51065

Термический анализ

Лабораторная работа

Физика

Основы термического анализа В статическом стационарном термическом анализе в Mechnicl определяется матрица температур T из следующего уравнения: При этом делаются следующие предположения: Зависимость от времени не рассматривается в данном типе анализа; K тепловой поток может быть постоянной согласно закону Фурье или зависеть от температуры; Q система с граничными условиями может быть постоянной или зависеть от температуры; в качестве граничных условий могут выступать тепловой поток скорость теплового потока и...

Русский

2014-02-04

1.53 MB

3 чел.

Лабораторная работа № 4 (4 часа)

Термический анализ

Цель работы:

Ознакомиться с последовательностью проведения термического анализа объекта, изучить назначение опций окна детализации, научиться пользоваться функциональным и табличным вводом исходных значений.

1 Задание на работу

Часть 1. Проанализировать режим работы теплообменной оребренной трубки. Внутри трубки протекает горячая среда, температура стенки трубки tр ,°С. Температура окружающей среды t0.  Происходит внешняя конвекция тепла.  Оценить воздействие потерь излучения  системы. Расчетная схема системы представлена на рисунке 1. Исходные данные – в таблице 4.1.

Часть 2.Проанализировать работу оребренной трубки, при условии что температура на входе в трубку составляет tвх ,°С, а на выходе -tвых ,°С. Использовать функциональную зависимость.

Рисунок 1

Таблица 1 – Исходные данные для выполнения лабораторной работы

№ варианта

Материал детали

t0, °С

tр, °С

tвх, °С

tвых, °С

Функция

1

алюминий

10

300

300

200

tвх - 0,25 * y

2

15

330

400

300

3

20

360

350

250

tвх -0,3*y

4

25

400

250

150

5

30

430

200

100

tвх -0,35*y

6

10

350

250

100

7

15

400

300

150

tвх -0,2*y

8

20

450

350

200

9

25

500

400

250

tвх -0,15*y

10

30

550

450

300

2 Теория

2.1 Основы термического анализа

В статическом ( стационарном) термическом анализе в Mechanical, определяется матрица температур {T} из следующего уравнения:

При этом делаются следующие предположения:

-Зависимость от времени не рассматривается в данном типе анализа;

-[K] – тепловой поток, может быть постоянной (согласно закону Фурье) или зависеть от температуры;

-{Q} – система с граничными  условиями ,  может быть постоянной или зависеть от  температуры;

- в качестве граничных условий могут выступать – тепловой поток, скорость теплового потока и конвекция;

- конвекция рассматривает в качестве граничного условия, хотя и зависит от температуры  и коэффициента формы (film coefficients)

Для определения свойств материала в термическом расчете необходимо задать параметры:

- Thermal Conductivity (Теплопроводность)

- Зависимость теплопроводности от температуры вводится в виде таблицы

В DM как и в конструкционном анализе, контакты создаются автоматически, чтобы обеспечить теплообмен между частями сборки.

Если детали изначально находятся в контакте, то между ними осуществляется теплопередача.

Если части изначально не в контакте, то теплообмен не осуществляется (см pinball explanation below).

Рinball region  определяет, когда происходит контакт и устанавливается когда в модели есть зазор.

Если используется контакт bonded или  no separation, то теплопередача осуществляется когда тела находятся в пределах радиуса.

По умолчанию, предполагается что контакт идеальный и не происходит понижение температуры на границе раздела. Однако внешние условия могут изменить ситуацию, например: наличие окислов на поверхности, температура поверхности, использование смазки и пр.

Поток тепла через поверхность контакта

где Tcontact  температура в контактном «узле» и Ttarget  температура соответствующего целевого «узла».

2.2 Тепловые нагрузки

Heat Flow - Скорость теплового потока:

-Может быть применена к вершине, ребру, или поверхности.

-Нагрузка распределяется на множественный выбор.

-Тепловой поток имеет размерность энергии / времени.

Perfectly insulated (heat flow = 0):  Изоляция теплового потока

-Доступные для удаления поверхностей от ранее применявшихся граничных условий

Heat Flux -  Поток тепла:

-Тепловой поток может быть применен только к поверхности (края в 2D).

-Тепловой поток имеет размерность единица энергии / времени / площадь.

Internal Heat Generation  -внутренняя энергия:

-применяется только к органам

-единица измерения энергии / времени / объема

Положительное значение тепловой нагрузки будет добавлять энергию в систему

2.3 Тепловые граничные условия Thermal Boundary Conditions

К ним относятся температура, конвекция и излучение. Для предотвращения  теплового эквивалента движения твердого тела необходимо, чтобы присутствовал по крайней мере один тип теплового граничного условия.

С учетом температуры или конвекции нагрузка не должна применяться на поверхностях, которые уже имеют другие тепловые нагрузки или тепловые граничные условия, к нему применяемые.

Температура. Температура обладает 1 степенью свободы.

Допускается  накладывать  температуру на вершины, ребра, поверхности или тела.

Температура является скалярной величиной и не зависит от направления.

 Конвекция. Задается применительно только к поверхности (края в 2D анализе). Величину конвекции можно вводить в виде табличных данных.

Например, зависимая от температуры конвекция Temperature-Dependent Convection:

-Выберите "Табличные (Температура)" для коэффициента типа.

-Введите коэффициент против температуры табличных данных.

-В области сведений, указать, как температура будет обрабатываться

Рисунок 2

Некоторые общие соотношения конвекции могут быть импортированы из образца библиотеки. Новые корреляции могут быть сохранены в библиотеках.

Рисунок 3

 Радиация. Используется применительно к поверхности (ребер в 2D-анализ)

где  σ – постоянная Стефана-Больцмана, устанавливается автоматически

ε -  Коэффициент излучения

А - Площадь излучающей поверхности

F – фактор формы, по умолчанию для внешних поверхностей принимаем равным 1

2.4 Опции решателя

Steady-State Thermal создает тепловой модуль в проекте

Analysis Settings в Mechanical можно использовать для термического анализа

Для поиска температурных напряжений необходима привязка к структурному анализу на уровне решения. Импортированная из статического анализа нагрузка воздействует вместе с термической  нагрузкой на конструкцию.

Рисунок 4

2.5 Результаты постпроцессинга

Для постобработки доступны:

- Temperature

- Heat Flux

- “Reaction” Heat Flow Rate (расход тепла)

- User defined results (пользовательские результаты)

Расход тепла доступен для условий температуры, конвекции или излучения на границе.


3 Ход выполнения работы

3.1 Часть 1

3.1.1 Открыть Workbench и установить единицы измерения СИ. Установить вывод результатов в модулях проекта “Display Values in Project Units”.

3.1.2 Загрузить модуль Steady State Thermal

3.1.3 Импортировать геометрию “Fin_Tube_WS6. stp”.

3.1.4 Выбрать  материал детали в Engineering Data  и вернуться в проект. Марку материала выбрать в зависимости от варианта по таблице 1

3.1.5 Загрузить DM.

3.1.6 Выбрать в геометрии “FinTube” и назначить марку материала. Просмотреть  технические данные материала.

Рисунок 5

3.1.7 Выделить в дереве сетку mesh, выделить 2 поверхности симметрии на объекте, затем нажать ПКМ> Insert > Sizing. Установить размер элемента Element Size 2 мм.

Рисунок 6

3.1.8 Сгенерировать сетку. Оценить ее качество

3.1.9 Выделить в дереве Steady State Thermal, указать внутреннюю поверхность трубки, затем ПКМ> Insert > Temperature. Установить значение температуры Magnitude tр,°С.

3.1.10 Проверить, чтобы режим выбора поверхности был активным surface select. Выбрать в  графическом окне объекты ПКМ> Select All. Отменить выбор внутренней части, оснований и поверхностей симметрии (всего 5 поверхностей).

Рисунок 7

По завершении выбора должно быть выделено 33 поверхности.

3.1.11 Установить режим конвекции ПКМ > Insert > Convection.

3.1.12 Ввести значение коэффициента теплоотдачи Film Coefficient = 5e-4 W/(mm^2-C) и температуры окружающей среды Ambient Temperature = t0, ºC

3.1.13 Выбрать еще раз те же 33  поверхности и установить режим излучения ПКМ > Insert > Radiation.

Установить параметры:

-температуру окружающей среды Ambient Temperature  t0, ºC;

-степень излучения Leave Emissivity  1;

- корреляция излучения – к окружающей среде  Leave Correlation = To Ambient.

3.1.14 Выполнить расчет Solve

3.1.15 Выделить в дереве построений в ветке термического анализа Температуру, Конвекцию и Излучение Temperature,  Convection и Radiation и перетащить их в ответвление Solution. В результате получаются ярлыки  для установки зондов реакции граничных условий. Нажать ПКМ> Evaluate All Results.

3.1.16 Оценить результаты энергетического баланса

Рисунок 8

3.1.17 Дать оценку теплопотерь, %

3.2 Часть 2

3.2.1 В Workbench загрузить еще один модуль Steady State Thermal и импортировать геометрию “Fin_Tube_WS6. stp”.

3.2.2 Выполнить действия пунктов с 3.1.3 по 3.1.8.

3.2.3 Оценить качество сетки без установки размера сетки и с установленным размером

3.2.4 Выделить в дереве построений  “Steady State Thermal”. Выделить внутреннюю стенку трубы и установить ПКМ > Insert > Temperature. Ввести параметры температуры: изменить значение с постоянного “Constant” на функцию -  “Function”, а затем в поле температуры magnitude ввести функцию. Назначить диапазон температур range. Данные брать в соответствии с вариантом (таблица 1).

Рисунок 9

Теперь, если выделить в дереве Temperature, то на графическом экране отражается изменение тепловой нагрузки

Рисунок 10

3.2.5 Выполнить пункты 3.1.10 и 3.1.11. Выделить оребренную поверхность (33 поверхности) и установить конвекцию.

3.2.6 Изменить значение в поле Film Coefficient на “Tabular (Temperature)”. Ввести температуру окружающей среды Ambient Temperature = t0, ºC. Ввести соответствующие значения в таблицу

Таблица 2

 

      Рисунок 11

3.2.7 Выполнить расчет Solve

Хотя в задаче есть температурные зависимости, наблюдается быстрая сходимость решения.

3.2.8 Выделить в дереве Temperature и Convection и перетащить их в ответвление решения.

Оценить результаты анализа и дать оценку теплопотерь. Охарактеризовать изменение температуры вдоль направления оси Y.

Сделать выводы по работе.

Оформить отчет. Отчет должен содержать исходные данные, промежуточные результаты операций (в виде рисунков) и конечные результаты работы

4 Вопросы к защите лабораторной работы

  1.  Уравнение статического термического анализа
  2.  Основные положения термического анализа
  3.  Назначение материала объекта при проведении статического термического анализа
  4.  Использование контактов в термическом анализе
  5.  Определение потока тепла через поверхность контакта
  6.  Виды и назначение тепловых нагрузок
  7.  Тепловые граничные условия. Основные предположения.
  8.  Температура.  Назначение температуры окружающей среды, рабочей температуры поверхности, температуры входа и выхода на рабочем участке.
  9.  Ввод функции температуры
  10.  Конвекция, способы задания.
  11.  Радиация. Опции команды.
  12.  Опции решателя. Зависимый расчет
  13.  Результаты постпроцессинга
  14.  Установка зондов реакций граничных условий


 

А также другие работы, которые могут Вас заинтересовать

19848. ПОНЯТИЕ. Логические отношения между понятиями по содержанию и объему 653.5 KB
  Лекция 2. 2. ПОНЯТИЕ 2.1. Понятийное мышление. 2.2. Что такое понятие. 2.3. Основные методы образования понятий. 2.4. Соотношение между содержанием и объемом понятия. 2.5. Виды понятий. 2.6. Логические отношения между понятиями по содержанию и объему. 2.7. Логические опера
19849. СУЖДЕНИЕ. Деление суждений по модальности 1.79 MB
  Мысль, выраженная в форме понятия, сама по себе ещё не есть процесс мышления. Для инициализации мыслительного процесса необходима элементарная логическая форма, каковой является суждение
19850. УМОЗАКЛЮЧЕНИЕ. Условные, разделительные и условно-разделительные силлогизмы 261 KB
  В процессе познания очевидные утверждения составляют лишь часть всех истин. Обычно для установления истины приходится в каждом случае производить особое исследование, т.е. четко поставить вопрос
19851. ДОКАЗАТЕЛЬСТВО. Паралогизмы, софизмы и парадоксы 118 KB
  Тема о доказательстве занимает в курсе логики особо важное место. В ней объединяются все рассмотренные ранее логические формулы и законы логики, правильное соблюдение которых обеспечивает логически стройную и последовательную мысль
19852. Принцип действия просвечивающего электронного микроскопа (ПЭМ). Схема ПЭМ 1007 KB
  Лекция 17 Принцип действия просвечивающего электронного микроскопа ПЭМ. Схема ПЭМ. Все современные просвечивающие электронные микроскопы ПЭМ могут работать в двух режимах в режиме изображения и в режиме дифракции. Ход лучей в этих режимах указан на рис. 17: а режим ...
19853. Требования к приготовлению образцов для ПЭМ. Препарирование порошковых материалов. Ультромикротомирование 934 KB
  Лекция 18 Требования к приготовлению образцов для ПЭМ. Препарирование порошковых материалов. Ультромикротомирование. Химическая и электрохимическая полировка. Метод ионнолучевого утонения. Весь процесс электронномикроскопических исследований условно можно разбит...
19854. Принцип работы сканирующих зондовых микроскопов. Пьезокерамические сканеры. Процесс сканирования поверхности в СЗМ 659.5 KB
  Лекция 19 Принцип работы сканирующих зондовых микроскопов. Пьезокерамические сканеры. Процесс сканирования поверхности в СЗМ. Визуализация информации получаемой с помощью СЗМ. Для исследования микрорельефа поверхности и ее локальных физических свойств в последнее д...
19855. Принцип работы сканирующего туннельного микроскопа (СТМ). Получение изображения поверхности в режиме постоянного туннельного тока и в режиме метода постоянной высоты 417.5 KB
  Лекция 20 Принцип работы сканирующего туннельного микроскопа СТМ. Получение изображения поверхности в режиме постоянного туннельного тока и в режиме метода постоянной высоты. Модуляционная методика определения локальной работы выхода. Измерение вольтамперных харак
19856. Принцип действия атомно-силового микроскопа (АСМ). Схема реализации обратной связи в АСМ 878.5 KB
  Лекция 21 Принцип действия атомносилового микроскопа АСМ. Схема реализации обратной связи в АСМ. Параметры кантилеверов в АСМ. Контактные и бесконтактные методики измерения. Атомносиловой микроскоп АСМ был изобретён в 1986 году Гердом Биннигом Кэлвином Куэйтом и Кри...