тормозной системы.
83257. Фондовый ранок как составляющая денежного рынка 21.35 KB
  Одним из них является финансовый рынок. Финансовый рынок это рынок который опосредует распределение денежных средств между участниками экономических отношений. Одним из сегментов финансового рынка выступает рынок ценных бумаг или фондовый рынок.
83258. Малый бизнес в России 25.5 KB
  Малый бизнес отличается динамичностью и гибкостью и может регулярно осуществлять структурные изменения в том числе номенклатурные поскольку небольшие предприятия сравнительно легко создать и уничтожить.
83259. Классификация вирусов 20.85 KB
  Компьютерный вирус — разновидность компьютерных программ или вредоносный код, отличительной особенностью которых является способность к размножению (саморепликация). В дополнение к этому вирусы могут без ведома пользователя выполнять прочие произвольные действия, в том числе наносящие вред...
83260. English Skills 14.23 KB
  In addition, teaching the learners a lot of listening activities is a good way of enlargening their vocabulary. On the other hand, it also helps the learners improve their listening comprehension. For instance, people know that the largest difference between mother language learning...
83261. Безопасность жизнедеятельности на объектах промышленности, строительства, транспорта, АПК и других 35.35 KB
  Аэрозоль попадает в атмосферу из дымовых факелов химических предприятий при низкой облачности и высокой влажности. За год в атмосферу попадает десятки миллионов том серного ангидрида из-за предприятий черной и цветной металлургии.
83262. Задача моделирования предпочтений ЛПР 18.02 KB
  Задача моделирования предпочтений ЛПР Изучение моделирования предпочтений имеет большое значение для разработки управленческого решения так как принятие правильных решений это область управленческого искусства.
83263. Содержание методик коррекционно-педагогической работы при брадилалии, тахилалии 39.62 KB
  При устранении брадилалии логопедические приемы направлены на воспитание более быстрых и четких речевых движений в процессе речи; убыстренных речевых реакций; темпа внутренней речи; темпов письма и чтения; выразительных форм сценического чтения и драматизированной речи...
83264. Исследование влияния браков и разводов на воспроизводство населения 64 KB
  Одними из основных факторов влияющих на процесс воспроизводства населения являются браки и разводы. Брачностью называется процесс образования брачных или супружеских пар населения. Брачность находится в тесной связи с воспроизводством населения выступая как один из важнейших факторов рождаемости и смертности.