51074

Применение ЭВМ в электроэнергетических расчетах

Лабораторная работа

Информатика, кибернетика и программирование

Знакомство с возможностями системы MATLAB: освоение навыков работы с матрицами в пакете MATLAB. Применение ЭВМ в электроэнергетических расчетах

Русский

2014-02-10

226.5 KB

5 чел.

Федеральное агентство по образованию

Государственное образовательное учреждение высшего

профессионального образования

Тульский государственный университет

Кафедра  Электроэнергетика

Применение ЭВМ в электроэнергетических расчетах

Лабораторная работа №6

Основные навыки работы с матрицами в пакете MatLab.

Направление подготовки:  

140200 – «Электроэнергетика»

Форма обучения (очная)

Тула 2010 г.


  1.  Цель работы:

Знакомство с возможностями системы MATLAB: освоение навыков работы с матрицами в пакете MATLAB.

  1.  Теоретические сведения, необходимые для выполнения работы
    1.  Перестановки элементов матрицы.

Для перестановок элементов матриц служат следующие функции:

  •  B = fliplr(A) – зеркально переставляет столбцы матрицы А относительно вертикальной оси.

Пример:

>> F=[1,2,3,;5,45,3]

F =

    1     2     3

    5    45     3

>> fliplr(F)

ans =

    3     2     1

    3    45     5

  •  B = flipud(A) – зеркально переставляет строки матрицы А относительно горизонтальной оси.

Пример:

>> F=[3,2,12;6,3,2]

F =

    3     2    12

    6     3     2

>> flipud(F)

ans =

    6     3     2

    3     2    12

  •  perms(v) – возвращает матрицу P, которая содержит все возможные перестановки элементов вектора v, каждая перестановка в отдельной строке. Матрица P содержит n! строк и n столбцов.

Пример:

>> v=[1 4 6]

v =

    1     4     6

>> P=perms(v)

P =

    6     4     1

    6     1     4

    4     6     1

    4     1     6

    1     4     6

  1.      6     4
    1.  Вычисление произведений

Несколько простых функций служат для перемножения элементов массивов:

  •  prod(A) – возвращает произведение элементов массива, если А – вектор, или вектор-строку, содержащую произведения элементов каждого столбца, если А – матрица;
  •  prod(A, dim) – возвращает матрицу (массив размерности два) с произведением элементов массива А по столбцам (dim=1), по строкам (dim=2), по иным размерностям в зависимости от значения скаляра dim.

Пример:

>> A=[1 2 3 4; 2 4 5 7; 6 8 3 4]

A =

    1     2     3     4

    2     4     5     7

    6     8     3     4

>> B=prod(A)

B =

   12    64    45   112

  •  cumprod(A) – возвращает произведение с накоплением. Если А – вектор, cumprod(A) возвращает вектор, содержащий произведения с накоплением элементов вектора А. Если А – матрица, cumprod(A) возвращает матрицу того же размера, что и А, содержащую произведения с накоплением для каждого столбца матрицы А. (Первая сторока без изменения, во второй строке произведение первых двух элементов каждого столбца, в третьей строке элементы второй строки матрицы-результата умножаются на элементы третьей строки матрицы входного элемента и т.д.).
  •  cumprod(A,dim) – возвращает произведение с накоплением элементов по строкам или столбцам матрицы в зависимости от значения скаляра dim. Например, cumprod(A, 1) дает прирост первому индексу (номеру строки), таким образом выполняя умножение по столбцам матрицы А.

Примеры:

>> A=[1 2 3; 4 5 6; 7 8 9]

A =

    1     2     3

    4     5     6

    7     8     9

>> B=cumprod(A)

B =

    1     2     3

    4    10    18

   28    80   162

>> B=cumprod(A,1)

B =

    1     2     3

    4    10    18

   28    80   162

  •  cross (U,V) – возвращает векторное произведение U и V в техмерном пространстве, т.е. . U и V – обязательные векторы с тремя элементами;
  •  cross (U,V,dim) – возвращает векторное произведение U и V по размерности, определенной скаляром  dim. U и V – многомерные массивы, которые должны иметь одну и ту же размерность, причем размер векторов в каждой размерности size(U,dim) и size(V,dim) должен быть равен 3.

Пример:

>> a=[6 5 3]; b=[1 7 6]; c=cross(a,b)

c =

  1.    -33    37
    1.  Суммирование элементов

Определены следующие функции суммирования элементов массивов:

  •  sum(A)  - возвращает сумму элементов массива, если А – вектор, или вектор-строку, содержащую сумму элементов каждого столбца, если А – матрица;
  •  sum(A,dim)  - возвращает сумму элементов массива по столбцам (dim=1), строкам (dim=2) или иным размерностям в зависимости от значения скаляра dim.

Пример:

>> A=magic(4)

A =

   16     2     3    13

    5    11    10     8

    9     7     6    12

    4    14    15     1

>> B=sum(A)

B =

   34    34    34    34

  •  cumsum(A) – выполняет суммирование с накоплением. Если А – вектор, cumsum(A) возвращает вектор, содержащий результаты суммирования с накоплением элементов вектора А. Если А – матрица, cumsum(A) возвращает  матрицу того же размера, что и А, содержащую суммирование с накоплением для каждого столбца матрицы А;
  •  cumsum(A,dim) – выполняет суммирование с накоплением элементов по размерности, определенной скаляром dim. Например, cumsum(A,1) выполняет суммирование по столбцам.

Пример:

>> A=magic(4)

A =

   16     2     3    13

    5    11    10     8

    9     7     6    12

    4    14    15     1

>> B=cumsum(A)

B =

   16     2     3    13

   21    13    13    21

   30    20    19    33

  1.    34    34    34
    1.  Функции формирования матриц

Для создания матриц, состящих из других матриц, используются следующие функции:

  •  repmat(A,m,n) – возвращает матрицу В, состоящую из  каждый элемент заменяется на копию матрицы (А);
  •  repmat(A,n) – формирует матрицу, состоящую из  копий матрицы А;
  •  repmat(A,[m n]) – дает тот же результат, что и repmat(A,m,n);
  •  repmat(A,[m n p…]) – возвращает многомерный массив ), состоящий из копий многомерного массива или матрицы А;
  •  repmat(A,m,n) –когда А – скаляр, возвращает матрицу размера  со значениями элементом, заданных А. Это делается намного быстрее, чем .

Пример:

>> F=[3,2;43,32]

F =

    3     2

   43    32

>> repmat(F,2,3)

ans =

    3     2       3      2      3      2

   43    32    43    32    43    32

    3     2       3      2      3      2

   43    32    43    32    43    32

  •  reshape (A,m,n) – возвращает матрицу В размерностью , сформированную из А путем последовательной выборки по столбцам. Если число элементов А не равно , то выдается сообщение об ошибке;
  •  reshape (A,m,n,p,…) или В = reshape (A,[m n p…]) – возвращает N-мерный массив с элементами из А, но имеющий размер  Прозведение  должно быть равно значению prod(size(A)).
  •  reshape (A,siz) – возвращает N-мерный массив с элементами из А, но перестроенный к размеру, заданному с помощьювектора siz.

Пример:

>> F=[3,2,7,4;4,3,3,2;2,2,5,6]

F =

    3     2     7     4

    4     3     3     2

    2     2     5     6

>> reshape(F,2,6)

ans =

    3     2     3     7     5     2

    4     2     2     3     4     6

  1.  Поворот матрицы

Следующая функция обеспечивает поворот матрицы (по расположению элементов):

  •  rot90(A) – осуществляет поворот матрицы А на 900 против часовой стрелки;
  •  rot90(A,k) – осуществляет поворот матрицы А на величину 90*k градусов, где k – целое число.

Пример:

>> M=[3,2,7;3,3,2;1,1,1]

M =

    3     2     7

    3     3     2

    1     1     1

>> rot90(M)

ans =

    7     2     1

    2     3     1

    3     3     1

  1.  Задание:
    1.  Переставьте элементы матрицы.

1

[1  4  5]

11

[1  7  5  9]

21

[1  1  5]

2

[2  4  6  7]

12

[0  3  5]

22

[1  4  9  5]

3

[3  3  5]

13

[1  3  8]

23

[1  2  8]

4

[0  4  5]

14

[0  1  5  8]

24

[1  3  6  6]

5

[3  7  5  8]

15

[1  0  6]

25

[4  7  5  5]

6

[1  4  5]

16

[3  4  5]

26

[1  0  8]

7

[0  3  5  8]

17

[2  3  7  4]

27

[1  2  5  7]

8

[6  4  5]

18

[1  6  5]

28

[0  3  9]

9

[0  3  5]

19

[8  4  4]

29

[2  4  3]

10

[4  4  5]

20

[4  7  5  5]

30

[9  6  5  7]

  1.  Вычислите произведения матриц.

1

[1 4 5; 5 6 7; 5 4 12]

16

[9 7 8; 6 8 7; 0 8 2]

2

[3 8 7; 3 7 9; 8 6 4]

17

[10 4 5; 5 9 7; 5 5 0]

3

[6 6 4; 4 8 7; 4 7 6]

18

[4 7 9; 9 6 5; 6 4 3]

4

[1 1 3; 2 8 1; 5 3 3]

19

[1 4 5; 8 3 7; 5 7 0]

5

[4 2 5; 5 4 7; 7 2 1]

20

[12 6 7; 15 0 11; 6 4 1]

6

[6 3 9; 8 9 9; 5 8 0]

21

[16 0 3; 9 4 9; 5 9 1]

7

[8 5 6; 0 7 7; 6 9 7]

22

[6 0 9; 8 7 9; 5 8 1]

8

[9 7 3; 5 8 8; 3 6 9]

23

[7 3 8; 17 9 9; 5 8 4]

9

[6 10 4 ; 1 6 0; 5 4 3]

24

[5 3 9; 8 7 7; 15 9 0]

10

[7 13 2 ; 1 5 1; 7 4 4]

25

[4 3 9; 7 9 9; 5 8 4]

11

[2 4 5; 15 6 7; 5 4 0]

26

[6 7 9; 6 5 8; 5 5 2]

12

[1 5 5; 5 7 8; 4 5 6]

27

[4 3 6; 8 9 7; 7 8 1]

13

[0 4 1; 4 6 7; 5 8 3]

28

[5 3 9; 8 7 9; 5 7 0]

14

[5 4 4; 7 5 9; 3 5 0]

29

[6 3 9; 7 6 9; 8 8 0]

15

[7 2 6; 12 6 12; 5 4 3]

30

[4 3 9; 8 9 9; 5 5 0]

  1.  Сложите элементы

1

21

11

1

21

11

2

22

12

2

22

12

3

23

13

3

23

13

4

24

14

4

24

14

5

25

15

5

25

15

6

26

16

6

26

16

7

27

17

7

27

17

8

28

18

8

28

18

9

29

19

9

29

19

10

30

20

10

30

20

  1.  Сформируйте матрицы

1

21        13

22        14

repmat(A,m,n)

6

  1.  34

2          0

repmat(A,m,n)

11

11         11

12         12

repmat(A,[m n])

2

23         45

24         4

repmat(A,m)

7

  1.  2

4         9

repmat(A,[m n])

12

13          5

14          0

repmat(A,m)

3

25          5

26          6

repmat(A,[m n])

8

5         13

6         14

reshape (A,siz)

13

15          8

16          9

reshape(A,m,n)

4

27          1

28          0

reshape(A,m,n)

9

7         15

8         16

repmat(A,m)

14

17        45

18        56

repmat(A,m)

5

29          5

30          9

reshape (A,siz)

10

9         11

10        9

repmat(A,[m n])

15

19        78

20         0

repmat(A,[m n])

  1.  Поверните матрицу

1

[9 7 8; 6 8 7; 0 8 2]

16

[1 4 5; 5 6 7; 5 4 12]

2

[10 4 5; 5 9 7; 5 5 0]

17

[3 8 7; 3 7 9; 8 6 4]

3

[4 7 9; 9 6 5; 6 4 3]

18

[6 6 4; 4 8 7; 4 7 6]

4

[1 4 5; 8 3 7; 5 7 0]

19

[1 1 3; 2 8 1; 5 3 3]

5

[12 6 7; 15 0 11; 6 4 1]

20

[4 2 5; 5 4 7; 7 2 1]

6

[16 0 3; 9 4 9; 5 9 1]

21

[6 3 9; 8 9 9; 5 8 0]

7

[6 0 9; 8 7 9; 5 8 1]

22

[8 5 6; 0 7 7; 6 9 7]

8

[7 3 8; 17 9 9; 5 8 4]

23

[9 7 3; 5 8 8; 3 6 9]

9

[5 3 9; 8 7 7; 15 9 0]

24

[6 10 4 ; 1 6 0; 5 4 3]

10

[4 3 9; 7 9 9; 5 8 4]

25

[7 13 2 ; 1 5 1; 7 4 4]

  1.  Правила выполнения и содержание отчета по лабораторной работе.

Выполнить отчет о проделанной работе, в котором привести программу решения заданий 1 – 5.

КОНТРОЛЬНЫЕ ВОПРОСЫ

  1.  Какая функция зеркально переставляет столбцы матрицы А относительно веритикальной оси?
  2.  Какая функция зеркально переставляет столбцы матрицы А относительно горизонтальной оси?
  3.  Что означает функция prod(A)?
  4.  Что означает функция sum(A)?
  5.  Как осуществляется поворот матрицы?


 

А также другие работы, которые могут Вас заинтересовать

41021. Основи нарисної геометрії 525.5 KB
  Лінії креслення. Товщини ліній на кресленні залежать від вибраної товщини s суцільної основної лінії. Накреслення лінії Наймену вання лінії Товщина лінії відносно товщини основної лінії Основне призначення Суцільна товста основна S Лінії видимого контуру; лінії переходу видні; лінії контуру перерізу винесеного та вхідного до складу перерізу Суцільна тонка Від S 3 до S 2 Лінії контуру накладеного перерізу; лінії розмірні та виносні; лінії штрихування; лініївиноски; полички лінійвиносок і підкреслювання написів; лінії для...
41022. Государственное управление (понятие, природа и сущность) 75.5 KB
  Понятие государственного управления Управление по общепризнанному вошедшему в энциклопедические словари определению является функцией сложных организованных систем любой природы технических биологических экологических социальных обеспечивающей сохранение их структуры внутренней организации поддержание режима функционирования направленного на реализацию их программных целей. По своему содержанию это постоянный целенаправленный процесс воздействия субъекта на объект через соответствующий механизм управления. Объектами управления могут...
41023. ГЕОГРАФІЯ РОЗСЕЛЕННЯ. ТЕОРЕТИКИ УРБАНІСТИКИ 1.59 MB
  Історичні вогнища стародавньої цивілізації і перші міста виникли на крупних річках Ніл Тигр і Євфрат Інд і Ганг Янцзи і Хуанхе. У центрі міста підносився острівакрополь з палацами і храмами. Катаній пропонували суміщати вітрувіанський квадратний план римського ідеального міста з бастіонами і багатокутним зовнішнім периметром стін. жителів в кожному з своїми приміськими зонами розташовувалася на відстані 3 4 км один від одного навколо центрального міста з населенням 60 тис.
41024. Укладання та виконання зовнішньоторговельного контракту (продовження) 158.5 KB
  Укладання та виконання зовнішньоторговельного контракту продовження План Формування ціни контракту та умов платежу. Ціни контрактів за узгодженням сторін фіксуються у валюті однієї з країн контрагентів або у валюті третьої країни. Для платежу тобто для взаємних розрахунків між продавцем і покупцем може бути обрана інша валюта не та у якій зафіксовані ціни.
41025. Особистість у системі соціальних зв’язків 154 KB
  Визначення соціології особистості Соціальна поведінка Поняття структури особистості Соціальні статуси та соціальні ролі особистості Соціалізація особистості як процес Девіантна поведінка особистості Соціологічні теорії особистості Соціологія особистості галузь соціології предметом вивчення якої є особистість як суб'єкт і об'єкт соціальних відносин суспільноісторичного процесу на рівні взаємозв'язків особи і соціальних спільностей. Соціологія особистості це об'єкт наукових пошуків для багатьох західних дослідників ...
41026. Порядок роботи Верховної Ради України 39.5 KB
  Порядок роботи Верховної Ради України встановлюється Конституцією України та Законом про регламент Верховної Ради України Згідно з ч. 1 статті 82 Конституції України Верховна Рада України працює сесійно. Сесія Верховної Ради України термін протягом якого Верховна Рада проводить пленарні засідання ти приймає рішення з питань віднесених до її відання Конституцією України.
41027. Леонтьев А.Н. Лекции по общей психологии 3.41 MB
  Это значит что они принадлежат живому субъекту. Значит психическое отражение о котором идет речь свойственно только живым существам животным и человеку. Опосредствованностъ это значит оно служит средством то есть процесс происходит через ощущения посредством восприятия. Значит не опыт вообще а опыт воспоминания внутренний опыт процесс проверяющий внутри нас.
41029. Основные понятия реляционной модели данных (РМД) 47 KB
  Основные понятия реляционной модели данных РМД Цели обучения: формирование у учащихся системы базовых понятий теории реляционных баз данных. Ожидаемые результаты обучения: учащиеся должны знать: понятие реляционная модель данных и её основные признаки; аспекты данных изучаемых реляционной моделью данных; основные реляционные объекты данных отношение поле запись кортеж кардинальное число степень первичный ключ домен; свойства отношений; соответствие элементов реляционной модели данных архитектуре NSI...