51049

Динамические характеристики морских стационарных буровых платформ

Лабораторная работа

География, геология и геодезия

Основные определения: Период собственных колебаний Т это время шитого цикла одного свободного затухающего колебания верхнего сечения стержня. Круговая частота собственных колебаний Ω представляет собой число полных свободных колебаний за время 2π секунд и связана с периодом соотношением Ω=2π Т. Экспериментально величины Т и Ω определяются путём обработки осциллографической записи свободных затухающих колебаний. Натуральный логарифм отношения двух последовательных амплитуд свободного затухающего колебательного движения называется...

Русский

2014-02-04

494.63 KB

10 чел.

Нижегородский государственный технический университет

Кафедра “Теория корабля и гидромеханика”

Лабораторная работа №1

“Динамические характеристики морских стационарных буровых платформ”

                                                                                                                             Выполнили:

                                                                                                                             Телегин А.В.

                                                                                                                             группа: 09-СУ-1

                                                                                                                             Проверил:

                                                                                                                             Савинов В.Н.

Нижний Новгород

2013 год

Цель работы: Ознакомление с физической природой динамического воздействия морских стационарных сооружений с ветро-волновым воздействием, с теоретическими основами расчёта динамичности воздействия регулярного волнения.

Краткие сведения из теории:

            Морские стационарные буровые платформы (МСБП) предназначены для длительной эксплуатации в условиях открытого моря и поэтому подвержены воздействию самых экстремальных штормов и ураганов. Будучи прочно скрепленными с грунтом морского дна, они не могут сойти с точки работ в море и укрыться даже при приближении самых жестоких ураганов, так как это могут сделать суда и другие плавсредства. Их единственная возможность "выжить" во время шторма состоит в наличии достаточных запасов прочности и устойчивости, поэтому необходимость динамических расчетов, т.е. расчетов, учитывающих динамический характер воздействия волнения и ветра, для таких сооружений особенно велика.

           Отчасти в сходных условиях находятся самоподъемные плавучие буровые установки (СПБУ), которые хотя и имеют возможность перемещения с одной точки работ в море на другую, но их перестановки производятся только в спокойную погоду и занимают дли тельное время.

Рис. 1. Динамическая расчетная схема.

а – МСБП и СПБУ; б – расчетный стержень; в - перемещение

       

           МСБП и СПБУ (см. рис. 1,а), как правило, имеют вытянутую в высоту геометрическую форму и регулярно повторяющуюся конструкцию опорных блоков или колонн. Поэтому для них может быть предложена динамическая расчетная схема, показанная на рис. 1,6. Установка рассматривается как вертикальный упругий невесомый стержень длиной L с жесткостью при изгибе KEJ (К - число опорных колонн или блоков; Е - модуль упругости; J - момент инерции площади поперечного сечения одной опоры). Инерционные характеристики сооружения учитываются равноотстоящими друг от друга на расстоянии AL сосредоточенными узловыми массами mi, индекс i=1 соответствует верхнему сечению, где сосредоточена масса верхнего строения, индекс i=n нижнему сечению на уровне дна моря (грунта). На рис. 1,в показаны динамические перемещения (колебания) Ui, расчетного стержня.

       На рис. 1, б также обозначено: y - текущая продольная координата, измеряемая от нижнего сечения стержня; qi — узловые нагрузки, учитывающие внешние динамические воздействия: волнение (профиль волны η), ветер (эпюра скорости W) и т.п.

Основные определения:

Период собственных колебаний Т - это время шитого цикла одного свободного затухающего колебания верхнего сечения стержня. Круговая частота собственных колебаний Ω представляет собой число полных свободных колебаний за время 2π секунд и связана с периодом соотношением Ω=2π/Т. Экспериментально величины Т и Ω определяются путём обработки осциллографической записи свободных затухающих колебаний.

Натуральный логарифм отношения двух последовательных амплитуд свободного затухающего колебательного движения называется логарифмическим декрементом колебаний δ, то есть:

Форма собственных колебаний Ф представляет собой безразмерную функцию, определяющую искривление упругой оси условного расчетного стержня   во  время   динамических раскачиваний  верхнего  строения. В качестве аргумента такой функции используется безразмерная координата ζ=y/L.

Коэффициент динамичности – это параметр, позволяющий условно учесть динамичность нагрузки путем корректировки деформаций конструкции, найденных при условии упрощенного статического представления внешнего воздействия.

1. Описание лабораторной установки.

Рисунок 2 – схема лабораторной установки.

Физическая схема лабораторной установки показана на рисунке 2,а. Она состоит из вертикального прутка сечением 25x2,5 мм и расчётной длиной L=0,8 м. В нижней части пруток жёстко защемлён в массивном основании, а в верхней части имеется площадка для дополнительных грузов. На рисунке 2,б показана соответствующая данной модели динамическая расчётная схема, в которой масса прутка разбивается на 5 узловых масс mi, равноудалённых друг от друга на расстояние ΔL=L/5=160 мм. Изменение верхней массы M1 используется для варьирования частоты собственных колебаний установки Ω.

2. Результаты замеров и вычисления

Таблица 1 – Значения функции формы собственных колебаний.

Безразмерная координата ζ

0.1

0.3

0.5

0.7

0.9

Функция формы колебаний Ф

0.0145

0.1215

0.3125

0.5635

0.8505

2.1 Свободные колебания модели в воздухе

- Экспериментальный период свободных колебаний

Tов=0.5 с

- Экспериментальная частота свободных колебаний модели

- Коэффициент жёсткости верхнего конца стержня при поперечном смещении

 Н/м

где: S=0.05 м – смещение верхнего сечения стержня;

 F=2,943 Н – усилие при смещении.

- Обобщённая масса модели в воздухе

 кг

- Теоретическое значение частоты собственных колебаний

- Находим погрешность в определении собственной частоты

- Декремент свободных колебаний в воздухе

где Aн=50 мм – начальная амплитуда;

 Aк=37 мм – конечная амплитуда;

 N=10 – количество полных циклов зарегистрированных колебаний.

Свободные колебания модели в воде

- Период свободных колебаний в воде

T0=0.51 с

- Частота свободных колебаний в воде

- Декремент свободных колебаний в воде

где Aн=50 мм – начальная амплитуда;

 Aк=15 мм – конечная амплитуда;

 N=10 – количество полных циклов зарегистрированных колебаний.

2.2 Вынужденные колебания модели на регулярном волнении

1) Включаем волнопродуктор и устанавливаем волновой режим. Определяем параметры регулярного волнения:

Период τ=0.9 с

Круговая частота

2) На верхнюю площадку доставляем дополнительные грузы. После стабилизации раскачивания модели с конкретным грузом определяем амплитуду колебаний верхней площадки.

3) Затем волнопродуктор отключается, и на тихой воде определяются периоды свободных колебаний модели для тех же значений дополнительных грузов.

Экспериментальный период вынужденных колебаний То = 0,51 с.

Присутствие жидкости увеличивает период свободных колебаний в следствии появления присоединённой массы жидкости.

Вынужденная частота свободных колебаний модели:

 c-1.

Декремент вынужденных колебаний в воде (определяется экспериментально):

,

где м – начальная амплитуда колебаний,

мм – конечная амплитуда колебаний,

- количество полных циклов колебаний.

Присутствие воды увеличивает рассеяние энергии и рост декремента колебаний.

Экспериментальные значения приведены в таблице 2.

Таблица 2 – Определение коэффициента динамичности.

Величина

№ опыта

0

1

2

3

4

5

6

7

8

1

m, кг

0,00

0,209

0,423

0,634

0,858

1,071

1,117

1,163

1,374

2

, мм

0,50

2,50

3,00

3,70

6,50

30,00

10,00

7,00

5,00

3

Т, с

0,51

0,61

0,72

0,80

0,92

1,00

1,10

1,20

1,30

4

Ω=2π/Т

12,31

10,30

8,72

7,85

6,83

6,28

5,71

5,23

4,83

5

М*=Мо*+∆m,кг

0,3

0,509

0,723

1,024

1,158

1,371

1,417

1,463

1,674

6

,мм

0,50

4,24

7,23

12,63

25,09

137,1

47,23

34,14

27,90

7

1,4

11,87

20,24

35,36

70,25

383,9

132,2

95,59

78,12

8

0,57

0,68

0,80

0,89

1,02

1,11

1,22

1,33

1,45

Для корректировки коэффициента динамичности вводится коэффициент   (при для )

Для резонансного режима () определяем величину логарифмического декремента

                       


 

А также другие работы, которые могут Вас заинтересовать

42498. Дослідження кепстру сигналів 528.5 KB
  Зберігання виконаної роботи проводити виключно командою Sve ll 3. Для виконання лабораторної роботи скопіювати фрагмент коду позначений коментарем 8лабораторна робота: Кепстр сигналів в кінець програми після директиви endif. Вибрати пункт 8 та проаналізувати варіант виконання лабораторної роботи.
42499. Проектування волоконно-оптичної системи передачі інфопмації 256 KB
  Львів 2010 Мета роботи : Ознайомитися з послідовністю проектування ВОСП методикою інженерного розрахунку волоконно оптичних систем зв`язку а також отримати певні навики практичного розрахунку системи для заданих параметрів. Визначення потрібної швидкості передачі топології системи. Енергетична характеристика системи.
42500. Налаштування однорангової мережі у середовищі ОС Windows 98 29 KB
  Для перевірки заходимо в Сетевое окружение та дивимося чи зявився в мережі данний ПК. Висновок: В цій роботі я навчився налаштовувати компютер та встановлювати параметри для коректної роботи однорангової мережі у середовищі ОС Windows 98 міністерство науки і освіти України промисловоекономічний коледж НАУ Лабораторна робота № 8 З дисципліни: периферійні пристрої ЕОМ Тема роботи: налаштування однорангової мережі у середовищі ОС Windows 98 Виконав:...
42501. Измерение ЭДС источника методом компенсации 69 KB
  Краткие теоретические сведения ЭДС гальванического элемента не зависит от размеров электродов и количества электролита а определяется лишь их химическим составом и при данных условиях постоянна. Каждый тип элементов даёт определённую ЭДС.1 где  − ЭДС; I − сила тока; R − сопротивление внешней цепи; r − внутреннее сопротивление элемента.
42502. Определение ЭДС источника с помощью известного сопротивления 60 KB
  Оборудование: аккумуляторная батарея ЭДС которой определяется миллиамперметр магазин сопротивлений ключ. Это достигается с помощью ЭДС источника. При разомкнутой цепи разность потенциалов между полюсами источника равна ЭДС.
42503. ПОНЯТИЕ ПРАВА ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ. МЕЖДУНАРОДНЫЕ И ОТЕЧЕСТВЕННЫЕ ИСТОЧНИКИ ПРАВА ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ 218.5 KB
  Результат интеллектуальной деятельности как объект права. Право интеллектуальной собственности как раздел гражданского права. Особенности права интеллектуальной собственности. Международные источники права интеллектуальной собственности. Национальные источники права интеллектуальной
42504. Исследование зависимости энергетических характеристик аккумулятора от нагрузки 256.5 KB
  Аккумуляторы – химические источники тока, в которых электрическая энергия получается за счёт химических реакций. На практике применяют аккумуляторы кислотные и щелочные. В качестве электролита в щелочных аккумуляторах используется 20 % раствор щёлочи в воде. В зависимости от химического состава электродов щелочные аккумуляторы делятся на железо-никелевые, кадмиево-никелевые, цинково-никелевые и т.д. Наиболее часто применяются железо-никелевые и кадмиево-никелевые.
42505. Определение отношения теплоёмкости при постоянном давлении к теплоёмкости при постоянном объёме для воздуха методом стоячей волны 152.5 KB
  Определение отношения теплоёмкости при постоянном давлении к теплоёмкости при постоянном объёме ДЛЯ воздуха методом стоячей волны Цель работы определить  = Cp CV методом стоячей звуковой волны. Будем описывать распространение волны с помощью фазовой скорости скорости распространения в пространстве поверхностей образованных частицами совершающими колебания в одинаковой фазе. 5 Если изменения плотности и давления малы  0 и...
42506. Налаштування початкової конфігурації комутатора Cisco Catalyst 2960 409 KB
  Налаштування початкової конфігурації комутатора Мета: Налаштування початкової конфігурації комутатора Cisco Ctlyst 2960. Загальні відомості підготовка В даній лабораторній роботі Pcket Trcer описується налаштування клієнтського комутатора Cisco Ctlyst 2960. Буде розглянуте налаштування наступних параметрів комутатора...