51065

Термический анализ

Лабораторная работа

Физика

Основы термического анализа В статическом стационарном термическом анализе в Mechnicl определяется матрица температур T из следующего уравнения: При этом делаются следующие предположения: Зависимость от времени не рассматривается в данном типе анализа; K тепловой поток может быть постоянной согласно закону Фурье или зависеть от температуры; Q система с граничными условиями может быть постоянной или зависеть от температуры; в качестве граничных условий могут выступать – тепловой поток скорость теплового потока и...

Русский

2014-02-04

1.53 MB

3 чел.

Лабораторная работа № 4 (4 часа)

Термический анализ

Цель работы:

Ознакомиться с последовательностью проведения термического анализа объекта, изучить назначение опций окна детализации, научиться пользоваться функциональным и табличным вводом исходных значений.

1 Задание на работу

Часть 1. Проанализировать режим работы теплообменной оребренной трубки. Внутри трубки протекает горячая среда, температура стенки трубки tр ,°С. Температура окружающей среды t0.  Происходит внешняя конвекция тепла.  Оценить воздействие потерь излучения  системы. Расчетная схема системы представлена на рисунке 1. Исходные данные – в таблице 4.1.

Часть 2.Проанализировать работу оребренной трубки, при условии что температура на входе в трубку составляет tвх ,°С, а на выходе -tвых ,°С. Использовать функциональную зависимость.

Рисунок 1

Таблица 1 – Исходные данные для выполнения лабораторной работы

№ варианта

Материал детали

t0, °С

tр, °С

tвх, °С

tвых, °С

Функция

1

алюминий

10

300

300

200

tвх - 0,25 * y

2

15

330

400

300

3

20

360

350

250

tвх -0,3*y

4

25

400

250

150

5

30

430

200

100

tвх -0,35*y

6

10

350

250

100

7

15

400

300

150

tвх -0,2*y

8

20

450

350

200

9

25

500

400

250

tвх -0,15*y

10

30

550

450

300

2 Теория

2.1 Основы термического анализа

В статическом ( стационарном) термическом анализе в Mechanical, определяется матрица температур {T} из следующего уравнения:

При этом делаются следующие предположения:

-Зависимость от времени не рассматривается в данном типе анализа;

-[K] – тепловой поток, может быть постоянной (согласно закону Фурье) или зависеть от температуры;

-{Q} – система с граничными  условиями ,  может быть постоянной или зависеть от  температуры;

- в качестве граничных условий могут выступать – тепловой поток, скорость теплового потока и конвекция;

- конвекция рассматривает в качестве граничного условия, хотя и зависит от температуры  и коэффициента формы (film coefficients)

Для определения свойств материала в термическом расчете необходимо задать параметры:

- Thermal Conductivity (Теплопроводность)

- Зависимость теплопроводности от температуры вводится в виде таблицы

В DM как и в конструкционном анализе, контакты создаются автоматически, чтобы обеспечить теплообмен между частями сборки.

Если детали изначально находятся в контакте, то между ними осуществляется теплопередача.

Если части изначально не в контакте, то теплообмен не осуществляется (см pinball explanation below).

Рinball region  определяет, когда происходит контакт и устанавливается когда в модели есть зазор.

Если используется контакт bonded или  no separation, то теплопередача осуществляется когда тела находятся в пределах радиуса.

По умолчанию, предполагается что контакт идеальный и не происходит понижение температуры на границе раздела. Однако внешние условия могут изменить ситуацию, например: наличие окислов на поверхности, температура поверхности, использование смазки и пр.

Поток тепла через поверхность контакта

где Tcontact  температура в контактном «узле» и Ttarget  температура соответствующего целевого «узла».

2.2 Тепловые нагрузки

Heat Flow - Скорость теплового потока:

-Может быть применена к вершине, ребру, или поверхности.

-Нагрузка распределяется на множественный выбор.

-Тепловой поток имеет размерность энергии / времени.

Perfectly insulated (heat flow = 0):  Изоляция теплового потока

-Доступные для удаления поверхностей от ранее применявшихся граничных условий

Heat Flux -  Поток тепла:

-Тепловой поток может быть применен только к поверхности (края в 2D).

-Тепловой поток имеет размерность единица энергии / времени / площадь.

Internal Heat Generation  -внутренняя энергия:

-применяется только к органам

-единица измерения энергии / времени / объема

Положительное значение тепловой нагрузки будет добавлять энергию в систему

2.3 Тепловые граничные условия Thermal Boundary Conditions

К ним относятся температура, конвекция и излучение. Для предотвращения  теплового эквивалента движения твердого тела необходимо, чтобы присутствовал по крайней мере один тип теплового граничного условия.

С учетом температуры или конвекции нагрузка не должна применяться на поверхностях, которые уже имеют другие тепловые нагрузки или тепловые граничные условия, к нему применяемые.

Температура. Температура обладает 1 степенью свободы.

Допускается  накладывать  температуру на вершины, ребра, поверхности или тела.

Температура является скалярной величиной и не зависит от направления.

 Конвекция. Задается применительно только к поверхности (края в 2D анализе). Величину конвекции можно вводить в виде табличных данных.

Например, зависимая от температуры конвекция Temperature-Dependent Convection:

-Выберите "Табличные (Температура)" для коэффициента типа.

-Введите коэффициент против температуры табличных данных.

-В области сведений, указать, как температура будет обрабатываться

Рисунок 2

Некоторые общие соотношения конвекции могут быть импортированы из образца библиотеки. Новые корреляции могут быть сохранены в библиотеках.

Рисунок 3

 Радиация. Используется применительно к поверхности (ребер в 2D-анализ)

где  σ – постоянная Стефана-Больцмана, устанавливается автоматически

ε -  Коэффициент излучения

А - Площадь излучающей поверхности

F – фактор формы, по умолчанию для внешних поверхностей принимаем равным 1

2.4 Опции решателя

Steady-State Thermal создает тепловой модуль в проекте

Analysis Settings в Mechanical можно использовать для термического анализа

Для поиска температурных напряжений необходима привязка к структурному анализу на уровне решения. Импортированная из статического анализа нагрузка воздействует вместе с термической  нагрузкой на конструкцию.

Рисунок 4

2.5 Результаты постпроцессинга

Для постобработки доступны:

- Temperature

- Heat Flux

- “Reaction” Heat Flow Rate (расход тепла)

- User defined results (пользовательские результаты)

Расход тепла доступен для условий температуры, конвекции или излучения на границе.


3 Ход выполнения работы

3.1 Часть 1

3.1.1 Открыть Workbench и установить единицы измерения СИ. Установить вывод результатов в модулях проекта “Display Values in Project Units”.

3.1.2 Загрузить модуль Steady State Thermal

3.1.3 Импортировать геометрию “Fin_Tube_WS6. stp”.

3.1.4 Выбрать  материал детали в Engineering Data  и вернуться в проект. Марку материала выбрать в зависимости от варианта по таблице 1

3.1.5 Загрузить DM.

3.1.6 Выбрать в геометрии “FinTube” и назначить марку материала. Просмотреть  технические данные материала.

Рисунок 5

3.1.7 Выделить в дереве сетку mesh, выделить 2 поверхности симметрии на объекте, затем нажать ПКМ> Insert > Sizing. Установить размер элемента Element Size 2 мм.

Рисунок 6

3.1.8 Сгенерировать сетку. Оценить ее качество

3.1.9 Выделить в дереве Steady State Thermal, указать внутреннюю поверхность трубки, затем ПКМ> Insert > Temperature. Установить значение температуры Magnitude tр,°С.

3.1.10 Проверить, чтобы режим выбора поверхности был активным surface select. Выбрать в  графическом окне объекты ПКМ> Select All. Отменить выбор внутренней части, оснований и поверхностей симметрии (всего 5 поверхностей).

Рисунок 7

По завершении выбора должно быть выделено 33 поверхности.

3.1.11 Установить режим конвекции ПКМ > Insert > Convection.

3.1.12 Ввести значение коэффициента теплоотдачи Film Coefficient = 5e-4 W/(mm^2-C) и температуры окружающей среды Ambient Temperature = t0, ºC

3.1.13 Выбрать еще раз те же 33  поверхности и установить режим излучения ПКМ > Insert > Radiation.

Установить параметры:

-температуру окружающей среды Ambient Temperature  t0, ºC;

-степень излучения Leave Emissivity  1;

- корреляция излучения – к окружающей среде  Leave Correlation = To Ambient.

3.1.14 Выполнить расчет Solve

3.1.15 Выделить в дереве построений в ветке термического анализа Температуру, Конвекцию и Излучение Temperature,  Convection и Radiation и перетащить их в ответвление Solution. В результате получаются ярлыки  для установки зондов реакции граничных условий. Нажать ПКМ> Evaluate All Results.

3.1.16 Оценить результаты энергетического баланса

Рисунок 8

3.1.17 Дать оценку теплопотерь, %

3.2 Часть 2

3.2.1 В Workbench загрузить еще один модуль Steady State Thermal и импортировать геометрию “Fin_Tube_WS6. stp”.

3.2.2 Выполнить действия пунктов с 3.1.3 по 3.1.8.

3.2.3 Оценить качество сетки без установки размера сетки и с установленным размером

3.2.4 Выделить в дереве построений  “Steady State Thermal”. Выделить внутреннюю стенку трубы и установить ПКМ > Insert > Temperature. Ввести параметры температуры: изменить значение с постоянного “Constant” на функцию -  “Function”, а затем в поле температуры magnitude ввести функцию. Назначить диапазон температур range. Данные брать в соответствии с вариантом (таблица 1).

Рисунок 9

Теперь, если выделить в дереве Temperature, то на графическом экране отражается изменение тепловой нагрузки

Рисунок 10

3.2.5 Выполнить пункты 3.1.10 и 3.1.11. Выделить оребренную поверхность (33 поверхности) и установить конвекцию.

3.2.6 Изменить значение в поле Film Coefficient на “Tabular (Temperature)”. Ввести температуру окружающей среды Ambient Temperature = t0, ºC. Ввести соответствующие значения в таблицу

Таблица 2

 

      Рисунок 11

3.2.7 Выполнить расчет Solve

Хотя в задаче есть температурные зависимости, наблюдается быстрая сходимость решения.

3.2.8 Выделить в дереве Temperature и Convection и перетащить их в ответвление решения.

Оценить результаты анализа и дать оценку теплопотерь. Охарактеризовать изменение температуры вдоль направления оси Y.

Сделать выводы по работе.

Оформить отчет. Отчет должен содержать исходные данные, промежуточные результаты операций (в виде рисунков) и конечные результаты работы

4 Вопросы к защите лабораторной работы

  1.  Уравнение статического термического анализа
  2.  Основные положения термического анализа
  3.  Назначение материала объекта при проведении статического термического анализа
  4.  Использование контактов в термическом анализе
  5.  Определение потока тепла через поверхность контакта
  6.  Виды и назначение тепловых нагрузок
  7.  Тепловые граничные условия. Основные предположения.
  8.  Температура.  Назначение температуры окружающей среды, рабочей температуры поверхности, температуры входа и выхода на рабочем участке.
  9.  Ввод функции температуры
  10.  Конвекция, способы задания.
  11.  Радиация. Опции команды.
  12.  Опции решателя. Зависимый расчет
  13.  Результаты постпроцессинга
  14.  Установка зондов реакций граничных условий


 

А также другие работы, которые могут Вас заинтересовать

47664. Методические рекомендации. Мировая экономика 572 KB
  Экономика профиль Мировая экономика: общие требования по организации выполнения работы требования по ее оформлению внедрению результатов работы рекомендации при подготовке к защите работы. Организация выполнения выпускной квалификационной работы дипломной работы
47667. Элементы и системы автоматизированного пневмогидропривода 3.55 MB
  В качестве задания даны основные схемы пневматических и гидравлических линейных и поворотных модулей приводов. Представлены инженерные методики расчета конструктивных и динамических параметров привода. Представлена методика построения пневматической системы управления. Приведены основные необходимые для расчетов справочные данные.
47668. Методические указания. Технология бродильных производств и виноделие 228 KB
  Учет и контроль производства Технологическая схема производства Расчетно-пояснительная записка должна включать следующие разделы имеющие примерный объем: Наименование раздела...
47670. Учебно-методическое пособие. Математические методы исследования операций 1.56 MB
  В данном учебно-методическом пособии рассмотрены основные типы задач линейного программирования, даны рекомендации по построению их математических моделей и поиску оптимальных решений средствами табличного редактора Mathcad