51074

Применение ЭВМ в электроэнергетических расчетах

Лабораторная работа

Информатика, кибернетика и программирование

Знакомство с возможностями системы MATLAB: освоение навыков работы с матрицами в пакете MATLAB. Применение ЭВМ в электроэнергетических расчетах

Русский

2014-02-10

226.5 KB

5 чел.

Федеральное агентство по образованию

Государственное образовательное учреждение высшего

профессионального образования

Тульский государственный университет

Кафедра  Электроэнергетика

Применение ЭВМ в электроэнергетических расчетах

Лабораторная работа №6

Основные навыки работы с матрицами в пакете MatLab.

Направление подготовки:  

140200 – «Электроэнергетика»

Форма обучения (очная)

Тула 2010 г.


  1.  Цель работы:

Знакомство с возможностями системы MATLAB: освоение навыков работы с матрицами в пакете MATLAB.

  1.  Теоретические сведения, необходимые для выполнения работы
    1.  Перестановки элементов матрицы.

Для перестановок элементов матриц служат следующие функции:

  •  B = fliplr(A) – зеркально переставляет столбцы матрицы А относительно вертикальной оси.

Пример:

>> F=[1,2,3,;5,45,3]

F =

    1     2     3

    5    45     3

>> fliplr(F)

ans =

    3     2     1

    3    45     5

  •  B = flipud(A) – зеркально переставляет строки матрицы А относительно горизонтальной оси.

Пример:

>> F=[3,2,12;6,3,2]

F =

    3     2    12

    6     3     2

>> flipud(F)

ans =

    6     3     2

    3     2    12

  •  perms(v) – возвращает матрицу P, которая содержит все возможные перестановки элементов вектора v, каждая перестановка в отдельной строке. Матрица P содержит n! строк и n столбцов.

Пример:

>> v=[1 4 6]

v =

    1     4     6

>> P=perms(v)

P =

    6     4     1

    6     1     4

    4     6     1

    4     1     6

    1     4     6

  1.      6     4
    1.  Вычисление произведений

Несколько простых функций служат для перемножения элементов массивов:

  •  prod(A) – возвращает произведение элементов массива, если А – вектор, или вектор-строку, содержащую произведения элементов каждого столбца, если А – матрица;
  •  prod(A, dim) – возвращает матрицу (массив размерности два) с произведением элементов массива А по столбцам (dim=1), по строкам (dim=2), по иным размерностям в зависимости от значения скаляра dim.

Пример:

>> A=[1 2 3 4; 2 4 5 7; 6 8 3 4]

A =

    1     2     3     4

    2     4     5     7

    6     8     3     4

>> B=prod(A)

B =

   12    64    45   112

  •  cumprod(A) – возвращает произведение с накоплением. Если А – вектор, cumprod(A) возвращает вектор, содержащий произведения с накоплением элементов вектора А. Если А – матрица, cumprod(A) возвращает матрицу того же размера, что и А, содержащую произведения с накоплением для каждого столбца матрицы А. (Первая сторока без изменения, во второй строке произведение первых двух элементов каждого столбца, в третьей строке элементы второй строки матрицы-результата умножаются на элементы третьей строки матрицы входного элемента и т.д.).
  •  cumprod(A,dim) – возвращает произведение с накоплением элементов по строкам или столбцам матрицы в зависимости от значения скаляра dim. Например, cumprod(A, 1) дает прирост первому индексу (номеру строки), таким образом выполняя умножение по столбцам матрицы А.

Примеры:

>> A=[1 2 3; 4 5 6; 7 8 9]

A =

    1     2     3

    4     5     6

    7     8     9

>> B=cumprod(A)

B =

    1     2     3

    4    10    18

   28    80   162

>> B=cumprod(A,1)

B =

    1     2     3

    4    10    18

   28    80   162

  •  cross (U,V) – возвращает векторное произведение U и V в техмерном пространстве, т.е. . U и V – обязательные векторы с тремя элементами;
  •  cross (U,V,dim) – возвращает векторное произведение U и V по размерности, определенной скаляром  dim. U и V – многомерные массивы, которые должны иметь одну и ту же размерность, причем размер векторов в каждой размерности size(U,dim) и size(V,dim) должен быть равен 3.

Пример:

>> a=[6 5 3]; b=[1 7 6]; c=cross(a,b)

c =

  1.    -33    37
    1.  Суммирование элементов

Определены следующие функции суммирования элементов массивов:

  •  sum(A)  - возвращает сумму элементов массива, если А – вектор, или вектор-строку, содержащую сумму элементов каждого столбца, если А – матрица;
  •  sum(A,dim)  - возвращает сумму элементов массива по столбцам (dim=1), строкам (dim=2) или иным размерностям в зависимости от значения скаляра dim.

Пример:

>> A=magic(4)

A =

   16     2     3    13

    5    11    10     8

    9     7     6    12

    4    14    15     1

>> B=sum(A)

B =

   34    34    34    34

  •  cumsum(A) – выполняет суммирование с накоплением. Если А – вектор, cumsum(A) возвращает вектор, содержащий результаты суммирования с накоплением элементов вектора А. Если А – матрица, cumsum(A) возвращает  матрицу того же размера, что и А, содержащую суммирование с накоплением для каждого столбца матрицы А;
  •  cumsum(A,dim) – выполняет суммирование с накоплением элементов по размерности, определенной скаляром dim. Например, cumsum(A,1) выполняет суммирование по столбцам.

Пример:

>> A=magic(4)

A =

   16     2     3    13

    5    11    10     8

    9     7     6    12

    4    14    15     1

>> B=cumsum(A)

B =

   16     2     3    13

   21    13    13    21

   30    20    19    33

  1.    34    34    34
    1.  Функции формирования матриц

Для создания матриц, состящих из других матриц, используются следующие функции:

  •  repmat(A,m,n) – возвращает матрицу В, состоящую из  каждый элемент заменяется на копию матрицы (А);
  •  repmat(A,n) – формирует матрицу, состоящую из  копий матрицы А;
  •  repmat(A,[m n]) – дает тот же результат, что и repmat(A,m,n);
  •  repmat(A,[m n p…]) – возвращает многомерный массив ), состоящий из копий многомерного массива или матрицы А;
  •  repmat(A,m,n) –когда А – скаляр, возвращает матрицу размера  со значениями элементом, заданных А. Это делается намного быстрее, чем .

Пример:

>> F=[3,2;43,32]

F =

    3     2

   43    32

>> repmat(F,2,3)

ans =

    3     2       3      2      3      2

   43    32    43    32    43    32

    3     2       3      2      3      2

   43    32    43    32    43    32

  •  reshape (A,m,n) – возвращает матрицу В размерностью , сформированную из А путем последовательной выборки по столбцам. Если число элементов А не равно , то выдается сообщение об ошибке;
  •  reshape (A,m,n,p,…) или В = reshape (A,[m n p…]) – возвращает N-мерный массив с элементами из А, но имеющий размер  Прозведение  должно быть равно значению prod(size(A)).
  •  reshape (A,siz) – возвращает N-мерный массив с элементами из А, но перестроенный к размеру, заданному с помощьювектора siz.

Пример:

>> F=[3,2,7,4;4,3,3,2;2,2,5,6]

F =

    3     2     7     4

    4     3     3     2

    2     2     5     6

>> reshape(F,2,6)

ans =

    3     2     3     7     5     2

    4     2     2     3     4     6

  1.  Поворот матрицы

Следующая функция обеспечивает поворот матрицы (по расположению элементов):

  •  rot90(A) – осуществляет поворот матрицы А на 900 против часовой стрелки;
  •  rot90(A,k) – осуществляет поворот матрицы А на величину 90*k градусов, где k – целое число.

Пример:

>> M=[3,2,7;3,3,2;1,1,1]

M =

    3     2     7

    3     3     2

    1     1     1

>> rot90(M)

ans =

    7     2     1

    2     3     1

    3     3     1

  1.  Задание:
    1.  Переставьте элементы матрицы.

1

[1  4  5]

11

[1  7  5  9]

21

[1  1  5]

2

[2  4  6  7]

12

[0  3  5]

22

[1  4  9  5]

3

[3  3  5]

13

[1  3  8]

23

[1  2  8]

4

[0  4  5]

14

[0  1  5  8]

24

[1  3  6  6]

5

[3  7  5  8]

15

[1  0  6]

25

[4  7  5  5]

6

[1  4  5]

16

[3  4  5]

26

[1  0  8]

7

[0  3  5  8]

17

[2  3  7  4]

27

[1  2  5  7]

8

[6  4  5]

18

[1  6  5]

28

[0  3  9]

9

[0  3  5]

19

[8  4  4]

29

[2  4  3]

10

[4  4  5]

20

[4  7  5  5]

30

[9  6  5  7]

  1.  Вычислите произведения матриц.

1

[1 4 5; 5 6 7; 5 4 12]

16

[9 7 8; 6 8 7; 0 8 2]

2

[3 8 7; 3 7 9; 8 6 4]

17

[10 4 5; 5 9 7; 5 5 0]

3

[6 6 4; 4 8 7; 4 7 6]

18

[4 7 9; 9 6 5; 6 4 3]

4

[1 1 3; 2 8 1; 5 3 3]

19

[1 4 5; 8 3 7; 5 7 0]

5

[4 2 5; 5 4 7; 7 2 1]

20

[12 6 7; 15 0 11; 6 4 1]

6

[6 3 9; 8 9 9; 5 8 0]

21

[16 0 3; 9 4 9; 5 9 1]

7

[8 5 6; 0 7 7; 6 9 7]

22

[6 0 9; 8 7 9; 5 8 1]

8

[9 7 3; 5 8 8; 3 6 9]

23

[7 3 8; 17 9 9; 5 8 4]

9

[6 10 4 ; 1 6 0; 5 4 3]

24

[5 3 9; 8 7 7; 15 9 0]

10

[7 13 2 ; 1 5 1; 7 4 4]

25

[4 3 9; 7 9 9; 5 8 4]

11

[2 4 5; 15 6 7; 5 4 0]

26

[6 7 9; 6 5 8; 5 5 2]

12

[1 5 5; 5 7 8; 4 5 6]

27

[4 3 6; 8 9 7; 7 8 1]

13

[0 4 1; 4 6 7; 5 8 3]

28

[5 3 9; 8 7 9; 5 7 0]

14

[5 4 4; 7 5 9; 3 5 0]

29

[6 3 9; 7 6 9; 8 8 0]

15

[7 2 6; 12 6 12; 5 4 3]

30

[4 3 9; 8 9 9; 5 5 0]

  1.  Сложите элементы

1

21

11

1

21

11

2

22

12

2

22

12

3

23

13

3

23

13

4

24

14

4

24

14

5

25

15

5

25

15

6

26

16

6

26

16

7

27

17

7

27

17

8

28

18

8

28

18

9

29

19

9

29

19

10

30

20

10

30

20

  1.  Сформируйте матрицы

1

21        13

22        14

repmat(A,m,n)

6

  1.  34

2          0

repmat(A,m,n)

11

11         11

12         12

repmat(A,[m n])

2

23         45

24         4

repmat(A,m)

7

  1.  2

4         9

repmat(A,[m n])

12

13          5

14          0

repmat(A,m)

3

25          5

26          6

repmat(A,[m n])

8

5         13

6         14

reshape (A,siz)

13

15          8

16          9

reshape(A,m,n)

4

27          1

28          0

reshape(A,m,n)

9

7         15

8         16

repmat(A,m)

14

17        45

18        56

repmat(A,m)

5

29          5

30          9

reshape (A,siz)

10

9         11

10        9

repmat(A,[m n])

15

19        78

20         0

repmat(A,[m n])

  1.  Поверните матрицу

1

[9 7 8; 6 8 7; 0 8 2]

16

[1 4 5; 5 6 7; 5 4 12]

2

[10 4 5; 5 9 7; 5 5 0]

17

[3 8 7; 3 7 9; 8 6 4]

3

[4 7 9; 9 6 5; 6 4 3]

18

[6 6 4; 4 8 7; 4 7 6]

4

[1 4 5; 8 3 7; 5 7 0]

19

[1 1 3; 2 8 1; 5 3 3]

5

[12 6 7; 15 0 11; 6 4 1]

20

[4 2 5; 5 4 7; 7 2 1]

6

[16 0 3; 9 4 9; 5 9 1]

21

[6 3 9; 8 9 9; 5 8 0]

7

[6 0 9; 8 7 9; 5 8 1]

22

[8 5 6; 0 7 7; 6 9 7]

8

[7 3 8; 17 9 9; 5 8 4]

23

[9 7 3; 5 8 8; 3 6 9]

9

[5 3 9; 8 7 7; 15 9 0]

24

[6 10 4 ; 1 6 0; 5 4 3]

10

[4 3 9; 7 9 9; 5 8 4]

25

[7 13 2 ; 1 5 1; 7 4 4]

  1.  Правила выполнения и содержание отчета по лабораторной работе.

Выполнить отчет о проделанной работе, в котором привести программу решения заданий 1 – 5.

КОНТРОЛЬНЫЕ ВОПРОСЫ

  1.  Какая функция зеркально переставляет столбцы матрицы А относительно веритикальной оси?
  2.  Какая функция зеркально переставляет столбцы матрицы А относительно горизонтальной оси?
  3.  Что означает функция prod(A)?
  4.  Что означает функция sum(A)?
  5.  Как осуществляется поворот матрицы?


 

А также другие работы, которые могут Вас заинтересовать

31924. Обчислення параметрів парної лінійної регресії матричним способом 177 KB
  Знайти оцінки коефіцієнтів моделі матричним способом. Матриця Х складається з 2х стовпців: 1й складається з 1 так як у моделі присутній вільний член а другий із вибіркових значень фактора Х. Остаточно матриця А буде мати вигляд: Тобто і наша модель має вигляд: Знайдемо інші параметри лінійної моделі для цього спочатку заповнимо таблицю 1: а для того щоб знайти стандартну похибку моделі обчислимо теоретичні значення фактора Y та знайдемо залишки моделі е. Знайдемо стандартну похибку моделі Е за формулою: .
31925. Архітектура комп’ютерів 286.5 KB
  Проаналізувати текст програми lb1. text SEGMENT ORG 100h begin: MOV x20 MOV bx30 DD xbx MOV cxx DD ch16 RET text ENDS END begin Початок сегменту коду програми під назвою text†Встановлення лічильника адреси на зміщення 100H шістнадцятирічне число 100 відносно початку сегменту кода Занесення до регістру АX числа 20 Занесення до регістру BX числа 30 Додавання двох чисел що містяться в регістрах АX та BX Занесення до регістру CX числа з регістру X Збільшення числа що міститься у старших 8 бітах регістра СX на 16 Команда...
31927. Общая психология, ответы на билеты 211.5 KB
  Крупные научные школы придерживались различных методологических принципов. Для поведенческой психологии (бихевиоризма) существенным было положение об объективности, наблюдаемости психических явлений. В психоанализе выдвигалась идея динамики, метаморфоз психической энергии в разные периоды жизни ребенка и взрослого. Концепции отечественных психологов строятся на принципах единства сознания и деятельности, принципе детерминизма
31928. Бытовая радиотелевизионная аппаратура 150 KB
  Структурная электрическая схема телевизора чернобелого изображения. Телевизоры чернобелого изображения ранних лет выпуска схема питания. Переносные ч б телевизоры схема питания. Переносные телевизоры ч б изображения схема разверток.
31932. Проектний тепловий розрахунок рекуперативного теплообмінника 585 KB
  Мета розрахунку Основною метою розрахунку теплообмінників є визначення поверхні теплообміну F а також основних розмірів апарата. Отже для визначення теплової поверхні необхідно розрахувати коефіцієнт теплопередачі k а також середній температурний напір 3. Визначення теплового навантаження апарата та масової витрати гарячого теплоносія 4. Визначення кількості трубок в теплообмінному апараті 5.