51049

Динамические характеристики морских стационарных буровых платформ

Лабораторная работа

География, геология и геодезия

Основные определения: Период собственных колебаний Т это время шитого цикла одного свободного затухающего колебания верхнего сечения стержня. Круговая частота собственных колебаний Ω представляет собой число полных свободных колебаний за время 2π секунд и связана с периодом соотношением Ω=2π Т. Экспериментально величины Т и Ω определяются путём обработки осциллографической записи свободных затухающих колебаний. Натуральный логарифм отношения двух последовательных амплитуд свободного затухающего колебательного движения называется...

Русский

2014-02-04

494.63 KB

10 чел.

Нижегородский государственный технический университет

Кафедра “Теория корабля и гидромеханика”

Лабораторная работа №1

“Динамические характеристики морских стационарных буровых платформ”

                                                                                                                             Выполнили:

                                                                                                                             Телегин А.В.

                                                                                                                             группа: 09-СУ-1

                                                                                                                             Проверил:

                                                                                                                             Савинов В.Н.

Нижний Новгород

2013 год

Цель работы: Ознакомление с физической природой динамического воздействия морских стационарных сооружений с ветро-волновым воздействием, с теоретическими основами расчёта динамичности воздействия регулярного волнения.

Краткие сведения из теории:

            Морские стационарные буровые платформы (МСБП) предназначены для длительной эксплуатации в условиях открытого моря и поэтому подвержены воздействию самых экстремальных штормов и ураганов. Будучи прочно скрепленными с грунтом морского дна, они не могут сойти с точки работ в море и укрыться даже при приближении самых жестоких ураганов, так как это могут сделать суда и другие плавсредства. Их единственная возможность "выжить" во время шторма состоит в наличии достаточных запасов прочности и устойчивости, поэтому необходимость динамических расчетов, т.е. расчетов, учитывающих динамический характер воздействия волнения и ветра, для таких сооружений особенно велика.

           Отчасти в сходных условиях находятся самоподъемные плавучие буровые установки (СПБУ), которые хотя и имеют возможность перемещения с одной точки работ в море на другую, но их перестановки производятся только в спокойную погоду и занимают дли тельное время.

Рис. 1. Динамическая расчетная схема.

а – МСБП и СПБУ; б – расчетный стержень; в - перемещение

       

           МСБП и СПБУ (см. рис. 1,а), как правило, имеют вытянутую в высоту геометрическую форму и регулярно повторяющуюся конструкцию опорных блоков или колонн. Поэтому для них может быть предложена динамическая расчетная схема, показанная на рис. 1,6. Установка рассматривается как вертикальный упругий невесомый стержень длиной L с жесткостью при изгибе KEJ (К - число опорных колонн или блоков; Е - модуль упругости; J - момент инерции площади поперечного сечения одной опоры). Инерционные характеристики сооружения учитываются равноотстоящими друг от друга на расстоянии AL сосредоточенными узловыми массами mi, индекс i=1 соответствует верхнему сечению, где сосредоточена масса верхнего строения, индекс i=n нижнему сечению на уровне дна моря (грунта). На рис. 1,в показаны динамические перемещения (колебания) Ui, расчетного стержня.

       На рис. 1, б также обозначено: y - текущая продольная координата, измеряемая от нижнего сечения стержня; qi — узловые нагрузки, учитывающие внешние динамические воздействия: волнение (профиль волны η), ветер (эпюра скорости W) и т.п.

Основные определения:

Период собственных колебаний Т - это время шитого цикла одного свободного затухающего колебания верхнего сечения стержня. Круговая частота собственных колебаний Ω представляет собой число полных свободных колебаний за время 2π секунд и связана с периодом соотношением Ω=2π/Т. Экспериментально величины Т и Ω определяются путём обработки осциллографической записи свободных затухающих колебаний.

Натуральный логарифм отношения двух последовательных амплитуд свободного затухающего колебательного движения называется логарифмическим декрементом колебаний δ, то есть:

Форма собственных колебаний Ф представляет собой безразмерную функцию, определяющую искривление упругой оси условного расчетного стержня   во  время   динамических раскачиваний  верхнего  строения. В качестве аргумента такой функции используется безразмерная координата ζ=y/L.

Коэффициент динамичности – это параметр, позволяющий условно учесть динамичность нагрузки путем корректировки деформаций конструкции, найденных при условии упрощенного статического представления внешнего воздействия.

1. Описание лабораторной установки.

Рисунок 2 – схема лабораторной установки.

Физическая схема лабораторной установки показана на рисунке 2,а. Она состоит из вертикального прутка сечением 25x2,5 мм и расчётной длиной L=0,8 м. В нижней части пруток жёстко защемлён в массивном основании, а в верхней части имеется площадка для дополнительных грузов. На рисунке 2,б показана соответствующая данной модели динамическая расчётная схема, в которой масса прутка разбивается на 5 узловых масс mi, равноудалённых друг от друга на расстояние ΔL=L/5=160 мм. Изменение верхней массы M1 используется для варьирования частоты собственных колебаний установки Ω.

2. Результаты замеров и вычисления

Таблица 1 – Значения функции формы собственных колебаний.

Безразмерная координата ζ

0.1

0.3

0.5

0.7

0.9

Функция формы колебаний Ф

0.0145

0.1215

0.3125

0.5635

0.8505

2.1 Свободные колебания модели в воздухе

- Экспериментальный период свободных колебаний

Tов=0.5 с

- Экспериментальная частота свободных колебаний модели

- Коэффициент жёсткости верхнего конца стержня при поперечном смещении

 Н/м

где: S=0.05 м – смещение верхнего сечения стержня;

 F=2,943 Н – усилие при смещении.

- Обобщённая масса модели в воздухе

 кг

- Теоретическое значение частоты собственных колебаний

- Находим погрешность в определении собственной частоты

- Декремент свободных колебаний в воздухе

где Aн=50 мм – начальная амплитуда;

 Aк=37 мм – конечная амплитуда;

 N=10 – количество полных циклов зарегистрированных колебаний.

Свободные колебания модели в воде

- Период свободных колебаний в воде

T0=0.51 с

- Частота свободных колебаний в воде

- Декремент свободных колебаний в воде

где Aн=50 мм – начальная амплитуда;

 Aк=15 мм – конечная амплитуда;

 N=10 – количество полных циклов зарегистрированных колебаний.

2.2 Вынужденные колебания модели на регулярном волнении

1) Включаем волнопродуктор и устанавливаем волновой режим. Определяем параметры регулярного волнения:

Период τ=0.9 с

Круговая частота

2) На верхнюю площадку доставляем дополнительные грузы. После стабилизации раскачивания модели с конкретным грузом определяем амплитуду колебаний верхней площадки.

3) Затем волнопродуктор отключается, и на тихой воде определяются периоды свободных колебаний модели для тех же значений дополнительных грузов.

Экспериментальный период вынужденных колебаний То = 0,51 с.

Присутствие жидкости увеличивает период свободных колебаний в следствии появления присоединённой массы жидкости.

Вынужденная частота свободных колебаний модели:

 c-1.

Декремент вынужденных колебаний в воде (определяется экспериментально):

,

где м – начальная амплитуда колебаний,

мм – конечная амплитуда колебаний,

- количество полных циклов колебаний.

Присутствие воды увеличивает рассеяние энергии и рост декремента колебаний.

Экспериментальные значения приведены в таблице 2.

Таблица 2 – Определение коэффициента динамичности.

Величина

№ опыта

0

1

2

3

4

5

6

7

8

1

m, кг

0,00

0,209

0,423

0,634

0,858

1,071

1,117

1,163

1,374

2

, мм

0,50

2,50

3,00

3,70

6,50

30,00

10,00

7,00

5,00

3

Т, с

0,51

0,61

0,72

0,80

0,92

1,00

1,10

1,20

1,30

4

Ω=2π/Т

12,31

10,30

8,72

7,85

6,83

6,28

5,71

5,23

4,83

5

М*=Мо*+∆m,кг

0,3

0,509

0,723

1,024

1,158

1,371

1,417

1,463

1,674

6

,мм

0,50

4,24

7,23

12,63

25,09

137,1

47,23

34,14

27,90

7

1,4

11,87

20,24

35,36

70,25

383,9

132,2

95,59

78,12

8

0,57

0,68

0,80

0,89

1,02

1,11

1,22

1,33

1,45

Для корректировки коэффициента динамичности вводится коэффициент   (при для )

Для резонансного режима () определяем величину логарифмического декремента

                       


 

А также другие работы, которые могут Вас заинтересовать

19482. Паралельні компютерні архітектури 42.8 KB
  Паралельні комп'ютерні архітектури Швидкість роботи комп'ютерів стає все вище а й вимоги до них постійно зростають. Астрономи намагаються відтворити всю історію Всесвіту з моменту великого вибуху і до сьогоднішнього дня. Фармацевти хотіли б розробляти нові лікарськ
19483. Принцип організації системи BIOS 30.5 KB
  Принцип організації системи BIOS BIOS англ. Basic Input/Output System базова система введення/виведення є набором спеціальних підпрограм які використовуються комп'ютерами архітектури x86 для ініціалізації компонентів персональної платформи необхідних для її первинного завантаж...
19484. Принципи дії системи переривань 27 KB
  Принципи дії системи переривань Система переривань будьякого комп'ютера є його найважливішою частиною що дозволяє швидко реагувати на події обробка яких повинна виконаються негайно: сигнали від машинних таймерів натиснення клавіш клавіатури або миші збої пам'яті і ...
19485. Способи адресації 28.5 KB
  Способи адресації Спо́соби адреса́ції па́м'яті комплекс стандартизованих для певної архітектури системи команд центрального процесора способів для визначення обчислення місця розташування операндів в пам'яті ЕОМ або адреси наступної команди при виконанні команд
19486. Типи та формат команд 29 KB
  Типи та формат команд Количество команд и их сложность являютса важнейшым фактом при выборе Архітектуры системи командАСК.По етому виделяют следуйщие видиАСК: 1.Стековая 2.Акумуляторная 3.Регистровая 4.С виделеним доступом к памяти Стекові архітектури У стек
19487. Флеш та кеш память 27.5 KB
  Флеш та кеш пам'ять Кешпамять від Cache тайник це засіб копіювання і зберігання блоків даних основної памяті типу DRAM в процесі виконання програми. Кешпамять побудована на швидкодіючих тригерних ЕП але має невелику ємність порівняно з основною динамічною памяттю...
19488. Основні характеристики шини 16.34 KB
  Основні характеристики шини Розрядність шини визначається числом паралельних провідників що входять в неї. Перша шина ISA для IBM PC була восьмирозрядний тобто по ній можна було одночасно передавати 8 біт. Системні шини сучасних ПК наприклад Pentium IV 64розрядні. Пропус...
19489. Создание окного приложения 18.61 KB
  Создание окного приложения Первым шагом в разработке приложения C Builder является создание проекта. Файлы проекта содержат сгенерированный автоматически исходный текст который становится частью приложения когда оно скомпилировано и подготовлено к выполнению. Чтобы с