50709

Исследование напряженного состояния тонкостенной цилиндрической оболочки

Лабораторная работа

Физика

В таких оболочках действуют кольцевые в первом главном сечении и меридиональные напряжения во втором главном сечении которые могут определиться через внутренние силы и моменты: ; 1 где S меридиональные силы; Т кольцевые силы; толщина стенки; Z координата точки в которой определяем напряжение; Z изменяется от до . Из формулы 1 следует что напряжения распределены по толщине стенки по линейному закону достигая наибольших значений на внутренней или нагруженной поверхностях опор ; 2 В этих формулах если...

Русский

2014-01-28

282 KB

1 чел.

Министерство науки и образования Российской Федерации

Ярославский государственный технический университет

Отчет о лабораторная работа №1

по дисциплине «Конструирование и расчет элементов оборудования»

Исследование напряженного состояния тонкостенной цилиндрической оболочки

  

Руководитель

Веткин Ю.А.

Работу выполнил:   

студент гр. ММ-41

Афонин Д. В.            Прыгунов И. Е.



Ярославль 2005

Цель работы: следование прочности и устойчивости цилиндрического корпуса, находящегося под действием внутреннего давления и осевой силы.

Теоретическая часть

В соответствии с теорией расчета тонкостенные оболочки вращения находятся в плоском напряженном состоянии. В таких оболочках действуют кольцевые  (в первом главном сечении) и меридиональные напряжения  (во втором главном сечении), которые могут определиться через внутренние силы и моменты:

; , (1)

где S –меридиональные силы; Т – кольцевые силы;

- толщина стенки; Z – координата точки, в которой определяем напряжение; Z  изменяется от до .

Из формулы (1) следует, что напряжения распределены по толщине стенки по линейному закону, достигая наибольших значений на внутренней () или нагруженной  () поверхностях опор

; , (2)

В этих формулах, если моменты положительны (изгибают оболочку наружу), знак «+» соответствует напряжениям на внутренней поверхности, а «-« - наружной. Эпюра суммарных напряжений может быть представлена как сумма 2 эпюр: положительной – от сил и симметричн – от моментов.

Определение напряжений от внутреннего давления по безразмерной теории. Установлено, что в сечениях, достаточно удаленных от края тонкостенной оболочки, можно применять равномерный закон распределения напряжений по толщине стенки. В этом случае внутренними моментами можно пренебречь, приняв в формулах (1) и (2) М=К=0, тогда

; , (3)

В случае оболочек, нагруженных газовым давлением, безмоментная теория дает следующие соотношения для определения внутренних сил:

; ;  (4)

где - 1 радиус кривизны;  - 2 радиус кривизны; р – вн. газовое давление.

Цилиндрическая оболочка относиться к тонкостенной, если отношение . Расчет по безмоментной теории цил. оболочек дает удовлетв. результаты в сечениях, удаленных от края не менее чем на расстояние

У цилиндрической оболочки меридиан – прямая линия, а следовательно 1 главный радиус кивизны R1=;2 гл. радиус кривизны у цилиндра совпадает с сечениемь параллельного круга. Тогда 2 радиус кривизны равен радиусу цилиндра по срединной поверхности.

Подставляем (3) и (4) значения радиусов кривизны R1 и R2 для цилиндрической оболочки, нагруженной газовым давлением, получим значения сил и нагружений:

меридиональных:

кольцевые:

 

Задание 1

Осевая сила Q может растягивать или сжимать цилиндрическую оболочку в осевом направлении. Сила Q растягивающая, сжимающая сила имеет противоположное направление. В данном случае цилиндр. рассматривается как стержень, одноосно растянутым (сжатым). Это линейное напряжение состояние, при котором в перпендикулярно к линии действия силы сечениях цилиндра возникают нормальные напряжения, равно распредел. по сечению и соответств. по толщине стенки оболочки. В этих сечениях действуют только меридиональные напряжения, следовательно и напряжения, вызванные осевой силой будут меридиональными. Кольцевые напряжения от осевой силы не возникают .

Меридиональные напряжения от осевой силы

;  (8)

где F – площадь сечения цилиндрической оболочки плоскостью, нормальной к оси вращения. В случае растяжения сила Q и меридиональные напряжения положительны, а при сжатии- отрицательны.

Определение напряжений в цилиндрической оболочке от совместного действия давления и осевой силы.

В соответствии с принципом независимости действия сил результирующие напряжения рассматриваются как сумма напряжений от давления и осевой силы:

         (9)

Подставляем в формулу (9) напряжения из соотношений (6) и (8) для меридиональных напряжений, получим:

   (10)

Кольцевые напряжения будут по-прежнему определяться по формуле (7), т.к. они не зависят от осевой силы ().

      (11)

Подставляем в формулу (10) значение  из формулы (11), а из (7), получим выражение для расчета осевой силы Q.

Задание 2

Расчет напряжений от краевых сил и моментов.

Краевые нагрузки представл. системами сил Ро и моментов Мо, распределенных по краю оболочки. Причиной возникновения краевых нагрузок является стесненность деформаций края оболочки.

меридиональная сила ;  (13)

кольцевая сила

меридиональный момент:

Кольцевой момент

где =0,3 – коэффициент Пуассона; x – расстояние от края оболочки;

В формулах (12)-(15) коэффициент закух.

Произведение  безразмерно, а в тригонометрических функциях и соответствует значению угла в радианах.

Напряжения от внутренних сил, вызванных краевыми моментами, определяются:

;

Максимальные напряжения от внутренних моментов рассчитываются по следующим соотношениям:

меридиональные:

кольцевые:

Задание 3

Теоретический расчет напряжений от всех нагрузок

Результирующие напряжения от внутреннего давления, осевой силы и краевых нагрузок определяем суммировав соответствующие напряжения

меридиональные

кольцевые

Обработка экспериментальных данных:

В середине цилиндра

10 мм от края

Растяжение

в середине цилиндра

10 мм от края

Сжатие

в середине цилиндра

10 мм от края

Вывод:     Исследовали прочность и устойчивость цилиндрического корпуса, находящегося под действием внутреннего давления и осевой силы.

Вариант нагружения

Нагрузки

Безмоментные напряжения

Краевая задача

Суммарные напряжения

Координата

Силы и моменты

Напряжения

Внутренняя стенка

Наружная стенка

p

Q

Tx

Mx

Kx

x

βx

МПа

МН

МПа

МН/м

*10-6, МН

МПа

мм

-

1

2

0

17,1

34,3

0

17,1

-0,087

79,5

23.85

-29

±53

±15,9

70,1

21,3

-35,9

-10,6

0

0

-0,053

47

14.1

-17.6

±31,3

±9,4

48,1

26,1

-14,2

7,3

5

0,517

-0,032

45,3

13.59

-10.6

±30,2

±9,06

47,3

32,7

-13,1

14,64

10

1,034

-0,0192

16,5

4.95

-6.4

±11

±3,3

28,1

31,2

6,1

24,6

15

1,551

-0,0116

9,8

2.94

-3.86

±6,5

±1,96

23,6

32,4

10,6

28,48

20

2,068

-0,007

5,82

1.746

-2.33

±3,88

±1,164

20,9

33,1

13,2

30,8

25

2,585

-0,0042

3,44

1.032

-1.4

±2,29

±0,688

19,3

33,5

14,81

32,2

30

3,102

-0,0025

2,155

0.646

-0,83

±1,436

±0,43

18,5

33,9

15,6

33

35

3,0619

2

2

-0,01

17,1

-34,3

-10,2

6,9

-0,009

96,3

28.89

-3

±64,2

±19,26

71,1

-18

-57,3

-56,5

0

0

-0,0285

33,8

10.14

-9,5

±22,5

±6,76

29,4

-37

-15,6

-50,5

10

1,034

3

2

0,0099

17,1

34,3

10,2

27,3

-0,0782

63

18.9

-26

±42

±12,6

69,3

20,9

-14,7

-4,3

0

0

-0,0285

22,14

6.642

-9,5

±14,7

±4,428

42

29,2

12,6

20,3

10

1,034

Таблица 1 – Результаты теоретического расчета

Таблица 2 – Результаты экспериментальных исследований

Варианты нагружения

Q*103

p1

p2

Состояние вентилей и двухпозиционного крана

Показания манометров

Номер датчика (i= 1,2,3,4)

Напряжения по формуле (33), МПа

1

2

3

4

В середине цилиндра

10мм от края

МПа

6

7

8

9

3

4

5

ni

Δni

ni

Δni

ni

Δni

ni

Δni

σK

σM

σK

σM

0

0

0

0

-

-

-

-

-

-

-

3230

-

3373

-

3549

-

3695

-

0

0

0

0

0

0

0

0

1

0

2

0

O

З

З

Н

2

0

0

3228

2

3300

73

3547

2

3694

1

265,5

817,7

25,5

17,8

2

9.9

2

1.9

З

О

О

Н

2

1,9

0

3207

21

3354

-54

3517

30

3671

23

53,3

-530

410

355,6

3

-10

2

1.5

З

О

О

В

2

0

1,5

3195

12

3373

-19

3509

8

3690

-19

70

-171

25,55

-184

Таблица 3- Сравнение результатов теории и эксперимента

Вариант

Нагрузка

Напряжения

в середине

на краю

p

Q

меридиональные

кольцевые

меридиональные

кольцевые

Т

Э

П

Т

Э

П

Т

Э

П

Т

Э

П

МПа

МН

МПа

%

МПа

МПа

%

МПа

%

1

2

0

47,3

817,7

1629

32,7

265

710

-13,1

17,8

35

14,64

25,5

74

2

2;1,9

9,9

29,4

-530

1702

-37

53,3

44

-15,6

355,6

217,4

-50,6

410

710

3

2;1,5

-10

42

-171

307

29,2

70

139

12,6

-184

1360

20,3

25,5

25


 

А также другие работы, которые могут Вас заинтересовать

16521. ЧАСТОТНЫЕ ХАРАКТЕРИСТИКИ РЕЗОНАНСНЫХ ЦЕПЕЙ 217.5 KB
  ЧАСТОТНЫЕ ХАРАКТЕРИСТИКИ РЕЗОНАНСНЫХ ЦЕПЕЙ Методические указания к лабораторной работе № 6 по курсам Основы теории цепей Теория электрических цепей для студентов направлений Радиотехника Телекоммуникации Информационная безопасность Сост
16522. СВЯЗАННЫЕ КОЛЕБАТЕЛЬНЫЕ КОНТУРЫ 155 KB
  СВЯЗАННЫЕ КОЛЕБАТЕЛЬНЫЕ КОНТУРЫ Методические указания к лабораторной работе № 7 по курсам Основы теории цепей Теория электрических цепей для студентов направлений Радиотехника Телекоммуникации Информационная безопасность СВЯЗАННЫЕ КОЛЕБАТЕ...
16523. ИЗМЕРЕНИЕ ПАРАМЕТРОВ СИГНАЛОВ И ЦЕПЕЙ 643.91 KB
  Отчет по лабораторной работе №3 ИЗМЕРЕНИЕ ПАРАМЕТРОВ СИГНАЛОВ И ЦЕПЕЙ 1.Цель работы Экспериментальное подтверждение основных теоретических разделов курса ознакомление с некоторыми приборами и овладение методикой основных электрических измерений. Так ж
16524. Поверка вольтметра В-7-72 и генератора ГЗ-118 100 KB
  Поверка вольтметра В772 и генератора ГЗ118 Лабораторная работа №3 Цель и задачи работы В данной лабораторной работе необходимо провести исследование различных способов измерения разности фаз двух гармонических колебаний на примере осцилло...
16525. ИССЛЕДОВАНИЕ ХАРАКТЕРИСТИК И ПАРАМЕТРОВ ПОЛЕВЫХ ТРАНЗИСТОРОВ 202.94 KB
  ИССЛЕДОВАНИЕ ХАРАКТЕРИСТИК И ПАРАМЕТРОВ ПОЛЕВЫХ ТРАНЗИСТОРОВ. Отчет по лабораторной работе №5 по дисциплине Электроника Цель работы Ознакомиться с конструкцией полевых транзисторов с управляющим pn переходом их принципом действия характеристиками и параметр...
16526. РАЗРАБОТКА И РЕАЛИЗАЦИЯ АЛГОРИТМА ЛЕКСИЧЕСКОГО АНАЛИЗАТОРА 61.5 KB
  Лабораторная работа № 3/4 РАЗРАБОТКА И РЕАЛИЗАЦИЯ АЛГОРИТМА ЛЕКСИЧЕСКОГО АНАЛИЗАТОРА 2.1. Введение Цель работы: Ознакомиться с теоретическими и практическими основами построения блока лексического анализа компилятора Глава 1. Общая характеристика процесса ко
16527. Информационная среда образовательного учреждения 17.04 KB
  Занятие №1 Тема: Информационная среда образовательного учреждения Цель: Формирование профессиональной компетентности будущего учителя истории в области использования современных информационных интегрированных продуктов на примере информационного интегр
16528. Организационная структура локальной сети ИСОУ и ее программное обеспечение 28 KB
  Лабораторная работа №2 Тема: Организационная структура локальной сети ИСОУ и ее программное обеспечение. Цель: Формирование профессиональной компетентности будущего историка в области использования современных информационных интегрированных. Вопрос...
16529. Программные средства учебного назначения 14.61 KB
  Занятие №3 Тема: Программные средства учебного назначения Цель: Формирование профессиональной компетентности будущего историка в области использования программных средств учебного назначения. Вопросы для обсуждения: Понятие программных средств уче