50746

Виготовлення та градуювання штучних термопар

Лабораторная работа

Физика

Обладнання: термоелектроди для штучної термопари; джерело постійного струму; тигель з графітом; тигель з піском з електропідігріванням; вольтметр; термометр з робочим діапазоном температур що вимірюється 0 300 ˚С штатив; демонстраційні термопари різного типу та вимірювальні прилади для термопар. Для вимірювання вищих температур застосовують термопари які виготовляють зєднанням між собою кінців різнорідних провідників. Для вимірювання температур до 1100 ˚С використовують термопари з неблагородних металів мідькопель залізокопель...

Украинкский

2014-01-29

167 KB

9 чел.

                                                             Лабораторна робота №4

Виготовлення та градуювання штучних термопар

Мета роботи: ознайомитися з термопарами як засобом вимірювання температур в технічних об'єктах, їх видами, характеристиками, методикою вимірювань; навчитися виготовляти і градуювати термопари.

Обладнання: термоелектроди для штучної термопари; джерело постійного струму; тигель з графітом; тигель з піском (з електропідігріванням); вольтметр; термометр з робочим діапазоном температур, що вимірюється 0 300 ˚С штатив; демонстраційні термопари різного типу та вимірювальні прилади для термопар.

Загальні положення

Для вимірювання температури залежно від границь фізичної величини та умов використовуються різні технічні засоби.

Найпоширеніші з них термометри, які використовуються, як в побуті, так і багатьох напрямках виробничої та наукової діяльності людини. Вони поділяються на рідинні (ртутні, спиртові, водяні…), які працюють у діапазонах температур -80…+250 ˚С, металеві та напівпровідникові (електричні термометри опору) -200…+650 ˚С.

Для вимірювання вищих температур застосовують термопари, які виготовляють зєднанням між собою кінців різнорідних провідників. При цьому провідники називають термоелектронами, а місця зєднання спаями. Якщо кінці такого елемента помістити в середовище з різною температурою, то в колі виникне ЕРС, яку називають термоЕРС. Вона є різницею функцій температур місць зєднання провідників:

Е = f(t1)  f(t2)

Якщо один спай умістити в середовище з вимірюваною температурою, а температуру другого підтримувати стлою, то

Е = f(t1) = f(tвим)

Спай, вміщений в середовище з вимірюваною температурою, називається робочим. Для вимірювання температур до 1100 ˚С використовують термопари з неблагородних металів (мідь-копель, залізо-копель, хромель-копель, хромель-алюмель); для температур діапазону 1100…1600 ˚С термопари з благородних металів (платинородій-платина); Температури вище 1600 ˚С вимірюють термопарою вольфрам-молібден.

Загалом, для виготовленя термопари може бути використана будь-яка пара різних металів, проте доцільно використовувати тільки так звані термоелектродні сплави, що задовольняють таким вимогам:

  1.  ТермоЕРС сплаву повинна бути достатньо великою, щоб її можна було виміряти з необхідною точністю, вона повинна бути неперервною та однозначною (бажано лінійною) функцією температури.
  2.  Температура плавлення або розмякання сплаву повинна бути вище, ніж температура, яку вимірює термопара.
  3.  Термоелектродні сплави, особливо для довго працюючих термопар, повинні бути корозійностійкими.
  4.  Сплави для термопар під час експлуатації та градуювання повинні зберігати свої характеристики незмінними. Термопари, що мають однакові розміри, повинні забезпечувати відтворюваність характеристик при серійному виготовленні і експлуатації в однакових умовах.
  5.  Матеріали, з яких виготовляються термопари, повинні бути достатньо міцними та пластичними.

По конструкційним особливостям та взаємозвязку термопари з середовищем, в якому вимірюється температура термопари поділяються на штучні, напівштучні та природні.

Штучна термопара є окремим від температурного середовища виробом, конструкція якого описана вище і не залежить від умов вимірювання температури (рис. 4.1), особливостей конструкції в якій вимірюється температура.

Рис. 4.1. Вимірювання температури різання методом штучної термопари

Один з елементів напівштучної термопари є складовою (деталлю) конструкції, в якій вимірюється температура. Відповідно така термопара дозволяє вимірювати шукану температуру, а не температуру чутливого елемента термопари (рис. 4.2).

Рис.4.2. Вимірювання температури різання методом напівштучної термопари

В природній термопарі роль обох термоелектронів виконують елементи конструкції, у якій вимірюється температура (рис. 4.3).     

                а)                                                                                          б)

                   Рис. 4.3. Схеми до процесу градуювання термопари

Покази реєструючих приладів занести до таблиці 4.2.

Таблиця 4.2.

t,˚C

140

150

160

170

180

190

200

210

220

230

U, в

8,2

8,7

9,4

10,2

11,1

12,1

12,9

13,6

14,4

15,2

Обробка результатів експерименту

У статистиці розроблено багато різних методів обробки результатів експерименту. Якщо розлядати найпростіший випадок вхідних даних один фактор, лінійна модель, тоді функція відгуку (формула шуканої лінійної залежності, побудованої за експериментальними даними) матиме вигляд:

y = b0 + b1x1, або для випадку , що розглядається:

U = b0 + b1t1.                                                (1)

Метою розрахунку є визначення невідомих коефіцієнтів b0 і  b1.  Якби усі експериментальні точки лежали точно на прямій лінії, тоді для кожної з них виконувалася рівність:

Ui - b0 - b1t1i = 0,     де і = 1, 2,…, N  номер досліду.

На практиці ця рівність не виконується і набуває вигляду:

Ui - b0 - b1t1i = δі,                                              (2)

де δі  різниця (невязка) між експериментальними та розрахованими за рівнянням регресії значеннями U в і-й експериментальній точці.

У загальному випадку, невязка виникає, якщо присутні помилки експерименту або непридатна модель. Якщо вважати модель придатною і розбіжності залежать тільки від помилки досліду, необхідно отримати такі коефіцієнти регресії, при яких невязки мінімальні. Цю вимогу можна записати по різному і відповідно виникають різні методи обробки експериментальних даних.

Метод середніх

Визначення коефіцієнтів регресії базується на тому, що алгебраїчна сума всіх невязок дорівнює 0:

С = Σδі = 0

Скориставшись формулою (2), отримаємо рівняння для визначення коефіцієнтів регресії:

Σ (Ui - b0 - b1t1i) = 0                                     (3)

Але невідомих коефіцієнтів 2, а рівняння 1. Тому для вирішення задачі рівняння (3) розбивають, утворюючи систему рівнянь (4), визначають коефіцієнти рівняння регресії (1) і будують його графік.

                             (4)

Скоротивши рівняння отримаємо:

Віднімемо від ІІ рівняння перше, отримаємо:

Знайдемо відхилення для кожного u :

Можемо визначити коефіцієнти регресії за формулою :

Метод найменших квадратів

Визначення коефіцієнтів регресії базується на тому, що сума квадратів всіх невязок мінімальна:

С = Σδ2 і = min

Скориставшись формулою (2), отримаємо рівняння для визначення коефіцієнтів регресії:

Σ (Ui - b0 - b1t1i)2 = min                                     (5)

Мінімум функції, якщо він існує досягається при одночасній рівності 0 часткових похідних по всім невідомим, тобто:

Кінцево формули для визначення коефіцієнтів регресії матимуть вигляд:

,     (6)

де y  функція (U), а х  аргумент (t)

Підставимо значення в формулу (6) :

Знайдемо значення u :

Визначимо похибки методу за формулою  :

 Висновок :


 

А также другие работы, которые могут Вас заинтересовать

31284. СПЕЦІАЛЬНІ СИСТЕМИ ЕЛЕКТРОПРИВОДУ 713 KB
  Перелік лабораторних робіт 4 Лабораторна робота № 1 Дослідження характеристик та регулювальних властивостей виконавчого приводу постійного струму з якірним та полюсним керуванням. Лабораторна робота № 2 Дослідження характеристик та регулювальних властивостей виконавчого приводу постійного струму з полюсним керуванням. Дослідженння характеристик виконавчих електроприводів з двигунами постійного струму з якірним та полюсним керуванням. Змоделювати якірне та полюсне керування двигуном постійного струму структурна схема...
31285. СПЕЦІАЛЬНІ СИСТЕМИ ЕЛЕКТРОПРИВОДУ. Методичні вказівки щодо практичних занять 2.08 MB
  5 Практичне заняття № 1 Розрахунок характеристик виконавчих електроприводів з двигунами постійного струму з якірним та полюсним керуванням. Статичний момент приведений до валу двигуна при підйомі Мс=42кГм а при спуску він являється активним и дорівнює 34кГм. Приведений до валу двигуна момент інерції механізму Jмех=00815 кГм∙сек2. Момент інерції ротора двигуна Jд= 04 кГм∙сек2.
31286. Основи моделювання аналогових та цифрових вузлів систем управління в пакеті програм Electronics Workbench 475.5 KB
  ТЕОРЕТИЧНІ ВІДОМОСТІ Пакет Electronics Workbench призначений для перевірки роботи електронних схем цифрових та аналогових методом математичного моделювання. Для моделювання роботи схем застосовуються численні методи МонтеКарло. 2 ПОРЯДОК ВИКОНАННЯ РОБОТИ 1.
31287. Дослідження низькочастотних генераторів сигналів різної форми в пакеті Electronics Workbench 1.39 MB
  Розглянемо ряд найпоширеніших генераторів сигналів синусоїдальної прямокутної і трикутної форм із регульованими параметрами частота амплітуда тривалість імпульсів та з різними методами стабілізації параметрів вихідних коливань. Генератори синусоїдальних коливань Принцип роботи генераторів синусоїдальних коливань заснований на використанні в ланцюгах зворотного звязку ЗЗ фазозсуваючих чи резонансних елементів: моста Віна подвійного Т образного моста що зсуває RC ланцюгів і ін. Тому при використанні високоякісних RC елементів...
31288. Дослідження схем активних випрямлячів в пакеті Electronics Workbench 1.11 MB
  Робота подібних випрямлячів як правило заснована на тому що при одній полярності вхідна напруга з деяким масштабним коефіцієнтом подається на вихід а при іншій вихідна напруга підтримується рівною нулю однонапівперіодний випрямляч чи інвертованій вхідній напрузі двонапівперіодний випрямляч. Побудувати схеми випрямлячів в пакеті Electronics Workbench для контролю за вихідними параметрами необхідно до виходів випрямлячів підключити вольтметр та осцилограф. Для кожного з побудованих випрямлячів визначити його тип.
31289. Дослідження комбінаційних схем, реалізованих за методом декомпозиції 1.2 MB
  Знайти гарантовано мінімальний вираз для довільної функції можна лише перебравши всі варіанти різних способів групування в процесі мінімізації що реально лише для невеликої кількості аргументів. З точки зору підходів до спрощення логічних виразів функції з якими має справу схемотехнік доцільно розділити на три групи: функції невеликої кількості аргументів обєктивні функції багатьох аргументів субєктивні функції багатьох аргументів. До першої групи відносять функції трьохпяти аргументів. Статистичний аналіз реальних схем...
31290. Дослідження схем синхронних та асинхронних цифрових автоматів з пам’яттю в пакеті Electronics Workbench 2.88 MB
  При моделюванні роботи синхронного автомата синхросерію слід подавати з генератора коливань обравши прямокутну форму імпульсів з параметрами близькими до вказаних на рис. Побудування логічних вентилів при синтезі синхронного автомата Якщо потрібно сформувати память автомата на Ттригерах не слід шукати їх в бібліотеці елементів так як їх фізично не існує необхідно побудувати Т тригер з JK тригера походячи з таблиці переходів. Часові діаграми роботи автомата слід скопіювати через буфер до редактора Paint або іншого графічного...
31291. Вивчення структури контролера КРВМ-2 та його засобів вводу-виводу 677.5 KB
  ЯПВВ - комірка програмованого вводу-виводу. Забезпечує зв’язок з зовнішніми об’єктами за будь-яким напрямком. До складу комірки входить мікросхема КР580ВВ55, порти якої з’єднані із зовнішніми приладами через шинні підсилювачі К589АП16, 2 шинних формувача КР580ВА86, мікросхеми К555ИД4 (здвоєний дешифратор 2 входи – 4 виходи), мікросхеми К155ТМ8 (4 D-тригери), К155ЛА3 (4 елементи 2І-НІ).
31292. Розрахунок генераторів пилкоподібної напруги 408 KB
  широко використовуються генератори пилкоподібної лінійнозмінної напруги. Часову діаграму пилкоподібної напруги наведено на рис.1 Часова діаграма пилкоподібної напруги Основними параметрами такої напруги є: тривалість робочого і зворотного ходу пилкоподібної напруги; період проходження імпульсів ; амплітуда імпульсів ; коефіцієнт нелінійності і коефіцієнт використання напруги джерела живлення .