51065

Термический анализ

Лабораторная работа

Физика

Основы термического анализа В статическом стационарном термическом анализе в Mechnicl определяется матрица температур T из следующего уравнения: При этом делаются следующие предположения: Зависимость от времени не рассматривается в данном типе анализа; K тепловой поток может быть постоянной согласно закону Фурье или зависеть от температуры; Q система с граничными условиями может быть постоянной или зависеть от температуры; в качестве граничных условий могут выступать – тепловой поток скорость теплового потока и...

Русский

2014-02-04

1.53 MB

3 чел.

Лабораторная работа № 4 (4 часа)

Термический анализ

Цель работы:

Ознакомиться с последовательностью проведения термического анализа объекта, изучить назначение опций окна детализации, научиться пользоваться функциональным и табличным вводом исходных значений.

1 Задание на работу

Часть 1. Проанализировать режим работы теплообменной оребренной трубки. Внутри трубки протекает горячая среда, температура стенки трубки tр ,°С. Температура окружающей среды t0.  Происходит внешняя конвекция тепла.  Оценить воздействие потерь излучения  системы. Расчетная схема системы представлена на рисунке 1. Исходные данные – в таблице 4.1.

Часть 2.Проанализировать работу оребренной трубки, при условии что температура на входе в трубку составляет tвх ,°С, а на выходе -tвых ,°С. Использовать функциональную зависимость.

Рисунок 1

Таблица 1 – Исходные данные для выполнения лабораторной работы

№ варианта

Материал детали

t0, °С

tр, °С

tвх, °С

tвых, °С

Функция

1

алюминий

10

300

300

200

tвх - 0,25 * y

2

15

330

400

300

3

20

360

350

250

tвх -0,3*y

4

25

400

250

150

5

30

430

200

100

tвх -0,35*y

6

10

350

250

100

7

15

400

300

150

tвх -0,2*y

8

20

450

350

200

9

25

500

400

250

tвх -0,15*y

10

30

550

450

300

2 Теория

2.1 Основы термического анализа

В статическом ( стационарном) термическом анализе в Mechanical, определяется матрица температур {T} из следующего уравнения:

При этом делаются следующие предположения:

-Зависимость от времени не рассматривается в данном типе анализа;

-[K] – тепловой поток, может быть постоянной (согласно закону Фурье) или зависеть от температуры;

-{Q} – система с граничными  условиями ,  может быть постоянной или зависеть от  температуры;

- в качестве граничных условий могут выступать – тепловой поток, скорость теплового потока и конвекция;

- конвекция рассматривает в качестве граничного условия, хотя и зависит от температуры  и коэффициента формы (film coefficients)

Для определения свойств материала в термическом расчете необходимо задать параметры:

- Thermal Conductivity (Теплопроводность)

- Зависимость теплопроводности от температуры вводится в виде таблицы

В DM как и в конструкционном анализе, контакты создаются автоматически, чтобы обеспечить теплообмен между частями сборки.

Если детали изначально находятся в контакте, то между ними осуществляется теплопередача.

Если части изначально не в контакте, то теплообмен не осуществляется (см pinball explanation below).

Рinball region  определяет, когда происходит контакт и устанавливается когда в модели есть зазор.

Если используется контакт bonded или  no separation, то теплопередача осуществляется когда тела находятся в пределах радиуса.

По умолчанию, предполагается что контакт идеальный и не происходит понижение температуры на границе раздела. Однако внешние условия могут изменить ситуацию, например: наличие окислов на поверхности, температура поверхности, использование смазки и пр.

Поток тепла через поверхность контакта

где Tcontact  температура в контактном «узле» и Ttarget  температура соответствующего целевого «узла».

2.2 Тепловые нагрузки

Heat Flow - Скорость теплового потока:

-Может быть применена к вершине, ребру, или поверхности.

-Нагрузка распределяется на множественный выбор.

-Тепловой поток имеет размерность энергии / времени.

Perfectly insulated (heat flow = 0):  Изоляция теплового потока

-Доступные для удаления поверхностей от ранее применявшихся граничных условий

Heat Flux -  Поток тепла:

-Тепловой поток может быть применен только к поверхности (края в 2D).

-Тепловой поток имеет размерность единица энергии / времени / площадь.

Internal Heat Generation  -внутренняя энергия:

-применяется только к органам

-единица измерения энергии / времени / объема

Положительное значение тепловой нагрузки будет добавлять энергию в систему

2.3 Тепловые граничные условия Thermal Boundary Conditions

К ним относятся температура, конвекция и излучение. Для предотвращения  теплового эквивалента движения твердого тела необходимо, чтобы присутствовал по крайней мере один тип теплового граничного условия.

С учетом температуры или конвекции нагрузка не должна применяться на поверхностях, которые уже имеют другие тепловые нагрузки или тепловые граничные условия, к нему применяемые.

Температура. Температура обладает 1 степенью свободы.

Допускается  накладывать  температуру на вершины, ребра, поверхности или тела.

Температура является скалярной величиной и не зависит от направления.

 Конвекция. Задается применительно только к поверхности (края в 2D анализе). Величину конвекции можно вводить в виде табличных данных.

Например, зависимая от температуры конвекция Temperature-Dependent Convection:

-Выберите "Табличные (Температура)" для коэффициента типа.

-Введите коэффициент против температуры табличных данных.

-В области сведений, указать, как температура будет обрабатываться

Рисунок 2

Некоторые общие соотношения конвекции могут быть импортированы из образца библиотеки. Новые корреляции могут быть сохранены в библиотеках.

Рисунок 3

 Радиация. Используется применительно к поверхности (ребер в 2D-анализ)

где  σ – постоянная Стефана-Больцмана, устанавливается автоматически

ε -  Коэффициент излучения

А - Площадь излучающей поверхности

F – фактор формы, по умолчанию для внешних поверхностей принимаем равным 1

2.4 Опции решателя

Steady-State Thermal создает тепловой модуль в проекте

Analysis Settings в Mechanical можно использовать для термического анализа

Для поиска температурных напряжений необходима привязка к структурному анализу на уровне решения. Импортированная из статического анализа нагрузка воздействует вместе с термической  нагрузкой на конструкцию.

Рисунок 4

2.5 Результаты постпроцессинга

Для постобработки доступны:

- Temperature

- Heat Flux

- “Reaction” Heat Flow Rate (расход тепла)

- User defined results (пользовательские результаты)

Расход тепла доступен для условий температуры, конвекции или излучения на границе.


3 Ход выполнения работы

3.1 Часть 1

3.1.1 Открыть Workbench и установить единицы измерения СИ. Установить вывод результатов в модулях проекта “Display Values in Project Units”.

3.1.2 Загрузить модуль Steady State Thermal

3.1.3 Импортировать геометрию “Fin_Tube_WS6. stp”.

3.1.4 Выбрать  материал детали в Engineering Data  и вернуться в проект. Марку материала выбрать в зависимости от варианта по таблице 1

3.1.5 Загрузить DM.

3.1.6 Выбрать в геометрии “FinTube” и назначить марку материала. Просмотреть  технические данные материала.

Рисунок 5

3.1.7 Выделить в дереве сетку mesh, выделить 2 поверхности симметрии на объекте, затем нажать ПКМ> Insert > Sizing. Установить размер элемента Element Size 2 мм.

Рисунок 6

3.1.8 Сгенерировать сетку. Оценить ее качество

3.1.9 Выделить в дереве Steady State Thermal, указать внутреннюю поверхность трубки, затем ПКМ> Insert > Temperature. Установить значение температуры Magnitude tр,°С.

3.1.10 Проверить, чтобы режим выбора поверхности был активным surface select. Выбрать в  графическом окне объекты ПКМ> Select All. Отменить выбор внутренней части, оснований и поверхностей симметрии (всего 5 поверхностей).

Рисунок 7

По завершении выбора должно быть выделено 33 поверхности.

3.1.11 Установить режим конвекции ПКМ > Insert > Convection.

3.1.12 Ввести значение коэффициента теплоотдачи Film Coefficient = 5e-4 W/(mm^2-C) и температуры окружающей среды Ambient Temperature = t0, ºC

3.1.13 Выбрать еще раз те же 33  поверхности и установить режим излучения ПКМ > Insert > Radiation.

Установить параметры:

-температуру окружающей среды Ambient Temperature  t0, ºC;

-степень излучения Leave Emissivity  1;

- корреляция излучения – к окружающей среде  Leave Correlation = To Ambient.

3.1.14 Выполнить расчет Solve

3.1.15 Выделить в дереве построений в ветке термического анализа Температуру, Конвекцию и Излучение Temperature,  Convection и Radiation и перетащить их в ответвление Solution. В результате получаются ярлыки  для установки зондов реакции граничных условий. Нажать ПКМ> Evaluate All Results.

3.1.16 Оценить результаты энергетического баланса

Рисунок 8

3.1.17 Дать оценку теплопотерь, %

3.2 Часть 2

3.2.1 В Workbench загрузить еще один модуль Steady State Thermal и импортировать геометрию “Fin_Tube_WS6. stp”.

3.2.2 Выполнить действия пунктов с 3.1.3 по 3.1.8.

3.2.3 Оценить качество сетки без установки размера сетки и с установленным размером

3.2.4 Выделить в дереве построений  “Steady State Thermal”. Выделить внутреннюю стенку трубы и установить ПКМ > Insert > Temperature. Ввести параметры температуры: изменить значение с постоянного “Constant” на функцию -  “Function”, а затем в поле температуры magnitude ввести функцию. Назначить диапазон температур range. Данные брать в соответствии с вариантом (таблица 1).

Рисунок 9

Теперь, если выделить в дереве Temperature, то на графическом экране отражается изменение тепловой нагрузки

Рисунок 10

3.2.5 Выполнить пункты 3.1.10 и 3.1.11. Выделить оребренную поверхность (33 поверхности) и установить конвекцию.

3.2.6 Изменить значение в поле Film Coefficient на “Tabular (Temperature)”. Ввести температуру окружающей среды Ambient Temperature = t0, ºC. Ввести соответствующие значения в таблицу

Таблица 2

 

      Рисунок 11

3.2.7 Выполнить расчет Solve

Хотя в задаче есть температурные зависимости, наблюдается быстрая сходимость решения.

3.2.8 Выделить в дереве Temperature и Convection и перетащить их в ответвление решения.

Оценить результаты анализа и дать оценку теплопотерь. Охарактеризовать изменение температуры вдоль направления оси Y.

Сделать выводы по работе.

Оформить отчет. Отчет должен содержать исходные данные, промежуточные результаты операций (в виде рисунков) и конечные результаты работы

4 Вопросы к защите лабораторной работы

  1.  Уравнение статического термического анализа
  2.  Основные положения термического анализа
  3.  Назначение материала объекта при проведении статического термического анализа
  4.  Использование контактов в термическом анализе
  5.  Определение потока тепла через поверхность контакта
  6.  Виды и назначение тепловых нагрузок
  7.  Тепловые граничные условия. Основные предположения.
  8.  Температура.  Назначение температуры окружающей среды, рабочей температуры поверхности, температуры входа и выхода на рабочем участке.
  9.  Ввод функции температуры
  10.  Конвекция, способы задания.
  11.  Радиация. Опции команды.
  12.  Опции решателя. Зависимый расчет
  13.  Результаты постпроцессинга
  14.  Установка зондов реакций граничных условий


 

А также другие работы, которые могут Вас заинтересовать

8628. Философия Р.Декарта и Ф.Бэкона 249 KB
  Философия Р.Декарта и Ф.Бэкона Р.Декарт РАЗЫСКАНИЕ ИСТИНЫ ПОСРЕДСТВОМ ЕСТЕСТВЕННОГО СВЕТА, который сам по себе, не прибегая к содействию религии или философии, определяет мнения, кои должен иметь добропорядочный человек относительно всех предметов, ...
8629. Философия И.Канта 102.5 KB
  Философия И.Канта Вопросы: 1. В чём отличие эмпирических знаний от априорных? 2. Какие признаки априорного знания выделяет И.Кант? Какова задача философии, по Канту? Чем обусловлена постановка задачи? 3. Какую классификацию суждений предлагает Кант?...
8630. Русская религиозная философия 19-20 веков 68 KB
  Русская религиозная философия 19-20 вв. Вопросы: 1. Какой должна стать русская философия? С каким предметом она должна иметь дело? 2. Как И.Ильин аргументирует необходимость отказа от намеренного выдумывания философских систем? 3. Каков закон иссл...
8631. Сознание как философская категория 56.5 KB
  Сознание как философская категория Вопросы: 1. Какие правила мышления выделяет И.Кант? Как понимается мышление в европейской традиции? 2. Что такое сознание? Как формулирует своё предназначение человек сознающий? 3. Каковы свойства гармонии, носител...
8632. Проблема познания в философии 105 KB
  В каком смысле акты научного познания - свободные явления. Можно ли рассматривать знание законов как актуализацию готовых смыслов и сущностей. Можно ли рассматривать знание как превращение...
8633. Личность как философская категория 158.5 KB
  Человек бесчувственный. За что критикует К.Льюис авторов одного из английских учебников для старших классов. Какие следствия имеют взгляды данных авторов. Какая мыслительная традиция...
8634. Философия общества. Соотношение понятий культура и цивилизация 180.5 KB
  Философия общества. Соотношение понятий культура и цивилизация. Изложите критику социального материализма. Изложите критику социального психологизма. Каковы сущностные признаки общественного явления...
8635. Глобальные проблемы современности 435.5 KB
  Глобальные проблемы современности Вопросы: 1. В чём специфика технической эпохи 19-20 веков? 2. Как связаны техника и культура? 3. Какие три стадии в истории человечества выделяет Н.Бердяев? Чем отличается организм от организации?. В чём...
8636. Философия Платона. Платоновская идея 125.5 KB
  Дайте толкование мифу о пещере. Что символизируют люди в пещере, тени, вещи, костёр, солнце. Дайте определения Платоновскому понятию «идея». Дайте определения Платоновскому понятию «идея идей».