5105

Генетика бактерий. Рекомбинации у бактерий и их особенности

Реферат

Биология и генетика

Генетика бактерий Особенности организации ядерного аппарата бактерий: морфологические биохимические. Состав бактериального генома: хромосома, плазмиды подвижные генетические элементы (IS-элементы, транспозоны, и...

Русский

2014-12-21

52 KB

95 чел.

Генетика бактерий

  1.  Особенности организации ядерного аппарата бактерий:
    •  морфологические;
    •  биохимические.
  2.  Состав бактериального генома:
    •  хромосома, плазмиды;
    •  подвижные генетические элементы (IS-элементы, транспозоны, интегроны), их функции.
  3.  Изменчивость бактерий:
    •  фенотипическая;
    •  генотипическая.
  4.  Рекомбинации у бактерий и их особенности:
    •  транспозиция;
    •  трансдукция;
    •  конъюгация.
  5.  Генодиагностика:
    •  рестрикционный анализ;
    •  риботипирование;
    •  секвенирование генома;
    •  молекулярная гибридизация;
    •  ПЦР;
    •  ДНК-чипы.
  6.  Классификация бактерий:
    •  филогенетическая;
    •  нумерическая;
    •  геносистематика.
    •  

1.Особенности морфологической организации ядерного аппарата бактерий: - не имеет ядерной мембраны, ядрышка, носит название нуклеоид;

- носителем генетической информации является ДНК. Если у эукариот ДНК-линейная, то у большинства бактерий - кольцевая, и одна нить фиксирована на цитоплазматической мембране. Если раскрутить ДНК, то длина будет в сотни раз превышать длину клетки. ДНК бактерий суперспирализована.

- бактериальная клетка содержит одну хромосому, т.е. бактерии являются гаплоидными организми.

2. Биохимические особенности.

- ДНК бактерий имеет тот же состав, что и ДНК эукариот.

- у бактерий в составе ДНК могут находиться минорные основания, наличие которых защищают ДНК от действия собственных эндонуклеаз.

- в геноме патогенных бактерий имеются участки ДНК, которые отличаются от основного генома составом Г-Ц пар нуклеотидных оснований. Эти участки ответственны за синтез факторов патогенности-острова патогенности.

- ДНК бактерий не содержит гистонов, а их роль выполнят полиамины.

Бактериальный геном представлен структурами, которые способны к автономной репликации. Таких структур две : хромосомы, в которых закодирована вся жизненно необходимая информация (в хромосоме бактерий содержится до 3 тыс. различных генов), и плазмиды.

Плазмиды - это ДНК, которые имеют кольцевую природу. Плазмиды в клетке могут находиться в одном из двух альтернативных состояний: в свободном или интегрированном с хромосомой.

В плазмидах закодирована дополнительная генетическая информация, которая не является жизненно необходимой для клетки, но наличие этой информации сообщает ей определенные селективные преимущества. В состав плазмид входят:

-структурные гены;

-гены, отвечающие за собственную репликацию плазмиды.

Некоторые плазмиды имеют гены, обеспечивающие трансмиссивность плазмиды - tra-гены.

По кодируемому признаку различают:

- R плазмиды- кодируют лекарственную устойчивость бактерий;

- F (sex) плазмиды - определяют способность клетки быть донором генетической информации;

- Col плазмида - кодирует синтез бактериоцинов;

- плазмиды, отвечающие за синтез факторов вирулентности (Ent-, Hly-)

и другие плазмиды.

В состав бактериального генома входят подвижные генетические элементы:

IS-элементы (insertion sequences), транспозоны и интегроны. Они обнаружены как в составе бактериальной хромосомы, так и в составе плазмид. Их репликация – составная часть репликации хромосомы и плазмиды.

IS-элементы - короткие (2000) нуклеотидные последовательности. Отличительной особенностью IS-элементов является наличие на концах инвертированных повторов, которые узнает транспозаза. Они не несут структурных генов; одинаковы у бактерий разных видов, родов, и даже считается, что они одинаковы у прокариот и у эукариот. IS-элементы могут перемещаться как по хромосоме, так и между хромосомами. Они содержат 2 гена:1-й кодирует синтез транспозазы; этот фермент обеспечивает процесс исключения IS элемента из хромосомы и его интеграцию в новой локус хромосомы . 2-й ген кодирует синтез репрессора, который регулирует весь процесс перемещения.

Транспозоны – это сегменты ДНК, обладающие теми же свойствами, что и IS-элемент, но имеющие структурные гены.

Интегроны – подвижные генетические элементы; они содержат ген, кодирующий устойчивость к антибиотикам. Интегроны являются системой захвата малых элементов ДНК, называемых генными кассетами посредством сайтспецифической рекомбинации и их экспрессии.

 Значение мобильных элементов.

Перемещаясь по ДНК клетки или между ДНК, они вызывают:

- инактивацию генов тех участков ДНК, куда они переместившись встраиваются;

- повреждения генетического материала;

- встраивание плазмиды в хромосому;

- распространение гена в популяции бактерий.

Бактериям как и всем живым существам свойственна изменчивость. Изменчивость у эукариот происходит по вертикали, у бактерий – и по вертикали, и по горизонтали.

Различают два вида изменчивости:

- фенотипическая и

-генотипическая.

Фенотипическая изменчивость проявляется в виде модификаций - это изменение свойств клетки под влиянием внешних воздействий.

Модификации могут быть длительными и кратковременными. Модификационные изменения касаются подавляющего большинства клеток популяции.

Генотипическая - это мутации или рекомбинации.

Мутации могут быть спонтанными и индуцированными.

Рекомбинация у бактерий рассматриваются как аналоги полового размножения.

Рекомбинации - это взаимодействие между двумя геномами, обладающими различными генотипами, которое приводит к образованию генома, сочетающего гены донора и реципиента. В процессе рекомбинации бактерий условно делят на клетки-доноры, которые передают генетический материал, и клетки-реципиенты, которые его принимают.

Особенности рекомбинаций у бактерий:

- отсутствует мейоз. Образуется не зигота, а меразигота.

- всегда направлена от донора к реципиенту.

- количество генетического материала у реципиента всегда больше одного.

Рекомбинант содержит всю генетическую информацию реципиента и часть генетической информации донора.

У эукариот механизм рекомбинации один – мейоз; у бактерий различают три вида рекомбинаций:

  1.  трансформация- это обмен генетической информации с помощью чистой ДНК.
  2.  трансдукция – этот способ переноса генетической информации с помощью фагов.
  3.  конъюгация – это способ передачи генетической информации, когда между двумя бактериями образуются цитоплазмические мостики. При конъюгации в клетку-реципиент может перейти почти весь геном.

Генетические методы применяются в практических целях как для обнаружения микроба в исследуемом материале без выделения чистой культуры, так и для определения таксономического положения микроба и проведения внутривидовой идентификации.

Секвенирование генома – определение последовательности пар нуклеотидов ДНК.

Рестрикционный анализ – этот метод основан на применении ферментов рестриктаз – это эндонуклеазы, которые расщепляют молекулу ДНК только в определённых местах. Если выделенную из конкретного материала ДНК обработать определенной рестриктазой, то это приведет к образованию строго определенного количества фрагментов ДНК фиксированных размеров.

Риботипирование – позволяет определить вид бактерий. Последовательность нуклеотидных оснований в оперонах, кодирующих рРНК, характеризуется наличием как консервативных участков, которые имеют сходное строение у различных бактерий, так и вариабельных последовательностей, которые родо- и видоспецифичны и являются маркерами при генетической идентификации. Молекулярная гибридизация – применяется в геносистематике. Этот метод позволяет выявить степень сходства различных ДНК.

ПЦР – целью является обнаружение генов или соответствующих нуклеотидных последовательностей, кодирующих либо видовую принадлежность, либо иной признак.

Метод ПЦР основан на принципе комплементарности и позволяет увеличивать (амплифицировать) количество исследуемого образца ДНК. Этот метод обладает чрезвычайно высокой чувствительностью и теоретически позволяет обнаружить в исследуемом материале даже единичные молекулы ДНК.

Разновидности ПЦР:

- ПЦР в режиме реального времени; даёт возможность определить количество фрагментов ДНК находящегося в материале, т.е. проводить количественный анализ;

- мультиплексная ПЦР – преимущество заключается в том, что в реакционную смесь можно вводить 2 – 4 и более пары праймеров. Они характерны для различных возбудителей.

- обратнотранскрипционная ПЦР – позволяет осуществить копирование РНК возбудителей.

ДНК – чипы являются новейшими технологиями гибридизационных методов молекулярно-генетического анализа. Они представляют собой носители известных олигонуклеотидов (менее 20 оснований каждый), комлементарных участкам исследуемого генома (или геномов) и занимающих определенный сайт (ячейку). При наличии в исследуемой пробе фрагментов искомой ДНК они гибридизуются (соединяются по принципу комплементарности) с нуклеотидными последовательностями, сидящими на чипе.

Классификация бактерий.

Основной таксономической единицей у бактерий является вид. Для обозначения вида у бактерий используется двойная (бинарная) номенклатура

Вид у бактерий- это совокупность родственных бактерий, которые обладают сходными биологическими свойствами и имеют общее происхождение. В настоящее время существует 3 подхода к классификации бактерий:

  1.  Рутинная классификация.

Она лежит в основе определителя бактерий под редакцией Берджи.

  1.  Нумерическая таксономия.
  2.  Геносистематика.


 

А также другие работы, которые могут Вас заинтересовать

2514. Исследование свойств плоскостного полупроводникового триода (транзистора) 609 KB
  Изучить устройство и принцип действия полупроводникового триода, Снять вольт − амперные характеристики триода; Вычислить коэффициенты усиления триода по току, напряжению и мощности.
2515. Определение волны световой волны при помощи дифракции от щели 386 KB
  Рассмотрим прохождение волны через узкую прямоугольную щель. Согласно принципу Гюйгенса каждая точка фронта волны, достигающей щели, является источником вторичных волн, распространяющихся во все стороны. Поверхность, огибающая эти волны и представляющая фронт прошедшей через щель волны.
2516. Изучение колебательного контура 277.81 KB
  Колебательные процессы широко распространены в природе и технике. Примером колебаний различных физических величин являются колебания маятников, струн, мембран телефонов, звук, свет, а также переменный электрический ток, представляющий собой электрические колебания.
2517. Определение скорости звука в воздухе методом стоячей волны (или методом резонанса) 183.89 KB
  Любая частица среды, выведенная из положения равновесия, под действием упругих сил стремится возвратиться в первоначальное положение и совершает колебания. Вместе с ней начинают колебаться и соседние с ней частицы, затем следующие и т.д. Такое распространение колебательного процесса в среде называется волной.
2518. Определение ускорения силы тяжести при помощи оборотного маятника 307 KB
  Большинство косвенных методов измерения ускорения силы тяжести g основано на использовании известной формулы для: периода Т колебаний физического маятника. Измерение ускорения силы тяжести при помощи оборотного маятника.
2519. Способы определение удельного заряда электрона методом магнетрона 48.15 KB
  В пределах точности эксперимента электрон – стабильная частица. Характер движения и траектория заряженной частицы зависят не от ее заряда или массы в отдельности. Измеряя скорости и траектории частиц, движущихся в электрических и магнитных полях, можно определить величину и знак удельного заряда.
2520. Изучение абсолютно упругого удара шаров 270.56 KB
  Изучение способов определения скорости тел до и после удара на основе законов сохранения, обоснование в процессе выполнения третьего закона Ньютона при упругом ударе тел.
2521. Определение концентрации носителей заряда и подвижности в полупроводниках различного типа 208.6 KB
  Измерили концентрацию носителей заряда и подвижности в полупроводниках различного типа. Установка для измерения концентрации и подвижности носителей заряда.
2522. Определение момента инерции Волочка 49.45 KB
  Изучение динамики сложного движения, сочетающего вращательное движение тела его поступательным перемещением, и определение его момента инерции.