50711

ИССЛЕДОВАНИЕ СЛОЖНОЙ ЦЕПИ ПОСТОЯННОГО ТОКА

Лабораторная работа

Физика

Выполнить опытную проверку принципа наложения. Принцип наложения формулируется следующим образом: ток в Кой ветви равен алгебраической сумме токов вызываемых в этой ветви каждой из э. Принцип наложения используется в методе расчета получившем название метода наложения. Опытная проверка принципа наложения производится в следующем порядке: а в цепи собранной при выполнении пункта 1 отключается один из источников э.

Русский

2014-01-29

126 KB

8 чел.

ИССЛЕДОВАНИЕ СЛОЖНОЙ ЦЕПИ ПОСТОЯННОГО ТОКА

Цель работы: экспериментальная проверка основных законов и теорем для линейных электрических цепей постоянного тока.

ПРОГРАММА РАБОТЫ

  1.  Выполнить опытную проверку законов Кирхгофа для одной из схем, изображенных на рис. 1. Значения параметров схемы указаны в таблице 1 (вариант схемы задается преподавателем). Для этого собрать схему из шести сопротивлений и двух источников ЭДС. В каждую ветвь включить амперметр и включить вольтметры для измерения напряжения каждой ветви.

Примечание: элементы схемы выводятся на экран из окошка              ;

амперметры и вольтметры из окошка             .

При установке значений сопротивлений установить единицу измерения «Ом». Для этого, дважды нажав на «мышку», изменить размерность с «К» на «».

  1.  Выполнить опытную проверку принципа наложения.
  2.  Выполнить опытную проверку теоремы взаимности.
  3.  Определить параметры эквивалентного генератора по отношению к одной из ветвей схемы методом холостого хода и короткого замыкания. Вычислить ток в этой ветви и сравнить его с измеренным в пункте 1.
  4.  Рассчитать токораспределение в схеме методом контурных токов, либо методом узловых потенциалов и сравнить с результатами опыта пункта 1.


                             Пояснения к работе

1. Законы Кирхгофа являются основными соотношениями, на которых базируется расчет электрических цепей.

Первый закон Кирхгофа:

= 0   (1)

Алгебраическая сумма токов, сходящихся в узле электрической цепи, равна нулю.

Правило знаков. При расчете токораспределения в электрической цепи произвольно выбираются условные положительные направления токов в ветвях. Эти направления указываются на схеме стрелками. Ток, вычисленный (или измеренный) в выбранном направлении, может быть либо положительным, либо отрицательным, т.е. iк – алгебраическое число. Если при составлении уравнений по первому закону Кирхгофа токи, утекающие от узла, считать положительными, то токи, подтекающие к узлу, должны браться с дополнительным знаком «минус».

Второй закон Кирхгофа: 

(2)

Алгебраическая сумма падений напряжения в любом замкнутом контуре равняется алгебраической сумме э.д.с. источников, входящих в тот же контур.

Или алгебраическая  сумма напряжений вдоль замкнутого контура равна нулю:   U1+U2+U3+U4  = 0

  

а)                                                                                    б)

в)                                                                              г)

 д)                                                                          е)

Рис. 1 Схемы электрические принципиальные


Правило знаков.
При составлении уравнений по второму закону Кирхгофа выбирается направление обхода контура. Напряжение ик записывается в левую часть равенства, а э.д.с. ек – в правую. При этом ик и  ек должны быть взяты с дополнительными знаками «плюс», если их стрелки совпадают с направлениями обхода, и с дополнительными знаками «минус», если стрелки противоположны направлению обхода.

Проверка законов Кирхгофа в данной работе заключается в следующем:

а) собирается конкретная цепь. Варианты схем приведены на рис. 1. Номер схемы и величины э.д.с. задаются преподавателем;

б) на электрической схеме цепи стрелками указываются выбранные направления вычисления токов;

в) с помощью амперметра и вольтметра производится измерение всех токов и напряжений.

Рис. 2

г) составляются уравнения для всех узлов и контуров цепи по законам Кирхгофа в буквенных обозначениях токов, напряжений и э.д.с. Затем подставляются измеренные значения этих величин и проверяется справедливость равенств (1) и (2);

2. Принцип наложения формулируется следующим образом: ток в К-ой ветви равен алгебраической сумме токов, вызываемых в этой ветви каждой из э.д.с. схемы в отдельности.

Принцип наложения используется в методе расчета, получившем название метода наложения.

Опытная проверка принципа наложения производится в следующем порядке:

а) в цепи, собранной при выполнении пункта 1, отключается один из источников э.д.с., а по месту его действия ставится закоротка (внутренне сопротивление источника считается равным нулю). Производится измерение токов во всех ветвях;

б) проделывается то же самое, что и в пункте 2а, при возвращенном на прежнее место первом источнике и отсоединенном втором (вместо второго источника ставится закоротка). Записываются значения токов  .

в) по измеренным  и рассчитываются токи iк во всех ветвях при действии обоих источников. Согласно принципу наложения

                                                  

Полученные значения нужно сравнить с измеренными ранее в пункте 1 токами   и убедиться в справедливости принципа наложения.

Токи  и  – алгебраические числа; определение их знаков производится в соответствии с правилами, описанными в пункте 1.

3.  В любой электрической схеме всегда можно мысленно выделить какую-то одну ветвь, а всю остальную часть схемы независимо от ее структуры и сложности условно изобразить некоторым прямоугольником. По отношению к выделенной ветви вся схема, обозначенная прямоугольником, представляет собой активный или пассивный двухполюсник.

Двухполюсник при расчете можно заменить эквивалентным генератором, э.д.с. которого равна напряжению холостого хода на зажимах выделенной ветви, а внутреннее сопротивление равно входному сопротивлению двухполюсника.

Метод расчета тока в выделенной ветви, основанный на замене активного двухполюсника эквивалентным генератором, принято называть методом эквивалентного генератора, методом активного двухполюсника или методом холостого хода  и короткого замыкания.

Параметры эквивалентного генератора  по отношению к одной из ветвей (рис. 3а) определяются следующим образом:

а)                                                 б)                                            в)

Рис. 3

а) ветвь размыкается и измеряется напряжение uхх (рис. 3б); ветвь закорачивается через амперметр (рис. 3в), измеряется ток короткого замыкания  iк3 ;

б) параметры эквивалентного генератора определяются соотношениями:      

iэ = uxx ,   Rэ =

Ток в пассивной ветви находится как

i = =

Величины i, uхх , еэ вычисляются (измеряются) в одном направлении (рис. 3)

Результаты измерений и вычислений по пунктам 1, 2, 3, 4 заносятся в таблицу.

Таблица измерений и вычислений

      №№ ветвей

1

2

3

4

5

6

Примечание

е

В

U

В

i

А

 

А

А

А

еm

В

ikm

А

ек

В

imk

А

Uхх

В

iкз

А


КОНТРОЛЬНЫЕ ВОПРОСЫ

  1.  Как формулируются законы Кирхгофа?
  2.  Что означают стрелки тока, напряжения, ЭДС?
  3.  Как формулируются правила знаков при составлении уравнений Кирхгофа?
  4.  Как с помощью вольтметра магнитоэлектрической системы определить величину и знак потенциала любой точки цепи по отношению к точке, потенциал которой принят за нулевой?
  5.  Как формулируется принцип наложения?
  6.  В чем состоит опытная проверка принципа наложения?
  7.  Можно ли определить мощность, выделяемую в сопротивлении, пользуясь принципом наложения?
  8.  Как экспериментально определить параметры схемы эквивалентного генератора?
  9.  Как формулируется теорема об активном двухполюснике?
  10.  В чем заключается метод контурных токов?
  11.  Как определяются собственные и взаимные сопротивления?
  12.  Как определяются «узловые токи»?

Таблица 1.

Варианты

Е

Е

R1

R2

R3

R4

R5

R6

В

Ом

  1.  

20

45

5

4

6

8

10

7

  1.  

30

50

10

8

5

4

9

5

  1.  

60

40

8

9

7

5

10

6

  1.  

50

25

6

7

9

10

8

5

  1.  

70

30

10

7

8

6

9

8

  1.  

35

60

8

6

7

9

10

5

  1.  

40

65

10

9

8

6

5

7

  1.  

55

70

8

10

12

9

7

6

  1.  

45

60

9

10

8

7

5

6

  1.  

50

40

8

7

6

5

9

5


R4

R2

R3

R6

R5

R1

R4

E1

E5

Uxx

R

А

Ri

А

E2

R5

E3

R1

R6

R3

R2

R4

E4

E1

R1

R5

R6

R3

R2

R4

E6

E2

R1

R5

R6

R3

R2

R4

E3

E1

R1

R5

R6

R3

R2

R4

E5

E3

R1

R5

R6

R3

R2

V

A

R

E

А

а

А

i

iкз

b

а

а

b

b

V1

V3

V4

V2

R3

R4

R1

R2

E1

E2


 

А также другие работы, которые могут Вас заинтересовать

68997. Організація комбінованих типів, оператор приєднання 33 KB
  Описаний вище регулярний тип масив - це структура даних, що містять компоненти однакового типу. Проте часто доводиться зберігати й опрацьовувати сукупності даних різного типу. З цією метою можна було б для кожного типу даних формувати окремий масив і визначати взаємну відповідність...
68998. Організація множин, операції над множинами 34.5 KB
  Множина - це невпорядкований набір різних об’єктів однакового типу. У мові Паскаль використовують тільки скінченні множини, причому всі елементи множини повинні бути однакового типу, визначеного в Паскалі. Тип елементів множини називається базовим.
68999. Процедури та функції 53.5 KB
  У математиці за допомогою функцій задають залежності одних величин від інших які називають аргументами. В алгоритмічних мовах розглядають лише функції для яких можна задати алгоритм визначення їхніх значень. Мова Паскаль допускає тільки такі функції значення яких належать до простих типів.
69000. ПОЛЬОВІ ТРАНЗИСТОРИ В РЕЖИМІ ПЕРЕМИКАННЯ 89 KB
  Режим перемикання транзисторного ключа (рис.14.1) залежить від значень напруг на вході UЗВ, живлення ЕС і опору RН, які забезпечують два статичних стану транзистора: вмикнуто (режим насичення) і вимкнуто (режим відсічки). Розглянемо фізичні процеси в транзисторі в стані вимкнуто.
69001. ІНДИКАТОРНІ ЕЛЕКТРОННО-ПРОМЕНЕВІ ПРИЛАДИ 93 KB
  Конструкція та принцип роботи В електронно-променевій трубці ЕПТ електричний сигнал перетворює ться в світловий. Конструкція ЕПТ Під час попадання електричного променю на люмінофор з останнього вибиваються вторинні електрони. ЕПТ поділяються на три групи: осцилографічні індикаторні кінескопи.
69002. Шуми електронних приладів. Фізична природа шумів 186.5 KB
  Шуми або флюктуації є випадковими процесами. Виникають з подачею напруги живлення на електроди елементу. Їх можна прослуховувати через динамік на вході радіоприймача і підсилювача або побачити на екрані осцилог-рафа. Шуми накладаються на корисні сигнали та рівні постійних напруг і струмів живлення...
69003. P-n перехід у стані рівноваги. Утворення електронно-діркового переходу 342.5 KB
  Розглянемо напівпровідник н п який має дві прилеглих області: одна з провідністю nтипу друга – pтипу. Оскільки концентрація дірок у дірковій області pp напівпровідника вище ніж в електронній pn а концентрація електронів у електронній області nn вище ніж у дірковій np між областями буде існувати...
69004. ФІЗИЧНІ ПРОЦЕСИ В р-n ПЕРЕХОДІ ПРИ ДІЇ ЗОВНІШНЬОЇ ЕЛЕКТРИЧНОЇ НАПРУГИ 105.5 KB
  Оскільки концентрація рухомих носіїв заряду в рп переході менша ніж в областях п та р напівпровідника опір рп переходу буде більший ніж опір області п та р тому можна вважати що вся напруга прикладається до рп переходу При дії зовнішньої напруги порушується рівновага між дифузійним і дрейфовим струмами в рп переході...
69005. Фізичні процеси в біполярних транзисторах з декількома p-n переходами 308 KB
  Для забезпечення інжекції вприскування дірок з емітера в базу необхідна пряма емітерна напруга. Це відбувається тому що товщина бази W значно менше дифузійної довжини вільного пробігу дірок LP. Колекторна напруга вибирається зворотною UК тому виникає екстракція втягування дірок із бази...