51077

Работа с многомерными массивами пакета MatLab

Лабораторная работа

Информатика, кибернетика и программирование

Использование функций ones zeros rnd и rndn Функции ones создание массивов с единичными элементами zeros создание массивов с нулевыми элементами и rnd или rndn создание массивов с элементами – случайными числами с соответственно равномерным и нормальным распределением могут также использоваться для создания многомерных массивов. Примеры приводятся ниже: E=ones332 E::1 = 1 1 1 1 1 1 1 1 1 E::2 = 1 1 1 1 1...

Русский

2014-02-05

39.12 KB

2 чел.

Федеральное агентство по образованию

Государственное образовательное учреждение высшего

профессионального образования

Тульский государственный университет

Кафедра  Электроэнергетика

Применение ЭВМ в электроэнергетических расчетах

Лабораторная работа №7

Работа с многомерными массивами пакета MatLab.

Направление подготовки: 

140200 – «Электроэнергетика»

Форма обучения (очная)

Тула 2010 г.


  1.  Цель работы:

Знакомство с возможностями системы MATLAB: освоение навыков работы с многомерными масcивами в пакете MATLAB.

  1.  Теоретические сведения, необходимые для выполнения лабораторной работы
  2.  Применение оператора «:» в многомерных массивах.

При  обычном задании массивов (с помощью символа точки с запятой «;») число рядов (строк) массива получается на 1 больше, чем число символов «;», но массив остается двумерным. Оператор «:» (двоеточие) позволяет легко выполнять операции по увеличению размерности массивов. Приведем пример формирования трехмерного массива путем добавления новой страницы. Пусть задан исходный двумерный массив М размером

>> M=[1 2 3;4 5 6;7 8 9]

M =

    1     2     3

    4     5     6

    7     8     9

Для добавления новой страницы с тем же размером можно расширить М следующим образом:

>> M(:,:,2)=[10 11 12;13 14 15;16 17 18]

M(:,:,1) =

    1     2     3

    4     5     6

    7     8     9

M(:,:,2) =

   10    11    12

   13    14    15

   16    17    18

Посмотрим, что теперь содержит массив М при явном его указании:

>> M

M(:,:,1) =

    1     2     3

    4     5     6

    7     8     9

M(:,:,2) =

   10    11    12

   13    14    15

   16    17    18

Как можно заметить, числа в выражениях М(: , : , 1) и М(: , : , 2) означают номер страницы.

  1.  Использование функций ones, zeros, rand и randn

Функции ones (создание массивов с единичными элементами), zeros (создание массивов с нулевыми элементами) и rand или randn (создание массивов с элементами – случайными числами с соответственно равномерным и нормальным распределением) могут также использоваться для создания многомерных массивов. Примеры приводятся ниже:

>> E=ones(3,3,2)

E(:,:,1) =

    1     1     1

    1     1     1

    1     1     1

E(:,:,2) =

    1     1     1

    1     1     1

    1     1     1

>> Z=zeros(2,2,3)

Z(:,:,1) =

    0     0

    0     0

Z(:,:,2) =

    0     0

    0     0

Z(:,:,3) =

    0     0

  1.   0

>> R=randn(3,2,2)

R(:,:,1) =

  -0.4326    0.2877

  -1.6656   -1.1465

   0.1253    1.1909

R(:,:,2) =

   1.1892    0.1746

  -0.0376   -0.1867

   0.3273    0.7258

Эти примеры достаточно очевидны и не требуют особых комментариев. Обратите, однако внимание на легкость задания размеров массивов для каждой размерности. Кроме того, следует отметить, что если хотя бы одна размерность массива равна нулю, то массив будет пустым:

>> A=randn(3,3,3,0)

A =

  Empty array: 3-by-3-by-3-by-0

Как видно из данного примера, пустой массив возвращается с соответствующим комментарием.

  1.  Объединение массивов

Для создания многомерных массивов служит описанная ранее для матриц специальная функция конкатенации cat:

  1.  сat(DIM,A,B) – возвращает результат объединения двух массивов А и В вдоль размерности DIM;
  2.  сat(2,A,B) – возвращает массив [A,B], в котором объединены ряды (горизонтальная конкатенация);
  3.  сat(1,A,B) – возвращает массив [A,B], в котором объединены столбцы (вертикальная конкатенация);
  4.  В=сat(DIM,A1,A2,…) – объединяет множество входных массивов А1, А2,… вдоль размерности DIM;

Функции сat(DIM,C{:}) и сat(DIM,C. FIELD) обеспечивает соответственно конкатенацию (объединение) ячеек массива ячеек или структур массива структур, содержащих числовые матрицы, в единую матрицу. Ниже приводятся примеры применения функции cat:

  1.  Задание:
  2.  Примените оператор «:».

1

[1 4 5; 5 6 7; 5 4 12]

16

[9 7 8; 6 8 7; 0 8 2]

2

[3 8 7; 3 7 9; 8 6 4]

17

[10 4 5; 5 9 7; 5 5 0]

3

[6 6 4; 4 8 7; 4 7 6]

18

[4 7 9; 9 6 5; 6 4 3]

4

[1 1 3; 2 8 1; 5 3 3]

19

[1 4 5; 8 3 7; 5 7 0]

5

[4 2 5; 5 4 7; 7 2 1]

20

[12 6 7; 15 0 11; 6 4 1]

6

[6 3 9; 8 9 9; 5 8 0]

21

[16 0 3; 9 4 9; 5 9 1]

7

[8 5 6; 0 7 7; 6 9 7]

22

[6 0 9; 8 7 9; 5 8 1]

8

[9 7 3; 5 8 8; 3 6 9]

23

[7 3 8; 17 9 9; 5 8 4]

9

[6 10 4 ; 1 6 0; 5 4 3]

24

[5 3 9; 8 7 7; 15 9 0]

10

[7 13 2 ; 1 5 1; 7 4 4]

25

[4 3 9; 7 9 9; 5 8 4]

11

[2 4 5; 15 6 7; 5 4 0]

26

[6 7 9; 6 5 8; 5 5 2]

12

[1 5 5; 5 7 8; 4 5 6]

27

[4 3 6; 8 9 7; 7 8 1]

13

[0 4 1; 4 6 7; 5 8 3]

28

[5 3 9; 8 7 9; 5 7 0]

14

[5 4 4; 7 5 9; 3 5 0]

29

[6 3 9; 7 6 9; 8 8 0]

15

[7 2 6; 12 6 12; 5 4 3]

30

[4 3 9; 8 9 9; 5 5 0]

  1.  Используйте функции ones, zeros, rand и randn.

1

[1  4  5]

ones

11

[1  7  5]

ones

21

[1  1  5]

ones

2

[2  4  6]

zeros

12

[0  3  5]

zeros

22

[1  4  9]

zeros

3

[3  3  8]

rand

13

[1  3  8]

rand

23

[1  2  8]

rand

4

[0  4  5]

randn

14

[0  1  5]

randn

24

[1  3  6]

randn

5

[3  7  9]

ones

15

[1  0  6]

ones

25

[4  7  5]

ones

6

[1  4  5]

zeros

16

[3  4  5]

zeros

26

[1  0  8]

zeros

7

[0  3  5  8]

rand

17

[2  3  7  4]

rand

27

[1  2  5  7]

rand

8

[6  4  5]

ones

18

[1  6  5]

ones

28

[0  3  9]

ones

9

[0  3  5]

ones

19

[8  4  4]

ones

29

[2  4  3]

ones

10

[4  4  5]

randn

20

[4  7  5  5]

randn

30

[9  6  5  7]

randn

  1.  Объедините массивы

1

[1 5; 5 7; 5 4]   сat(DIM,A,B)

16

[9  8; 6  7; 0  2]

сat(DIM,A,B)

2

[3 8 7; 3 7 9; 8 4]

сat(2,A,B)

17

[4 5; 5  7; 5  0]

сat(2,A,B)

3

[6 6 4; 4  7; 4 7 6]

сat(1,A,B)

18

[4 7 9; 9  5; 6 4 3]

сat(1,A,B)

4

[1 1 3; 2  1; 5  3]

сat(2,A,B)

19

[1 4 5; 8  7; 5  0]

сat(DIM,A,B)

5

[4 2 5; 5 4 7; 7 2 1]

сat(1,A,B)

20

[12 6 7; 15 0 11; 6 4 1]

сat(2,A,B)

6

[6 3 9; 8 9 9; 5 8 0]

сat(DIM,A,B)

21

[16 0 3; 9 4 9; 5 9]

сat(1,A,B)

7

[8 5 6; 0  7; 6 9]

сat(2,A,B)

22

[6 0 9; 8  9; 5 8 1]

сat(1,A,B)

8

[9 7 3; 5 8 8; 3  9]

сat(1,A,B)

23

[7  8; 17 9 9; 5 8 4]

сat(2,A,B)

9

[6 10 4 ; 1 6 0; 5 4 3]

сat(DIM,A,B)

24

[5 3 9; 8 77; 15 9 0]

сat(DIM,A,B)

10

[7 13 2 ; 1 5 1; 7 4 4]

сat(1,A,B)

25

[4 3 9; 7 9 9; 5 8 4]

сat(1,A,B)

11

[2  5; 15 6 7; 5 4 0]

сat(2,A,B)

26

[6  9; 6 5 8; 5 2]

сat(1,A,B)

12

[1 5; 5 7 8; 4 5 6]

сat(2,A,B)

27

[4 3 6; 8  7; 7 8 1]

сat(DIM,A,B)

13

[0 4 1; 4 6 7; 5 8 3]

сat(1,A,B)

28

[5 3 9; 8  9; 5 7 0]

сat(1,A,B)

14

[5 4 4; 7 5 9; 3 5 0]

сat(DIM,A,B)

29

[6  9; 7 6 9; 8 8 0]

сat(DIM,A,B)

15

[7 2 6; 6 12; 5 4 3]

сat(1,A,B)

30

[4 3 9; 8 9 9; 5 5 0]

сat(1,A,B)

  1.  Правила выполнения и содержание отчета по лабораторной работе

Выполнить отчет о проделанной работе, в котором привести программу решения заданий 1 – 3.

КОНТРОЛЬНЫЕ ВОПРОСЫ

  1.  Чем характеризуются многомерные массивы?
  2.  Что позволяет выполнить оператор «:»?
  3.  Что выполняет функция ones?
  4.  Что выполняет функция zeros?
  5.  Что выполняет функция cat?

 

А также другие работы, которые могут Вас заинтересовать

81474. Биосинтез и использование кетоновых тел в качестве источников энергии 127.33 KB
  В результате скорость образования ацетилКоА превышает способность ЦТК окислять его. АцетилКоА накапливается в митохондриях печени и используется для синтеза кетоновых тел. Синтез кетоновых тел начинается с взаимодействия двух молекул ацетилКоА которые под действием фермента тиолазы образуют ацетоацетилКоА. С ацетоацетилКоА взаимодействует третья молекула ацетилКоА образуя 3гидрокси3метилглутарилКоА ГМГКоА.
81475. Пищевые жиры и их переваривание. Всасывание продуктов переваривания. Нарушение переваривания и всасывания. Ресинтез триацилглицеринов в стенке кишечника 106.8 KB
  Переваривание жиров происходит в тонком кишечнике однако уже в желудке небольшая часть жиров гидролизуется под действием липазы языка . Однако вклад этой липазы в переваривание жиров у взрослых людей незначителен. Поэтому действию панкреатической липазы гидролизующей жиры предшествует эмульгирование жиров. Переваривание жиров гидролиз жиров панкреатической липазой.
81476. Образование хиломикронов и транспорт жиров. Роль апопротеинов в составе хиломикронов. Липопротеинлипаза 106.5 KB
  Липиды в водной среде а значит и в крови нерастворимы поэтому для транспорта липидов кровью в организме образуются комплексы липидов с белками липопротеины. ЛП хорошо растворимы в крови не коалесцируют так как имеют небольшой размер и отрицательный заряд на поверхности. В лимфе и крови с ЛПВП на ХМ переносятся апопротеины Е апоЕ и СП апоСП; ХМ превращаются в зрелые . ХМ имеют довольно большой размер поэтому после приёма жирной пищи они придают плазме крови опалесцирующий похожий на молоко вид.
81477. Биосинтез жиров в печени из углеводов. Структура и состав транспортных липопротеинов крови 153.12 KB
  В жировой ткани для синтеза жиров используются в основном жирные кислоты освободившиеся при гидролизе жиров ХМ и ЛПОНП. Молекулы жиров в адипоцитах объединяются в крупные жировые капли не содержащие воды и поэтому являются наиболее компактной формой хранения топливных молекул. В гладком ЭР гепатоцитов жирные кислоты активируются и сразу же используются для синтеза жиров взаимодействуя с глицерол3фосфатом.
81478. Депонирование и мобилизация жиров в жировой ткани. Регуляция синтеза и мобилизации жиров. Роль инсулина, глюкагона и адреналина 107.09 KB
  Регуляция синтеза и мобилизации жиров. Какой процесс будет преобладать в организме синтез жиров липогенез или их распад липолиз зависит от поступления пищи и физической активности. Регуляция синтеза жиров.
81479. Основные фосфолипиды и гликолипиды тканей человека (глицерофосфолипиды, сфингофосфолипиды, гликоглицеролипиды, гликосфиголипиды). Представление о биосинтезе и катаболизме этих соединений 264.19 KB
  Функции гликосфинголипидов можно суммировать следующим образом: Взаимодействие между: клетками; клетками и межклеточным матриксом; клетками и микробами. Церамид служит предшественником в синтезе большой группы сфинголипидов: сфингомиелинов не содержащих углеводов и гликосфинголипидов. В распаде сфингомиелинов участвуют 2 фермента сфингомиелиназа отщепляющая фосфорилхолин и церамидаза продуктами действия которой являются сфингозин и жирная кислота Катаболизм гликосфинголипидов. Катаболизм гликосфинголипидов начинается с перемещения их...
81480. Нарушение обмена нейтрального жира (ожирение), фосфолипидов и гликолипидов. Сфинголипидозы 124.68 KB
  Сфинголипиды метаболизм: заболевания сфинголипидозы таблица Заболевание Фермент недостаточностькоторого обусловливает заболевание Накапливающийся :липид : Клинические симптомы Фукозидоз альфаФукозидаза CerGlcGlNcCl:Fuc НИзоантиген Слабоумие спастическое состояние мышц утолщение кожи Генерализованный ганглиозидоз GM1бетаГалактозидаза CerGlcGlNeucGlNc:Gl Ганглиозид GM1 Умственная отсталость увеличениепечени деформация скелета Болезнь ТеяСакса Гексозаминидаза А CerGlcGlNeuc:GlNc Ганглиозид GM2 Умственная отсталость...
81481. Строение и биологические функции эйкозаноидов. Биосинтез простагландинов и лейкотриенов 107.74 KB
  Биосинтез простагландинов и лейкотриенов. Структура номенклатура и биосинтез простагландинов и тромбоксанов Хотя субстраты для синтеза эйкозаноидов имеют довольно простую структуру полистовые жирные кислоты из них образуется большая и разнообразная группа веществ. Структура и номенклатура простагландинов и тромбоксанов Простагландины обозначают символами например PG А где PG обозначает слово простагландин а буква А обозначает заместитель в пятичленном кольце в молекуле эйкозаноида. Каждая из указанных групп простагландинов состоит из 3...
81482. Холестерин как предшественник ряда других стероидов. Представление о биосинтезе холестерина. Написать ход реакций до образования мевалоновой кислоты. Роль гидроксиметилглутарил-КоА-редуктазы 165.9 KB
  В печени синтезируется более 50 холестерола в тонком кишечнике 15 20 остальной холестерол синтезируется в коже коре надпочечников половых железах. В сутки в организме синтезируется около 1 г холестерола; с пищей поступает 300500 мг Холестерол выполняет много функций: входит в состав всех мембран клеток и влияет на их свойства служит исходным субстратом в синтезе жёлчных кислот и стероидных гормонов. Предшественники в метаболическом пути синтеза холестерола превращаются также в убихинон компонент дыхательной цепи и долихол...