50819

Построение и экспериментальная проверка статической характеристики замкнутой системы

Лабораторная работа

Физика

Освоить методику аналитического построения статической характеристики замкнутой САР по статическим характеристикам отдельных элементов. Под статической характеристикой замкнутой САР понимают функциональную зависимость регулируемой величины от задающего и возмущающих воздействий снятую на установившихся режимах. Если регулируемая величина на установившемся режиме не зависит от возмущающих воздействий то такая система называется астатической а если зависит то статической.

Русский

2014-01-31

868 KB

7 чел.

Лабораторная работа №2

Построение и экспериментальная проверка статической характеристики замкнутой системы

Цель работы: 1. Освоить методику аналитического построения статической характеристики замкнутой САР по статическим характеристикам отдельных элементов. 2. Проверить полученную зависимость экспериментальным путем.

Краткие сведения, необходимые для выполнения работы

Раздел теории, изучающий свойства систем автоматического регулирования на установившихся режимах, называется статикой систем регулирования в отличие от динамики, рассматривающей вопросы, связанные с переходными режимами.

Под статической характеристикой замкнутой САР понимают функциональную зависимость регулируемой величины от задающего и возмущающих воздействий, снятую на установившихся режимах.

В зависимости от того, изменяется ли регулируемая величина в статике при изменении возмущающих  воздействий или нет, системы делятся на статические и астатические. Если регулируемая величина на установившемся режиме не зависит от возмущающих воздействий, то такая система называется астатической, а если зависит, то статической. В последнем случае регулятор поддерживает регулируемую величину с точностью до статической ошибки регулирования.

Величина статической ошибки регулирования зависит от характеристики отдельных элементов САР и связана с характеристиками объекта регулирования и регулятора следующим соотношением:

           (1)

Здесь и на рис.8 х – регулируемая величина; f – возмущающее воздействие;

Δхs – статическая ошибка при выборе объекта совместно с регулятором, когда система замкнута; Δхs* - отклонение при работе объекта без регулятора – при разомкнутой системе; коб – коэффициент усиления объекта регулирования по управляющему сигналу; кр – коэффициент усиления регулятора.

Из рис.8 следует, что в данном случае использование регулятора не приводит к полному уничтожению статической ошибки, но уменьшает ее в (1+кобкр) раз.

Из зависимости (1) видно, что статическая ошибка регулирования  Δхs уменьшается с увеличением коэффициента усиления регулятора кр. Значение кр можно определить из статической характеристики регулятора как отношение приращения его выходной координаты Um – управляющего сигнала к входной – регулируемой величине n – при фиксированном значении задающего воздействия. Коэффициент усиления объекта регулирования коб – отношение приращения регулируемой величины к приращению управляемого сигнала при фиксированном значении возмущающего воздействия N=const. Здесь коб определяется из статической характеристики объекта.

Порядок выполнения работы

1. Построить график статической характеристики замкнутой системы, используя данные лабораторной работы №1.

В данном случае это будет зависимость частоты вращения вала n электродвигателя от возмущающего воздействия – нагрузки на двигатель N, полученная для разных значений задающего воздействия g – затяжки пружины центробежного маятника. Если система замкнута, то напряжение Um, пропорциональное перемещению муфты регулятора подается на вход электромашинного усилителя, т.е. в этом случае Um = Uвх. Поэтому ось абсцисс на статической характеристики объекта регулирования обозначим не Uвх, а Um.

Для построения статической характеристики замкнутой системы n=n(N,g) совместим на общем графике статическую характеристику объекта регулирования и регулятора, как показано на рис.9. Чтобы получить по характеристикам отдельных элементов статическую характеристику замкнутой системы, необходимо выход данного звена связать со входом последующего и таким образом замкнуть контур. Построение n=n(N,g) показано на рис. 9 стрелками.

Вначале задаемся g=g1, и каждому значению n будет соответствовать точка на поле статических характеристик объекта, которая определяет значение N. Величину нагрузки определяем путем интерполяции, если точка попадает между кривыми. Выполняем далее такое же построение для g=g2.

Такое построение выполняют обычно, если число элементов более двух. Если число элементов более четырех, то, используя правило построения статических характеристик группы звеньев, их число уменьшают до четырех.

В рассматриваемом случае число звеньев равно двум – это объект регулирования и регулятор, поэтому построение статической характеристики замкнутой системы можно упростить: наложить статическую характеристику регулятора на статическую характеристику объекта (рис. 10) и по точкам пересечения статической характеристики регулятора для g=g1 с кривыми N=const статической характеристики объекта определить значения n, соответствующие N=0, N=N1, N=N2, N=N3, N=N4 и т.д.

Полученные данные наносим на график n=n(N,g) – рис. 11. Такое же построение выполняем и для других значений g.

2. Снять статическую характеристику замкнутой системы в следующей последовательности:

1) тумблер переключателя рода работ 21 (см.рис.3) устанавливаем в положение 2 – загорается табло «Система замкнута». В этом случае напряжение, снимаемое с потенциометра 26 (см.рис.2) движок которого соединен с сервопоршнем 7, подается на управляющую обмотку ЭМУ;

2) устанавливаем тумблером 8 (см.рис.3) затяжку пружины центробежного маятника g=g1 такую же, как и при выполнении лабораторной работы №1. Так как точная установка такого же значения g затруднена (недостаточная точность шкалы, люфт и зазоры в кинематических парах), то устанавливаем N=0 и изменяем g до тех пор, пока не выйдем на обороты, соответствующие точке а на рис. 10;

3) изменяя нагрузку от 0 до максимального значения с использованием тумблеров 11 и 9 (см.рис.3), снимаем зависимость n от N при g=g1. Нагрузка N=0 устанавливается тумблером 11;

4) устанавливаем другие значения затяжки пружины – такие же, как и при выполнении лабораторной работы №1, и повторяем измерения. Для точной установки g=g2 используем точку б из рис.10. Данные заносим в табл.3.

табл.3

g, мм

g1=

g2=

n, об/мин

UГ, В

IГ, А

N=UГIГ, В

 


 

А также другие работы, которые могут Вас заинтересовать

77728. Программы обслуживания дисков 221.5 KB
  Объединяя отдельные части файлов и папок программа дефрагментации также объединяет в единое целое свободное место на томе что делает менее вероятной фрагментацию новых файлов. Время необходимое для дефрагментации тома зависит от нескольких факторов в том числе от его размера числа и размера файлов степени фрагментации и доступных системных ресурсов. Перед выполнением дефрагментации можно найти все фрагментированные файлы и папки проанализировав том.
77729. Сетевые устройства 77 KB
  В последнее время концентраторы используются достаточно редко вместо них получили распространение коммутаторы устройства работающие на канальном уровне модели OSI и повышающие производительность сети путём логического выделения каждого подключенного устройства в отдельный сегмент домен коллизии. Однако концентарторы можно соединять каскадно друг к другу наращивая количество портов сегмента сети. switch переключатель устройство предназначенное для соединения нескольких узлов компьютерной сети в пределах одного сегмента. Это повышает...
77731. Технологии флэш-памяти 130.5 KB
  Итак флэш-память. Вообще изобретателем считается Intel представившая в 1988 году флэш-память с архитектурой NOR. Годом позже Toshib разработала архитектуру NND которая и сегодня используется наряду с той же NOR в микросхемах флэш.
77733. Внешние запоминающие устройства (ВЗУ) и их интерфейсы 3.5 MB
  В этих устройствах могут быть реализованы различные физические принципы хранения информации магнитный оптический магнитооптический электронный в любых их сочетаниях. Устройства внешней памяти оперируют блоками информации но никак не байтами или словами как например оперативная память. Процедуры обмена с устройствами внешней памяти привязаны к типу устройства его контроллеру и способу подключения устройства к системе интерфейсу.
77735. Интерфейс НГМД 2.29 MB
  Интерфейс НГМД Интерфейс накопителей на гибких магнитных дисках НГМД является сугубо специфическим по нему передаются не байты команд и данных а сигналы управления приводом и не декодированные сырые битовые потоки данных чтения-записи. Основные функции по управлению НГМД а также по кодированию-декодированию данных выполняет контроллер расположенный на системной плате1. Все функции необходимые для использования НГМД в качестве устройств хранения данных реализованы сервисами BIOS INT 13h и ОС. Контроллер 2 FDC АТ поддерживает два...
77736. Интерфейс ATA 205 KB
  После введения в 2003 году стандарта Seril T Последовательный T традиционный T стали именовать Prllel T имея в виду способ передачи данных по 40 жильному кабелю. Это вдвое увеличивает скорость передачи данных по интерфейсу. Также введена проверка на четность CRC что повышает надёжность передачи информации. 1й регистр с адресом 0 является 16 разрядный и используется для передачи данных между диском и контроллером.