50709

Исследование напряженного состояния тонкостенной цилиндрической оболочки

Лабораторная работа

Физика

В таких оболочках действуют кольцевые в первом главном сечении и меридиональные напряжения во втором главном сечении которые могут определиться через внутренние силы и моменты: ; 1 где S меридиональные силы; Т кольцевые силы; толщина стенки; Z координата точки в которой определяем напряжение; Z изменяется от до . Из формулы 1 следует что напряжения распределены по толщине стенки по линейному закону достигая наибольших значений на внутренней или нагруженной поверхностях опор ; 2 В этих формулах если...

Русский

2014-01-28

282 KB

1 чел.

Министерство науки и образования Российской Федерации

Ярославский государственный технический университет

Отчет о лабораторная работа №1

по дисциплине «Конструирование и расчет элементов оборудования»

Исследование напряженного состояния тонкостенной цилиндрической оболочки

  

Руководитель

Веткин Ю.А.

Работу выполнил:   

студент гр. ММ-41

Афонин Д. В.            Прыгунов И. Е.



Ярославль 2005

Цель работы: следование прочности и устойчивости цилиндрического корпуса, находящегося под действием внутреннего давления и осевой силы.

Теоретическая часть

В соответствии с теорией расчета тонкостенные оболочки вращения находятся в плоском напряженном состоянии. В таких оболочках действуют кольцевые  (в первом главном сечении) и меридиональные напряжения  (во втором главном сечении), которые могут определиться через внутренние силы и моменты:

; , (1)

где S –меридиональные силы; Т – кольцевые силы;

- толщина стенки; Z – координата точки, в которой определяем напряжение; Z  изменяется от до .

Из формулы (1) следует, что напряжения распределены по толщине стенки по линейному закону, достигая наибольших значений на внутренней () или нагруженной  () поверхностях опор

; , (2)

В этих формулах, если моменты положительны (изгибают оболочку наружу), знак «+» соответствует напряжениям на внутренней поверхности, а «-« - наружной. Эпюра суммарных напряжений может быть представлена как сумма 2 эпюр: положительной – от сил и симметричн – от моментов.

Определение напряжений от внутреннего давления по безразмерной теории. Установлено, что в сечениях, достаточно удаленных от края тонкостенной оболочки, можно применять равномерный закон распределения напряжений по толщине стенки. В этом случае внутренними моментами можно пренебречь, приняв в формулах (1) и (2) М=К=0, тогда

; , (3)

В случае оболочек, нагруженных газовым давлением, безмоментная теория дает следующие соотношения для определения внутренних сил:

; ;  (4)

где - 1 радиус кривизны;  - 2 радиус кривизны; р – вн. газовое давление.

Цилиндрическая оболочка относиться к тонкостенной, если отношение . Расчет по безмоментной теории цил. оболочек дает удовлетв. результаты в сечениях, удаленных от края не менее чем на расстояние

У цилиндрической оболочки меридиан – прямая линия, а следовательно 1 главный радиус кивизны R1=;2 гл. радиус кривизны у цилиндра совпадает с сечениемь параллельного круга. Тогда 2 радиус кривизны равен радиусу цилиндра по срединной поверхности.

Подставляем (3) и (4) значения радиусов кривизны R1 и R2 для цилиндрической оболочки, нагруженной газовым давлением, получим значения сил и нагружений:

меридиональных:

кольцевые:

 

Задание 1

Осевая сила Q может растягивать или сжимать цилиндрическую оболочку в осевом направлении. Сила Q растягивающая, сжимающая сила имеет противоположное направление. В данном случае цилиндр. рассматривается как стержень, одноосно растянутым (сжатым). Это линейное напряжение состояние, при котором в перпендикулярно к линии действия силы сечениях цилиндра возникают нормальные напряжения, равно распредел. по сечению и соответств. по толщине стенки оболочки. В этих сечениях действуют только меридиональные напряжения, следовательно и напряжения, вызванные осевой силой будут меридиональными. Кольцевые напряжения от осевой силы не возникают .

Меридиональные напряжения от осевой силы

;  (8)

где F – площадь сечения цилиндрической оболочки плоскостью, нормальной к оси вращения. В случае растяжения сила Q и меридиональные напряжения положительны, а при сжатии- отрицательны.

Определение напряжений в цилиндрической оболочке от совместного действия давления и осевой силы.

В соответствии с принципом независимости действия сил результирующие напряжения рассматриваются как сумма напряжений от давления и осевой силы:

         (9)

Подставляем в формулу (9) напряжения из соотношений (6) и (8) для меридиональных напряжений, получим:

   (10)

Кольцевые напряжения будут по-прежнему определяться по формуле (7), т.к. они не зависят от осевой силы ().

      (11)

Подставляем в формулу (10) значение  из формулы (11), а из (7), получим выражение для расчета осевой силы Q.

Задание 2

Расчет напряжений от краевых сил и моментов.

Краевые нагрузки представл. системами сил Ро и моментов Мо, распределенных по краю оболочки. Причиной возникновения краевых нагрузок является стесненность деформаций края оболочки.

меридиональная сила ;  (13)

кольцевая сила

меридиональный момент:

Кольцевой момент

где =0,3 – коэффициент Пуассона; x – расстояние от края оболочки;

В формулах (12)-(15) коэффициент закух.

Произведение  безразмерно, а в тригонометрических функциях и соответствует значению угла в радианах.

Напряжения от внутренних сил, вызванных краевыми моментами, определяются:

;

Максимальные напряжения от внутренних моментов рассчитываются по следующим соотношениям:

меридиональные:

кольцевые:

Задание 3

Теоретический расчет напряжений от всех нагрузок

Результирующие напряжения от внутреннего давления, осевой силы и краевых нагрузок определяем суммировав соответствующие напряжения

меридиональные

кольцевые

Обработка экспериментальных данных:

В середине цилиндра

10 мм от края

Растяжение

в середине цилиндра

10 мм от края

Сжатие

в середине цилиндра

10 мм от края

Вывод:     Исследовали прочность и устойчивость цилиндрического корпуса, находящегося под действием внутреннего давления и осевой силы.

Вариант нагружения

Нагрузки

Безмоментные напряжения

Краевая задача

Суммарные напряжения

Координата

Силы и моменты

Напряжения

Внутренняя стенка

Наружная стенка

p

Q

Tx

Mx

Kx

x

βx

МПа

МН

МПа

МН/м

*10-6, МН

МПа

мм

-

1

2

0

17,1

34,3

0

17,1

-0,087

79,5

23.85

-29

±53

±15,9

70,1

21,3

-35,9

-10,6

0

0

-0,053

47

14.1

-17.6

±31,3

±9,4

48,1

26,1

-14,2

7,3

5

0,517

-0,032

45,3

13.59

-10.6

±30,2

±9,06

47,3

32,7

-13,1

14,64

10

1,034

-0,0192

16,5

4.95

-6.4

±11

±3,3

28,1

31,2

6,1

24,6

15

1,551

-0,0116

9,8

2.94

-3.86

±6,5

±1,96

23,6

32,4

10,6

28,48

20

2,068

-0,007

5,82

1.746

-2.33

±3,88

±1,164

20,9

33,1

13,2

30,8

25

2,585

-0,0042

3,44

1.032

-1.4

±2,29

±0,688

19,3

33,5

14,81

32,2

30

3,102

-0,0025

2,155

0.646

-0,83

±1,436

±0,43

18,5

33,9

15,6

33

35

3,0619

2

2

-0,01

17,1

-34,3

-10,2

6,9

-0,009

96,3

28.89

-3

±64,2

±19,26

71,1

-18

-57,3

-56,5

0

0

-0,0285

33,8

10.14

-9,5

±22,5

±6,76

29,4

-37

-15,6

-50,5

10

1,034

3

2

0,0099

17,1

34,3

10,2

27,3

-0,0782

63

18.9

-26

±42

±12,6

69,3

20,9

-14,7

-4,3

0

0

-0,0285

22,14

6.642

-9,5

±14,7

±4,428

42

29,2

12,6

20,3

10

1,034

Таблица 1 – Результаты теоретического расчета

Таблица 2 – Результаты экспериментальных исследований

Варианты нагружения

Q*103

p1

p2

Состояние вентилей и двухпозиционного крана

Показания манометров

Номер датчика (i= 1,2,3,4)

Напряжения по формуле (33), МПа

1

2

3

4

В середине цилиндра

10мм от края

МПа

6

7

8

9

3

4

5

ni

Δni

ni

Δni

ni

Δni

ni

Δni

σK

σM

σK

σM

0

0

0

0

-

-

-

-

-

-

-

3230

-

3373

-

3549

-

3695

-

0

0

0

0

0

0

0

0

1

0

2

0

O

З

З

Н

2

0

0

3228

2

3300

73

3547

2

3694

1

265,5

817,7

25,5

17,8

2

9.9

2

1.9

З

О

О

Н

2

1,9

0

3207

21

3354

-54

3517

30

3671

23

53,3

-530

410

355,6

3

-10

2

1.5

З

О

О

В

2

0

1,5

3195

12

3373

-19

3509

8

3690

-19

70

-171

25,55

-184

Таблица 3- Сравнение результатов теории и эксперимента

Вариант

Нагрузка

Напряжения

в середине

на краю

p

Q

меридиональные

кольцевые

меридиональные

кольцевые

Т

Э

П

Т

Э

П

Т

Э

П

Т

Э

П

МПа

МН

МПа

%

МПа

МПа

%

МПа

%

1

2

0

47,3

817,7

1629

32,7

265

710

-13,1

17,8

35

14,64

25,5

74

2

2;1,9

9,9

29,4

-530

1702

-37

53,3

44

-15,6

355,6

217,4

-50,6

410

710

3

2;1,5

-10

42

-171

307

29,2

70

139

12,6

-184

1360

20,3

25,5

25


 

А также другие работы, которые могут Вас заинтересовать

29407. Буровые установки 27.5 KB
  Регулируемые приводы используют систему ТПДПТ. Силовой привод буровой установки может быть дизельным электрическим дизельэлектрическим и дизельгидравлическим. Дизельный привод применяют в районах не обеспеченных электроэнергией необходимой мощности.
29408. Взрывозащищенное электрооборудование 43.5 KB
  Взрывозащищенное электрооборудование различается по уровню взрывозащиты группам и температурным классам. Установлены следующие уровни взрывозащиты электрооборудования: 1. Вид взрывозащиты определяется установленным набором средств взрывозащиты. Для взрывозащищенного электрооборудования установлены следующие виды взрывозащиты: Взрывонепроницаемая оболочка [d].
29409. Дизель-электрический привод буровых установок 28 KB
  В последние годы существует тенденция расширения номенклатуры и объемов производства буровых установок с дизельэлектрическим приводом. Переход к автономному энергоснабжению позволяет решить проблему энергоснабжения удаленных от базы буровых установок проблему слабых сетей решить проблему повышения установленной мощности главных и вспомогательных приводов на буровых установках и др. Перечисленные недостатки системы ГД затрудняют ее использование в морских буровых установках.
29410. МАШИНЫ ПОСТОЯННОГО ТОКА 56.5 KB
  Она состоит из неподвижного статора и вращающегося якоря в машинах переменного тока вращающаяся часть ротор. Коммутация это процесс переключения секций обмотки якоря из одной параллельной ветви в другую и связанные с этим явления. Концы секций припаивают к пластинам коллектора что образует замкнутую обмотку якоря. Коллектор набран из медных пластин клинообразной формы изолированных друг от друга и корпуса и образующих в сборе цилиндр который крепится на валу якоря.
29411. Характеристика электрооборудования во взрывоопасных зонах в нефтяной и газовой промышленности (НГП) 35 KB
  Взрывоопасной зоной называют помещение или ограниченное пространство в помещении или наружной установке в которых имеются или могут образовываться взрывоопасные смеси. Взрывоопасные смеси горючих газов с воздухом или смеси легковоспламеняющихся жидкостей с воздухам согласно правилам устройства электроустановок ПУЭ классифицируются по категориям I II IIA IIB IIC и группам T1T6. Например ко II категории взрывоопасной смеси относятся промышленные газы и пары к I категории рудничный газ. Безопасный экспериментальный...
29412. Климатические условия эксплуатации и условия размещения электрооборудования 26.5 KB
  Электрооборудование предназначенное для эксплуатации на суше и реках в районах с умеренным климатом имеет обозначение У; с холодным климатом ХЛ; сухим и влажным тропическим Т; для всех макроклиматических районов на суше О. Электрооборудование предназначенное для установки в районах с умеренно холодным морским климатом имеет обозначение М; с тропическим морским ТМ. В зависимости от условий размещения предусматривается различное исполнение электрооборудования которому также присваивается определенное обозначение....
29414. Бюджетный дефицит и государственный долг: основные определения, показатели и проблемы количественной оценки. Государственный долг и дефицит платежного баланса. Влияние государственного долга на накопление частного капитала 50 KB
  Бюджетный дефицит и государственный долг: основные определения показатели и проблемы количественной оценки. Государственный долг и дефицит платежного баланса. Превышение расходов государства над его доходами образует бюджетный дефицит БД. Подавляющее большинство стран сводит свой бюджет с дефицитом.
29415. Ключевые макроэкономические проблемы российской экономики 67 KB
  Можно сделать вывод: главная причина ошибочности социальноэкономической политики использование экономики России стандартных макроэкономических рецептов разработанных для стран с типом экономики зеркально противоположным российскому. Поэтому напрашивается первый рецепт долгосрочной политики сделать диверсификацию экономики главной целью политики государства. Макроэкономические проблемы российской экономики АЛЕКСЕЙ КУДРИН министр финансов РФ выбрал более менее доступное там много Снижение конкурентоспособности К началу 2007 г.