51082

Визначення коефіцієнта вязкості повітря, середньої довжини вільного пробігу і ефективного діаметра молекул повітря капілярним методом

Лабораторная работа

Физика

Визначення коефіцієнта в’язкості повітря середньої довжини вільного пробігу і ефективного діаметра молекул повітря капілярним методом. Мета роботи з’ясувати закономірності яким підлягають сили внутрішнього тертя; визначити експериментально коефіцієнт в’язкості повітря середню довжину вільного пробігу і ефективний діаметр молекул повітря капілярним методом. Кінетична теорія газів враховуючи розподіл швидкостей молекул повітря за законом Максвелла встановлює зв’язок між коефіцієнтом внутрішнього тертя середньою довжиною...

Украинкский

2014-02-05

181.67 KB

27 чел.

Лабораторна робота № 5.

Визначення коефіцієнта вязкості повітря, середньої довжини вільного пробігу і ефективного діаметра молекул повітря капілярним методом.

Мета роботи – з’ясувати закономірності, яким підлягають сили внутрішнього тертя; визначити експериментально коефіцієнт в’язкості повітря, середню довжину вільного пробігу і ефективний діаметр молекул повітря капілярним методом.

Прилади і матеріали: експериментальна установка ФПТ 1 – 1 .

5.1 Теоретичні відомості

Явища переносу – це процеси встановлення рівноваги  в системі шляхом переносу маси (дифузія), енергії (теплопровідність) та імпульсу молекул (внутрішнє тертя або в’язкість). Усі ці явища зумовлені тепловим рухом молекул.

У явищі в’язкості має місце перенос імпульсу від молекул із шарів потоку, які рухаються швидше, до повільніших. Наприклад, у випадку протікання рідини або газу прямолінійно циліндричною трубою (капіляром) за малих швидкостей потоку течія є ламінарною, тобто потік газу рухається окремими шарами, які не перемішуються між собою. У цьому випадку шари являють собою сукупність нескінченно тонких циліндричних поверхонь, вкладених одна в одну, які мають спільну вісь, що збігається з віссю труби.

Внаслідок хаотичного теплового руху молекули безперервно переходять із шару в шар і при зіткненнях з іншими молекулами обмінюються імпульсами напрямленого руху. При переході із шару з більшою швидкістю напрямленого руху в шар із меншою швидкістю молекули переносять у другий шар свій імпульс напрямленого руху. У “більш  швидкий”  шар переходять молекули з меншим імпульсом. У результаті перший шар гальмується, а другий прискорюється. Дослід показує, що імпульс , який передається від шару до шару через поверхню, пропорційний градієнту швидкості , площі та  часу :

.

У результаті між шарами виникає сила внутрішнього тертя, яка визначається за формулою І. Ньютона

,                                    (5.1)

де - коефіцієнт пропорційності, який залежить від природи рідини або газу та їх температури. Його називають динамічним коефіцієнтом внутрішнього тертя або коефіцієнтом в’язкості чи просто в’язкістю; - градієнт швидкості (чисельно дорівнює зміні швидкості, яка розрахована на одиницю відстані по нормалі між розглядуваними шарами); - відстань між шарами рідини або газу.

       З формули (5.1) можна встановити фізичний зміст коефіцієнта в’язкості: при = 1 і   = 1, тобто коефіцієнт в’язкості чисельно дорівнює силі, що діє на одиницю площі рухомих шарів рідини або газу при градієнті швидкості рівному одиниці. Одиницею в’язкості в СІ є паскаль – секунда (Пас).

       Встановлено, що з підвищенням температури в’язкість рідин дуже зменшується, а в’язкість газів збільшується.

       Кінетична теорія газів, враховуючи розподіл швидкостей молекул повітря за законом Максвелла, встановлює зв’язок між коефіцієнтом внутрішнього тертя , середньою довжиною вільного пробігу молекул , середньою арифметичною швидкістю їх руху, та густиною газу у вигляді

.                                       (5.2)

Формула середньої арифметичної  швидкості, що обчислена за розподілом Максвела:

,                                   (5.3)

де - молярна маса повітря (); - універсальна газова стала

(); - термодинамічна температура.

       Відстань, яку проходить молекула між двома послідовними зіткненнями називається довжиною вільного пробігу молекули. Визначаємо середню довжину оскільки довжина пробігів окремих  молекул різна через хаотичний рух. Процес зіткнення  характеризують ефективним діаметром молекули, під яким розуміють мінімальну відстань, на яку наближаються центри двох молекул при зіткненні.

       Середня довжина вільного пробігу і ефективний діаметр молекул повітря зв’язані співвідношенням

,                           (5.4)

де n - концентрация молекул, P - тиск газу.

Із співвідношення (5.4) можна визначити ефективний діаметр молекул повітря при даній температурі і тиску, якщо відома :

,                                    (5.5)

де - постійна Больцмана.

       Розглянемо стаціонарний потік газу (повітря) у капілярі сталого перерізу, радіус якого . Знайдемо закон зміни швидкостей із зміною відстані від осі капіляра.

       Виділимо в капілярі циліндричний об’єм газу радіуса і завдовжки

(рис. 5.1). Вісь симетрії збігається з віссю капіляра. На основи циліндра діють сили тиску, рівнодійна яких збігається з напрямом течії,

.                                   (5.6)

Рис. 5.1.

   

   На бічну поверхню циліндра діє сила тертя, яка на основі виразу (5.1) буде

 ,                             (5.7)

де - площа бічної поверхні циліндра.

       Для стаціонарного потоку , тобто

      .                              (5.8)

       Оскільки швидкість руху рідини з віддаленням від осі труби зменшується, то  і рівняння (5.8) перепишемо так:

              .                                     (5.9)

       Звідси  маємо: .

       Проінтегрувавши цей вираз, маємо:

.                                  (5.10)

       Сталу інтегрування визначаємо з граничних умов. Для    (для шару повітря, який прилягає до стінок капіляра, має місце явище прилипання і швидкість цього шару дорівнює нулю), тоді

.

       Вираз (5.10) набуває вигляду

.                                   (5.11)

       Максимальну швидкість має газ на осі капіляра, тобто

.                                 (5.12)

       Враховуючи вираз (5.12), формулу (5.11) можна записати у вигляді

.                                    (5.13)

       Отже, при віддаленні від осі капіляра швидкість змінюється за параболічним законом.

       Визначимо обєм газу, що протікає  через поперечний переріз капіляра за проміжок часу . Уявно поперечний переріз капіляра поділимо на концентричні кільця, ширина яких (рис. 5.2). Площа кільця .

Рис. 5.2.

За час  через таке кільце протікає обєм газу

.                                 (5.14)

       Враховуючи (5.11), вираз (5.14) перепишемо у вигляді

.                          (5.15)

       Проінтегрувавши вираз (5.15), дістанемо

,

а за одиницю часу:

,                    (5.16)

де - обємна витрата газу, тобто обєм, що протікає за одиницю часу через поперечний переріз труби.

       Формулу (5.14) називають формулою Пуазейля. З цієї формули випливає, що об’єм газу, який протікає через капіляр при сталому перепаді тисків , пропорційний четвертому степеню радіуса капіляра і обернено пропорційний довжині капіляра та в’язкості газу.

       Формула справедлива тільки для ламінарних потоків газу. Ламінарним називають такий рух, при якому молекули газу рухаються вздовж неперервних ліній струменя. Однак із збільшенням швидкості потоку рух стає турбулентним і шари перемішуються. За турбулентного руху швидкість у кожній точці змінює значення і напрям, зберігається тільки середнє значення швидкості. Характер руху рідини або газу у трубі визначається безрозмірним числом Рейнольдса:

,

де - середня швидкість потоку; - густина рідини або газу. У гладеньких циліндричних каналах перехід від ламінарної течії до турбулентної відбувається при . Тому в разі використання формули Пуазейля необхідно забезпечити умови . Крім того, експеримент необхідно ставити таким чином, щоб стисливістю газу можна було б знехтувати. Це можливо тоді, коли перепад тисків вздовж капіляра значно менший від самого тиску. У даній установці тиск газу атмосферний, а перепад тисків становить приблизно 1% атмосферного.

       Формула (5.16) справедлива для ділянки капіляра, в якому встановилась стала течія з квадратичним законом розподілу швидкостей (5.13) за перерізом капіляра. Така течія встановлюється на деякій відстані від входу в капіляр, тому для досягнення достатньої точності експерименту необхідно виконання умови , де - радіус капіляра; - довжина капіляра.

       Формулу Пуазейля (5.16) можна використати для експериментального визначення коефіцієнта вязкості повітря:

;                     (5.15)

де - діаметр капіляра (); - різниця тисків на кінцях капіляра; - густина води; - різниця рівнів води в колінах манометра.  

5.2 Опис установки.

Для визначення коефіцієнта вязкості повітря призначена експериментальна установка ФПТ 1 – 1, загальний вигляд якої зображено на рис. 5.3.

Повітря у капіляр нагнітається мікрокомпресором, розміщеним у блоці приладів 2. Обємна витрата повітря вимірюється реометром 5, а потрібне її значення встановлюється регулятором Воздух”, який знаходиться на передній панелі блоку приладів. Для вимірювання різниці тисків повітря на кінцях капіляра призначений U-подібний водяний манометр 6. Геометричні розміри капіляра: діаметр = 1 мм, довжина = 100 мм.

5.3. Порядок виконання роботи.

  1.  Увімкнути установку тумблером Сеть”.
  2.  За допомогою регулятора “Воздух” встановити за показами реометра вибране значення об’ємної витрати повітря .
  3.  Виміряти різницю тисків на кінцях капіляра. Значення і занести до таблиці 5.1.

Таблиця 5.1

Номер виміру

,

, мм. вод. ст.

,

1

0,25

2

0,5

3

0,75

Ср.

 

 

 

  1.  Повторити вимірювання за пп. 2 – 3 для 5 значень обємної витрати повітря.
  2.  Встановити регулятор витрати повітря на мінімум, після чого вимкнути установку тумблером Сеть”.

5.4. Обробка результатів вимірювання.

  1.  Для кожного режиму визначити за формулою (5.15) коефіцієнт в’язкості повітря . Знайти середнє значення коефіцієнта в’язкості повітря при кімнатній температурі.
  2.  Точність вимірювання коефіцієнта вязкості повітря визначити за формулою . Для повітря при температурі 18 0С  .

  1.  За формулою (5.3) обчислити середню арифметичну швидкість теплового руху молекул повітря.
  2.  За формулою (див. формулу (5.2)) обчислити середню довжину вільного пробігу молекул повітря. При цьому густину повітря знайдемо з рівняння Менделєєва – Клайперона за відомими значеннями температури й тиску в лабораторії в процесі виконання експерименту

                                               .

    Звідси

.

  1.  За формулою (5.5) обчислити ефективний діаметр молекул повітря.
  2.  Точність вимірювання ефективного діаметра молекул визначити за формулою

.

     Ефективний діаметр молекул повітря при даній температурі становить  

     приблизно.


 

А также другие работы, которые могут Вас заинтересовать

4465. Українські землі у складі Російської та Австро-Угорської імперій у ХІХ – на початку ХХ ст. 67.91 KB
  Українські землі у складі Російської та Австро-Угорської імперій у ХІХ – на початку ХХ ст. Мета заняття.Ознайомити студентів із становищем українських земель у XIX- на поч. ХХ ст., особливостями соціально-економічного розвитку та суспільн...
4466. Українська національна демократична революція 1917-1921 рр. Україна в складі СРСР (1922 – 1939 рр.) 75.63 KB
  Українська національна демократична революція 1917-1921 рр. Україна в складі СРСР (1922 – 1939 рр.) Мета заняття.Ознайомити студентів із становленням української державності та боротьбою різних сил в Україні у 1917-1921р.р.,становищ...
4467. Україна в роки Другої світової війни. Суспільно-політичний, соціально-економічний розвиток України від другої половини 40-х до початку 80-х рр. ХХ ст. 79.85 KB
  Україна в роки Другої світової війни. Суспільно-політичний, соціально-економічний розвиток України від другої половини 40-х до початку 80-х рр. ХХ ст. Мета заняття: Ознайомитись з планами гітлерівців щодо України, основними подіями та перебігом війс...
4468. Національно-державне відродження українського народу. Незалежна Україна на сучасному етапі 67.98 KB
  Перебудова в СРСР та її наслідки для України. Спроба державного перевороту в СРСР і Україна. Розпад Радянського Союзу і відродження незалежної України. Розгортання державотворчих процесів. Становлення владних структур, прийняття Конституції України Політичне життя в Україні. Вибори до Верховної Ради України в 1994, 1998, 2002, 2006, 2007 рр. Вибори Президента України 1999, 2004, 2010 рр.
4469. Історія україни Опорний конспект. Методична розробка 1.37 MB
  Методична розробка Опорний конспект з історії України написана на основі навчальної програми курсу Історія України для вищих навчальних закладів І і ІІ рівнів акредитації дає вказівки по вивченню, засвоєнню матеріалу, що вивчається аудиторно. Робота...
4470. Основи теорії держави і права 181.5 KB
  Основи теорії держави і права Ознайомити студентів із поняттям держави і права, їх ознаками, закономірностями виникнення, основними теоріями походження та функціями. Охарактеризувати форми держави і права,поняття та ознаки г...
4471. Основи Конституційного права України 180.5 KB
  Основи Конституційного права України. Мета заняття.Ознайомити студентів із основами конституційного права України, загальними засадами конституційного ладу, народовладдям та формами його здійснення. Охарактеризувати види виборів та головні при...
4472. Основи Цивільного права 223 KB
  Основи Цивільного права Мета заняття.Ознайомити студентів із основами цивільного права, його джерелами та відносинами, що ним регулюються, суб’єктами та об’єктами цивільно-правових відносин, суттю права власності та формами його захи...
4473. Основи трудового права України 281 KB
  Основи трудового права України Мета заняття.Ознайомити студентів із трудовим правом, його джерелами та відносинами, що ним регулюються, колективним та трудовим договорами, робочим часом та часом відпочинку, підставами та порядком звільнення з ...