51074

Применение ЭВМ в электроэнергетических расчетах

Лабораторная работа

Информатика, кибернетика и программирование

Знакомство с возможностями системы MATLAB: освоение навыков работы с матрицами в пакете MATLAB. Применение ЭВМ в электроэнергетических расчетах

Русский

2014-02-10

226.5 KB

5 чел.

Федеральное агентство по образованию

Государственное образовательное учреждение высшего

профессионального образования

Тульский государственный университет

Кафедра  Электроэнергетика

Применение ЭВМ в электроэнергетических расчетах

Лабораторная работа №6

Основные навыки работы с матрицами в пакете MatLab.

Направление подготовки:  

140200 – «Электроэнергетика»

Форма обучения (очная)

Тула 2010 г.


  1.  Цель работы:

Знакомство с возможностями системы MATLAB: освоение навыков работы с матрицами в пакете MATLAB.

  1.  Теоретические сведения, необходимые для выполнения работы
    1.  Перестановки элементов матрицы.

Для перестановок элементов матриц служат следующие функции:

  •  B = fliplr(A) – зеркально переставляет столбцы матрицы А относительно вертикальной оси.

Пример:

>> F=[1,2,3,;5,45,3]

F =

    1     2     3

    5    45     3

>> fliplr(F)

ans =

    3     2     1

    3    45     5

  •  B = flipud(A) – зеркально переставляет строки матрицы А относительно горизонтальной оси.

Пример:

>> F=[3,2,12;6,3,2]

F =

    3     2    12

    6     3     2

>> flipud(F)

ans =

    6     3     2

    3     2    12

  •  perms(v) – возвращает матрицу P, которая содержит все возможные перестановки элементов вектора v, каждая перестановка в отдельной строке. Матрица P содержит n! строк и n столбцов.

Пример:

>> v=[1 4 6]

v =

    1     4     6

>> P=perms(v)

P =

    6     4     1

    6     1     4

    4     6     1

    4     1     6

    1     4     6

  1.      6     4
    1.  Вычисление произведений

Несколько простых функций служат для перемножения элементов массивов:

  •  prod(A) – возвращает произведение элементов массива, если А – вектор, или вектор-строку, содержащую произведения элементов каждого столбца, если А – матрица;
  •  prod(A, dim) – возвращает матрицу (массив размерности два) с произведением элементов массива А по столбцам (dim=1), по строкам (dim=2), по иным размерностям в зависимости от значения скаляра dim.

Пример:

>> A=[1 2 3 4; 2 4 5 7; 6 8 3 4]

A =

    1     2     3     4

    2     4     5     7

    6     8     3     4

>> B=prod(A)

B =

   12    64    45   112

  •  cumprod(A) – возвращает произведение с накоплением. Если А – вектор, cumprod(A) возвращает вектор, содержащий произведения с накоплением элементов вектора А. Если А – матрица, cumprod(A) возвращает матрицу того же размера, что и А, содержащую произведения с накоплением для каждого столбца матрицы А. (Первая сторока без изменения, во второй строке произведение первых двух элементов каждого столбца, в третьей строке элементы второй строки матрицы-результата умножаются на элементы третьей строки матрицы входного элемента и т.д.).
  •  cumprod(A,dim) – возвращает произведение с накоплением элементов по строкам или столбцам матрицы в зависимости от значения скаляра dim. Например, cumprod(A, 1) дает прирост первому индексу (номеру строки), таким образом выполняя умножение по столбцам матрицы А.

Примеры:

>> A=[1 2 3; 4 5 6; 7 8 9]

A =

    1     2     3

    4     5     6

    7     8     9

>> B=cumprod(A)

B =

    1     2     3

    4    10    18

   28    80   162

>> B=cumprod(A,1)

B =

    1     2     3

    4    10    18

   28    80   162

  •  cross (U,V) – возвращает векторное произведение U и V в техмерном пространстве, т.е. . U и V – обязательные векторы с тремя элементами;
  •  cross (U,V,dim) – возвращает векторное произведение U и V по размерности, определенной скаляром  dim. U и V – многомерные массивы, которые должны иметь одну и ту же размерность, причем размер векторов в каждой размерности size(U,dim) и size(V,dim) должен быть равен 3.

Пример:

>> a=[6 5 3]; b=[1 7 6]; c=cross(a,b)

c =

  1.    -33    37
    1.  Суммирование элементов

Определены следующие функции суммирования элементов массивов:

  •  sum(A)  - возвращает сумму элементов массива, если А – вектор, или вектор-строку, содержащую сумму элементов каждого столбца, если А – матрица;
  •  sum(A,dim)  - возвращает сумму элементов массива по столбцам (dim=1), строкам (dim=2) или иным размерностям в зависимости от значения скаляра dim.

Пример:

>> A=magic(4)

A =

   16     2     3    13

    5    11    10     8

    9     7     6    12

    4    14    15     1

>> B=sum(A)

B =

   34    34    34    34

  •  cumsum(A) – выполняет суммирование с накоплением. Если А – вектор, cumsum(A) возвращает вектор, содержащий результаты суммирования с накоплением элементов вектора А. Если А – матрица, cumsum(A) возвращает  матрицу того же размера, что и А, содержащую суммирование с накоплением для каждого столбца матрицы А;
  •  cumsum(A,dim) – выполняет суммирование с накоплением элементов по размерности, определенной скаляром dim. Например, cumsum(A,1) выполняет суммирование по столбцам.

Пример:

>> A=magic(4)

A =

   16     2     3    13

    5    11    10     8

    9     7     6    12

    4    14    15     1

>> B=cumsum(A)

B =

   16     2     3    13

   21    13    13    21

   30    20    19    33

  1.    34    34    34
    1.  Функции формирования матриц

Для создания матриц, состящих из других матриц, используются следующие функции:

  •  repmat(A,m,n) – возвращает матрицу В, состоящую из  каждый элемент заменяется на копию матрицы (А);
  •  repmat(A,n) – формирует матрицу, состоящую из  копий матрицы А;
  •  repmat(A,[m n]) – дает тот же результат, что и repmat(A,m,n);
  •  repmat(A,[m n p…]) – возвращает многомерный массив ), состоящий из копий многомерного массива или матрицы А;
  •  repmat(A,m,n) –когда А – скаляр, возвращает матрицу размера  со значениями элементом, заданных А. Это делается намного быстрее, чем .

Пример:

>> F=[3,2;43,32]

F =

    3     2

   43    32

>> repmat(F,2,3)

ans =

    3     2       3      2      3      2

   43    32    43    32    43    32

    3     2       3      2      3      2

   43    32    43    32    43    32

  •  reshape (A,m,n) – возвращает матрицу В размерностью , сформированную из А путем последовательной выборки по столбцам. Если число элементов А не равно , то выдается сообщение об ошибке;
  •  reshape (A,m,n,p,…) или В = reshape (A,[m n p…]) – возвращает N-мерный массив с элементами из А, но имеющий размер  Прозведение  должно быть равно значению prod(size(A)).
  •  reshape (A,siz) – возвращает N-мерный массив с элементами из А, но перестроенный к размеру, заданному с помощьювектора siz.

Пример:

>> F=[3,2,7,4;4,3,3,2;2,2,5,6]

F =

    3     2     7     4

    4     3     3     2

    2     2     5     6

>> reshape(F,2,6)

ans =

    3     2     3     7     5     2

    4     2     2     3     4     6

  1.  Поворот матрицы

Следующая функция обеспечивает поворот матрицы (по расположению элементов):

  •  rot90(A) – осуществляет поворот матрицы А на 900 против часовой стрелки;
  •  rot90(A,k) – осуществляет поворот матрицы А на величину 90*k градусов, где k – целое число.

Пример:

>> M=[3,2,7;3,3,2;1,1,1]

M =

    3     2     7

    3     3     2

    1     1     1

>> rot90(M)

ans =

    7     2     1

    2     3     1

    3     3     1

  1.  Задание:
    1.  Переставьте элементы матрицы.

1

[1  4  5]

11

[1  7  5  9]

21

[1  1  5]

2

[2  4  6  7]

12

[0  3  5]

22

[1  4  9  5]

3

[3  3  5]

13

[1  3  8]

23

[1  2  8]

4

[0  4  5]

14

[0  1  5  8]

24

[1  3  6  6]

5

[3  7  5  8]

15

[1  0  6]

25

[4  7  5  5]

6

[1  4  5]

16

[3  4  5]

26

[1  0  8]

7

[0  3  5  8]

17

[2  3  7  4]

27

[1  2  5  7]

8

[6  4  5]

18

[1  6  5]

28

[0  3  9]

9

[0  3  5]

19

[8  4  4]

29

[2  4  3]

10

[4  4  5]

20

[4  7  5  5]

30

[9  6  5  7]

  1.  Вычислите произведения матриц.

1

[1 4 5; 5 6 7; 5 4 12]

16

[9 7 8; 6 8 7; 0 8 2]

2

[3 8 7; 3 7 9; 8 6 4]

17

[10 4 5; 5 9 7; 5 5 0]

3

[6 6 4; 4 8 7; 4 7 6]

18

[4 7 9; 9 6 5; 6 4 3]

4

[1 1 3; 2 8 1; 5 3 3]

19

[1 4 5; 8 3 7; 5 7 0]

5

[4 2 5; 5 4 7; 7 2 1]

20

[12 6 7; 15 0 11; 6 4 1]

6

[6 3 9; 8 9 9; 5 8 0]

21

[16 0 3; 9 4 9; 5 9 1]

7

[8 5 6; 0 7 7; 6 9 7]

22

[6 0 9; 8 7 9; 5 8 1]

8

[9 7 3; 5 8 8; 3 6 9]

23

[7 3 8; 17 9 9; 5 8 4]

9

[6 10 4 ; 1 6 0; 5 4 3]

24

[5 3 9; 8 7 7; 15 9 0]

10

[7 13 2 ; 1 5 1; 7 4 4]

25

[4 3 9; 7 9 9; 5 8 4]

11

[2 4 5; 15 6 7; 5 4 0]

26

[6 7 9; 6 5 8; 5 5 2]

12

[1 5 5; 5 7 8; 4 5 6]

27

[4 3 6; 8 9 7; 7 8 1]

13

[0 4 1; 4 6 7; 5 8 3]

28

[5 3 9; 8 7 9; 5 7 0]

14

[5 4 4; 7 5 9; 3 5 0]

29

[6 3 9; 7 6 9; 8 8 0]

15

[7 2 6; 12 6 12; 5 4 3]

30

[4 3 9; 8 9 9; 5 5 0]

  1.  Сложите элементы

1

21

11

1

21

11

2

22

12

2

22

12

3

23

13

3

23

13

4

24

14

4

24

14

5

25

15

5

25

15

6

26

16

6

26

16

7

27

17

7

27

17

8

28

18

8

28

18

9

29

19

9

29

19

10

30

20

10

30

20

  1.  Сформируйте матрицы

1

21        13

22        14

repmat(A,m,n)

6

  1.  34

2          0

repmat(A,m,n)

11

11         11

12         12

repmat(A,[m n])

2

23         45

24         4

repmat(A,m)

7

  1.  2

4         9

repmat(A,[m n])

12

13          5

14          0

repmat(A,m)

3

25          5

26          6

repmat(A,[m n])

8

5         13

6         14

reshape (A,siz)

13

15          8

16          9

reshape(A,m,n)

4

27          1

28          0

reshape(A,m,n)

9

7         15

8         16

repmat(A,m)

14

17        45

18        56

repmat(A,m)

5

29          5

30          9

reshape (A,siz)

10

9         11

10        9

repmat(A,[m n])

15

19        78

20         0

repmat(A,[m n])

  1.  Поверните матрицу

1

[9 7 8; 6 8 7; 0 8 2]

16

[1 4 5; 5 6 7; 5 4 12]

2

[10 4 5; 5 9 7; 5 5 0]

17

[3 8 7; 3 7 9; 8 6 4]

3

[4 7 9; 9 6 5; 6 4 3]

18

[6 6 4; 4 8 7; 4 7 6]

4

[1 4 5; 8 3 7; 5 7 0]

19

[1 1 3; 2 8 1; 5 3 3]

5

[12 6 7; 15 0 11; 6 4 1]

20

[4 2 5; 5 4 7; 7 2 1]

6

[16 0 3; 9 4 9; 5 9 1]

21

[6 3 9; 8 9 9; 5 8 0]

7

[6 0 9; 8 7 9; 5 8 1]

22

[8 5 6; 0 7 7; 6 9 7]

8

[7 3 8; 17 9 9; 5 8 4]

23

[9 7 3; 5 8 8; 3 6 9]

9

[5 3 9; 8 7 7; 15 9 0]

24

[6 10 4 ; 1 6 0; 5 4 3]

10

[4 3 9; 7 9 9; 5 8 4]

25

[7 13 2 ; 1 5 1; 7 4 4]

  1.  Правила выполнения и содержание отчета по лабораторной работе.

Выполнить отчет о проделанной работе, в котором привести программу решения заданий 1 – 5.

КОНТРОЛЬНЫЕ ВОПРОСЫ

  1.  Какая функция зеркально переставляет столбцы матрицы А относительно веритикальной оси?
  2.  Какая функция зеркально переставляет столбцы матрицы А относительно горизонтальной оси?
  3.  Что означает функция prod(A)?
  4.  Что означает функция sum(A)?
  5.  Как осуществляется поворот матрицы?


 

А также другие работы, которые могут Вас заинтересовать

2503. Техники в живописи - пуантилизм и техника мазками 24.59 KB
  Этот урок направлен на ознакомление учащихся с разнообразием техник в живописи. Формирование умений применять знания при решении практических творческих заданий. Ознакомить детей с различными изобразительными средствами для передачи изображений. Развитие восприятия цвета и колористического видения. Научить видеть особенности и отличительные признаки разных видов искусства.
2504. Организационные теории и организационные сруктуры 260.17 KB
  Классическая организационная теория. Теории организационного поведения. Теория институтов и институциональных изменений. Популяционно-экологическая (эволюционная) теория. Понятия, характеризующие строение организации. Линейные структуры управления.
2505. Статистическая проверка параметрических гипотез 97.31 KB
  Понятие о гипотезе. Виды гипотез. Ошибки первого и второго рода. Статистический критерий проверки нулевой гипотезы. Отыскание критической области. Сравнение двух дисперсий нормальных генеральных совокупностей. Проверка гипотез равенства математических ожиданий двух случайных величин.
2506. Немецкая классическая философия 209.01 KB
  Общие характеристики немецкой классической философии. Трансцендентализм философии И. Канта. Учение о трансцендентальном и эмпирическом субъекте познания. Анализ механизма процесса познания. Априоризм и агностицизм И. Канта. Морально-практическая философия И.Канта. Категорический императив. Соотношение морали и религии. Социально-философские идеи Канта.
2507. Понятие, сущность, функции и цели международного права 26.24 KB
  Международное право – это особая правовая система, регулирующая международные отношения его субъектов по средствам юридических норм, создаваемых путем фиксированного (договор) или молчаливо выраженного (обычай) соглашения между ними и обеспечиваемых принуждением, формы, характер и пределы которого определяются в межгосударственных соглашениях.
2508. Соціальна історія українських земель у польсько-литовський період (14 – 17 ст.) 187.36 KB
  Державний устрій та суспільний лад Великого князівства Литовського та Речі Посполитої. Соціальна структура українського населення у складі Великого князівства Литовського та Польського королівства. Правова система. Особливості розвитку української культури в 14 – 17 ст.
2509. Оптика и атомная физика 10.06 MB
  Определение показателя преломления стекла с помощью микроскопа. Определение радиуса кривизны линзы с помощью колец Ньютона. Изучение поляризации света. Проверка закона Малюса. Определение концентрации раствора сахара поляриметром. Изучение сериальных закономерностей в спектре излучения атомарного водорода и определение постоянной Ридберга. Исследование явлений дифракции и поляризации света.
2510. Вращательные движения твердого тела и их законы 292.5 KB
  Проверка зависимости углового ускорения ε от момента силы М при постоянном моменте инерции J. Проверка зависимости момента инерции J грузов от расстояния до оси вращения.
2511. Введение в физику низкотемпературной плазмы 839.85 KB
  Основные понятия физики плазмы. Экранирование зарядов в плазме. Дебаевский радиус. Элементарные процессы в плазме. Термоядерная плазма. Критерий Лоусона. Лазерный термоядерный синтез. Движение заряженных частиц в электромагнитных полях. Магнитный момент частицы в магнитном поле.