5093

Исследование собственных и дополнительных затуханий в оптических кабелях связи

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

Цель работы является проведение компьютерного эксперимента по исследованию собственных и дополнительных затуханий в оптических кабелях связи: - собственных затуханий- затуханий в местах соединений оптических волокон- затуханий на микро...

Русский

2012-12-03

707 KB

90 чел.

Цель работы

Цель работы является проведение компьютерного эксперимента по исследованию собственных и дополнительных затуханий в оптических кабелях связи:

- собственных затуханий;
- затуханий в местах соединений оптических волокон;
- затуханий на микроизгибах и макроизгибах;

ПРОГРАММА ЛАБОРАТОРНОЙ РАБОТЫ

2.1 Расчет и построение таблицы зависимости затухания из-за поглощения энергии в материале от длинны волны.
2.2 Моделирование и построение графика зависимости затухание из-за Релеевского рассеяния от длинны волны.
2.3 Компьютерное моделирование и построение графика зависимости затухания от длинны волны в инфракрасной области.
2.4 Моделирование и построение графика зависимости затуханий из-за различия числовых апертур.
2.5 Расчет затухания из-за различия диаметров сердцевины оптического волокна.
2.6 Компьютерное моделирование затухания из-за углового смешения сердцевины оптического волокна.
2.7 Моделирование затуханий из-за осевого смещения оптических волокон.
2.8 Расчет затуханий из-за радиального смешения оптических волокон.
2.9 Компьютерное моделирование затуханий на микроизгибах оптического волокна.
2.10 Моделирование затуханий на макроизгибах градиентного оптического волокна.

ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ СООТНОШЕНИЯ ДЛЯ РЕШЕНИЯ ЗАДАЧ И МОДЕЛИРОВАНИЯ 

В общем, виде затухание оптического сигнала определяется соотношением:

, [дБ],(1)

где - вносимое затухание, зависимое от длины волны ;
- мощности оптического сигнала соответственно на выходе и входе оптического волокна (или его отрезка), выраженные в Вт, mВт или Вт.
Собственные затухания поглощения в оптическом волокне вычисляются по формуле:

(2)

где - n1 показатель преломления материала сердцевины;
- тангенс угла диэлектрических потерь;
- длина волны, км.
Суммарные потери на Рэлеевское рассеяние зависят от длины волны волны по закону
-4 и количественно могут быть оценены по формуле

, дБ/км, (4)

где с и k – постоянные коэффициенты (для кварца k=(0,70,9)10-6 м., с=0,9).

Потери мощности оптического сигнала из-за различия числовых апертур соединяемых ОВ происходят в том случае, если числовая апертура передающего ОВ больше числовой апертуры принимающего. Эти потери вычисляются по следующей формуле

(5)

При NAперед<NAприним апертурные потери не возникают.
Когда диаметр сердцевины передающего ОВ больше диаметра сердцевины принимающего, имеют место потери, так как часть оптической мощности распро-страняется в оболочке принимающего ОВ. Эти потери определяются по формуле:

(6)

При Dперед. < Dприним. потери не возникают.
Потери при угловом
, радиальном L и осевом S смещениях определяются со-ответственно формулами

(7)

(8)

(9)

NA – апертура волокна;
D – диаметр светонесущей части волокна;
L – радиальное смещение;
S – осевое смещение;
n
0 – показатель преломления среды, заполняющей пространство стыка.
Дополнительные потери из-за микроизгибов 
микро. обусловлены связью мод в местах деформаций ОВ, зависят от статистики этих хаотически распределенных де-формаций по длине ОВ и оцениваются по формуле, дБ,

(10)

где h — высота (радиус) микроизгиба; а — радиус сердцевины ОВ; 2b — диа-метр ОВ по оболочке; N — число микроизгибов. Для расчетов принимаем N =1
Оценить дополнительные потери за счет макроизгибов градиентного волокна можно по формуле


(11)

Результаты входного теста

ЗАЩИТА ЛАБОРАТОРНОЙ РАБОТЫ

Задача № 1.

Определить затухание волоконно-оптической линии, если мощность входного сигнала Рвх, мВт, а мощность выходного сигнала Рвых, мВт

Таблица 2 –   данные к задаче № 1

N

3

Pвх,

мВт

1,0

Pвых,

мВт

0,01

a , дБ

 20

Задача № 2.

Определить, на сколько изменятся собственные затухания из-за поглощения в оптическом волокне, если передача сигналов будет осуществляться не в третьем, а в первом окне прозрачности. Параметры оптического волокна: n2, D , tg d =10-11.

Таблица 3 –   данные к задаче № 2

N

3

n2

1,492

D 

0,012

a ,дБ

0.31

Задача № 3.

С течением времени в разъемном соединителе станционного оптического кабеля ОКС-50-01 произошло осевое смещение торцов одного оптического волокна на 25 мкм. Определить возникшие при этом дополнительные затухания. Параметры оптического волокна: n2, D .

Таблица 3 –   данные к задаче №3

N

3

n2

1,492

D 

0,012

a , дБ

 0.06


 

А также другие работы, которые могут Вас заинтересовать

22029. Мембранные потенциалы 232.5 KB
  Более подробно межфазные и поверхностные потенциалы будут рассмотрены позже а сейчас мы рассмотрим как повлияет на перенос ионов наличие на мембране трансмембранного потенциала. Однако липидная часть мембраны состоит всегото из двух слоёв молекул фосфолипидов причём размеры подвижных звеньев цепей жирных кислот в этих молекулах соизмеримы с размерами ионов которые передвигаются внутри мембраны. Это заставляет при рассмотрении переноса ионов в мембране отказаться от полностью макроскопического подхода к явлениям и рассматривать процессы на...
22030. Перемещения иона в мембране 347 KB
  В случа переноса ионов через биомембраны за ось Х можно принять ось нормальную к мембране и направленную изнутри везикулы например клетки наружу см. Как же перемещается ион в толще липидного слоя мембраны В разделе 1 говорилось о том что такое перемещение возможно благодаря перестройке конфигурации жирнокислотных цепей и образованию нового кинка . Движение иона поперёк мембраны путём перескакивания из одного кинка в другой. На рисунке показаны не разные молекулы фосфолипидов в бислое а разные стадии процесса переноса иона...
22031. Системы передачи с временным разделением каналов 139 KB
  Напомним что для преобразования аналогового сигнала в цифровой используются операции ДИСКРЕТИЗАЦИЯ КВАНТОВАНИЕ КОДИРОВАНИЕ. Значение шума квантования зависит от количества уровней квантования скорости изменения сигнала и от спосрба выбора шага квантования. не зависит от а } = где вероятность попадания сигнала в iю зону квантования. зависит лишь от шага квантования и не зависит от уровня сигнала.
22032. Дельта - модуляция (кодирование с предсказанием) (ДИКМ) 158.5 KB
  Основные параметры характеристики компрессии по А закону приведены в таблице: № сегмента Вид кодовой комбинации P XYZ ABCD Относительный интервал изменения входного сигнала Значение шага квантования относительно Uогр 0 P 000 ABCD 0  1 128 1 2048 1 P 001 ABCD 1 128  1 64 1 2048 2 P 010 ABCD 1 64  1 32 1 1024 3 P 011 ABCD 1 32  1 16 1 512 4 P 100 ABCD 1 16  1 8 1 256 5 P 101 ABCD 1 8  1 4 1 128 6 P 110 ABCD 1 4  1 2 1 64 7 P 111 ABCD 1 2  1 1 32 Кодовая комбинация и есть код квантованного сигнала P  ABCD ...
22033. Особенности передачи сигналов данных 67 KB
  Качество передачи при этом оценивается не искажениями формы сигналов как в аналоговых системах а числом ошибок в принятой информации т. верностью передачи. В хороших модемах перед началом передачи информации вначале устанавливается связь между модемами которые автоматически обмениваясь сигналами подстраиваются под конкретную линию связи и автоматически выбирают необходимую скорость передачи а затем передают саму информацию.
22034. Графическая визуализация вычислений 83.54 KB
  В ходе выполнения данной лабораторной работы я освоил визуализацию вычислений средствами указанных функций
22035. Казкотерапія як напрям психолого-педагогічної терапії 132.5 KB
  Озброїти студентів знаннями про сутність казкотерапії та особливості психолого-педагогічої терапії за допомогою казки. Ознайомити з видами казок у казко терапії. Пояснити особливості використання різних форм роботи з казкою у процесі казко терапії. Сформувати поняття про використання різних арттерапевтичних технік та їх поєднання в казкотерапевтичній роботі.
22036. Музикотерапія та особливості її використання 57.5 KB
  Музикотерапія – це контрольоване використання звуків і музикп в лікуванні і реабілітації клієнтів, що являє собою діяльність, яка включає: відтворення, фантазування, імпровізацію за допомогою людського голосу і вибраних музичних інструментів чи прослуховування спеціально підібраних музичних творів.
22037. Математическая обработка данных 21.98 KB
  В ходе выполнения лабораторной работы мною были освоены функции, позволяющие решать нетривиальные математические задачи.