51130

Вейвлет-аналіз сигналів

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

Мета роботи: дослідити відображення властивостей сигналів у вейвлет-скейлограмі; набути навичок реалізації вейвлет-перетворення сигналів у середовищі MatLAB

Украинкский

2014-02-06

914.01 KB

7 чел.

Національний технічний університет України

«Київський політехнічний інститут»

Факультет електроніки

Лабораторна робота № 6

з дисципліни «Теорія сигналів»

«Вейвлет-аналіз сигналів»

Виконав:  студент 3-го курсу

групи ДП-92

 Лонтковський С.А.

Київ – 2011

Мета роботи: дослідити відображення властивостей сигналів у вейвлет-скейлограмі; набути навичок реалізації вейвлет-перетворення сигналів у середовищі MatLAB.

Порядок роботи

      1. Обрати материнські вейвлет-функції за варіантом з таблиці 1. Отримати та уяснити інформацію щодо обраної вейвлет-родини (функція waveinfo).Розрахувати значення вейвлет-функцій та масштабуючих функцій (якщо вони існують) побудувати їх графіки (функція wavefun). Сформувати вектор масштабних коефіцієнтів a=[.01:.02:.11 .2:.2:1 2:2:30].

      2. Сформувати вектор відліків часу тривалістю 5 с для частоти дискретизації 128 Гц. Сформувати сигнали ділянки синусоїди частотою 2, 2.5, 40, 100, 600, 600.5 Гц. З використанням материнських функцій згідно варіанту побудувати графік модулів вейвлет-коефіцієнтів (функція cwt), скейлограмму та тривимірний графік вейвлет-коефіцієнтів. Зробити висновки щодо скейлограми періодичних синусоїдальних функцій.

      3. Сформувати вектор відліків часу тривалістю 5 с для частоти дискретизації 128 Гц. Сформувати сигнали ділянки синусоїди частотою 40 Гц амплітудою 2 В, зашумленої випадковим сигналом з нульовим середнім

значенням, амплітудою 1 В, 2 В, 10 В. Побудувати спектрограми сигналів,зробити висновки щодо можливості визначити наявність синусоїдального сигналу в шумі.

      4. Сформувати вектор відліків часу тривалістю 10 с для частоти дискретизації 128 Гц. Сформувати сигнали ділянки синусоїди частотою 5 Гц амплітудою 3 В (S1) та 30 Гц амплітудою 1 В (S2). Сформувати на їх основі сигнал(тривалістю 5 с), що дорівнює сумі цих двох сигналів, та інший сигнал, який спочатку містить сигнал 2*S1, а потім сигнал 2*S2 (матиме тривалість 10 с). З використанням материнських функцій згідно варіанту побудувати скейлограму.Повторити для частот 15 та 16 Гц. Зробити висновки щодо можливості визначити

момент зміни частоти сигналу за скейлограмою.

      5. Сформувати вектор відліків часу тривалістю 10 с для частоти дискретизації 128 Гц. Сформувати сигнал ділянки синусоїди частотою 20 Гц. Створити розрив (вставити п’ять нульових відліків) в сигналі в момент часу 5 с. З використанням материнських функцій згідно варіанту побудувати скейлограмму. Зробити висновки щодо можливості часової локалізації моменту розриву в сигналі за скейлограмою.

     6*. Сформувати вектор відліків часу тривалістю 10 с для частоти дискретизації 128 Гц. Сформувати сигнал послідовності прямокутних імпульсів. З використанням материнських функцій згідно варіанту побудувати скейлограмму.

     7. Сформувати вектор відліків часу тривалістю 30 с для частоти дискретизації 128 Гц. Сформувати сигнал одиночного прямокутного імпульсу (функція rectpuls) для тривалості імпульсу 0.1, 1, 5 сек. (для величин зсуву

відносно початку відліку часу 0 та 5 с). З використанням материнських функцій згідно варіанту побудувати скейлограму. Зробити висновки.

    8. Побудувати скейлограму для сигналу, який складається з суми одиночного імпульсу та синусоїдального сигналу, а також для суми одиночного імпульсу, синусоїдального сигналу та випадкового сигналу. Зробити висновки.

    9. Сформувати випадкові сигнали з ненульовим та нульовим середніми значеннями тривалістю 10 с. З використанням материнських функцій згідно варіанту побудувати скейлограму.

   10. З використанням материнських функцій згідно варіанту побудувати скейлограму та тривимірний графік вейвлет-коефіцієнтів оцифрованих сигналів електрокардіограми, електроенцефалограми, прочитаної з файлу, а також ЕЕГ здорової та хворої людини, сигналів артеріального та внутрішньочерепного тиску

та плетизмограми.

   11. Побудувати скейлограму та тривимірний графік вейвлет-коефіцієнтів звукових сигналів, які отримані з різною частотою дискретизації.__

close all;

clear all;

clc;

 

%завдання 1-------------------------------------------

waveinfo('mexh');

waveinfo('sym');

[psi,x]=wavefun('mexh');

figure

plot(psi);

title('Материнська функція, Mexican hat')

[phi1,psi1,x]=wavefun('sym5');

figure

subplot(2,1,1);

plot(psi1);

title('Материнська функція, Sym')

subplot(2,1,2);

plot(phi1);

title('Функція масштабування, Sym')

 

%завдання 2-------------------------------------------

a=[.01:.02:.11 .2:.2:1 2:2:30];

T=5;

Fs=128;

t=[0:T/Fs:T-T/Fs];

fs = [2 2.5 40 100 600 600.5];

for i = 1:length(fs)

   s=sin(2*pi*fs(i)*t);

   figure

   c1=CWT(s, a, 'mexh','scal');

   figure

   c2=CWT(s, a, 'sym5','scal');

   figure

   subplot(1,2,1);

   c11=CWT(s, a, 'mexh','abslvl');colorbar

   title('Розклад модулів вейвлет-коефіцієнтів Mexican hat');

   subplot(1,2,2);

   c22=CWT(s, a, 'sym5','abslvl');colorbar

   title('Розклад модулів вейвлет-коефіцієнтів sym');

   figure

   subplot(1,2,1);

   cwt (s,a,'mexh','3Dplot');

   subplot(1,2,2);

   cwt (s,a,'sym5','3Dplot');

end;

 

%завдання 3-------------------------------------------

T=5;

a=[.01:.02:.11 .2:.2:1 2:2:30];

Fs=128;

t=[0:T/Fs:T-T/Fs];

s=2*sin(2*pi*40*t);

A=[1 2 10];

for i=1:length(A)

   N=A(i)*rand(size(s))-0.5;

   sN=s+N;

   figure

   c1=CWT(sN, a, 'mexh','scal');

   figure

   c2=CWT(sN, a, 'sym5','scal');

end;

 

%завдання 4-------------------------------------------

T=10;

a=[.01:.02:.11 .2:.2:1 2:2:30];

Fs=128;

t=[0:T/Fs:T-T/Fs];

F=[5 15 30 16];

for i=1:2

   s1=sin(2*pi*F(i)*t);

   s2=sin(2*pi*F(i+2)*t);

   s3=s1+s2;

   s4=[s1 s2];

   figure

   c1=CWT(s3, a, 'mexh','scal');

   figure

   c2=CWT(s3, a, 'sym5','scal');

   figure

   c11=CWT(s4, a, 'mexh','scal');

   figure

   c22=CWT(s4, a, 'sym5','scal');

end;

 

%завдання 5-------------------------------------------

T=10;

Fs=128;

t=[0:1/Fs:T-1/Fs];

f=[0:1/T:Fs-1/T];

s=sin(2*pi*20*t);

a=[.01:.02:.11 .2:.2:1 2:2:30];

figure

cwt(s,a,'sym5','plot'); colorbar

figure

cwt(s,a,'mexh','plot'); colorbar

for i=2:length(t)

   t(i)=t(i-1)+1/Fs;

   if(fix(t(i))==5)

       for k=i:i+5

       s(k)=0;

       end;

        break;

   end;

end;

figure

cwt(s,a,'sym5','plot'); colorbar

figure

cwt(s,a,'mexh','plot'); colorbar

 

%завдання 7-------------------------------------------

Fs=128;

T=30;

t=[0:1/Fs:T-1/Fs];

F=[0.1 1 10 ];

a=[.01:.02:.11 .2:.2:1 2:2:30];

ts=0;

for i=1:length(F)

   s=rectpuls(t-ts,F(i));

   figure;

   cwt(double(s), a, 'sym5', 'plot'); colorbar

   figure;

   cwt(double(s), a, 'mexh', 'plot'); colorbar

end;

 

%завдання 8-------------------------------------------

Fs=128;

a=[.01:.02:.11 .2:.2:1 2:2:30];

T=30;

t=[0:1/Fs:T-1/Fs];

s1=sin(2*pi*t*20);

s2=rectpuls(t,5);

s3=randn(1,length(t));

s4=s1+s2;

s5=s1+s2+s3;

figure

cwt(s4,a,'sym5','plot'); colorbar

figure

cwt(s5,a,'sym5','plot'); colorbar

figure

cwt(s4,a,'mexh','plot'); colorbar

figure

cwt(s5,a,'mexh','plot'); colorbar

 

%завдання 9-------------------------------------------

Fs=128;

a=[.01:.02:.11 .2:.2:1 2:2:30];

T=10;

t=[0:1/Fs:T-1/Fs];

s1=randn(1,length(t));

s2=rand(size(t))-0.5;

figure

cwt(s1,a,'sym5','plot'); colorbar

figure

cwt(s2,a,'sym5','plot'); colorbar

figure

cwt(s1,a,'mexh','plot'); colorbar

figure

cwt(s2,a,'mexh','plot'); colorbar

 

%завдання 10------------------------------------------

fs=128;

T=10;

a=[.01:.02:.11 .2:.2:1 2:2:30];

%--------------------------------------------------

EKG=fopen('vavreschuk','r');

R1=fread(EKG,'int16');

figure

cwt(R1,a,'sym5','plot'); colorbar

figure

cwt(R1,a,'sym5','3Dplot');

%--------------------------------------------------

load eeg_healthy_10

figure

cwt(sig,a,'sym5','plot'); colorbar

figure

cwt(sig,a,'sym5','3Dplot');

%--------------------------------------------------

load eeg_sick_10

figure

cwt(sig,a,'sym5','plot'); colorbar

figure

cwt(sig,a,'sym5','3Dplot');

%--------------------------------------------------

EKG=fopen('rec_20110922_162251_7_Walenko.bin','r');

R=fread(EKG,[9,inf],'int16');

figure

cwt(R,a,'sym5','plot'); colorbar

figure

cwt(R,a,'sym5','3Dplot');

 

%завдання 11------------------------------------------

a=[.01:.02:.11 .2:.2:1 2:2:30];

[zapz1,fs1,bits1]=wavread('44.1kHz.wav');

[zapz2,fs2,bits2]=wavread('8kHz.wav');

figure

cwt(zapz1,a,'sym5','plot'); colorbar

figure

cwt(zapz1,a,'sym5','3Dplot');

figure

cwt(zapz2,a,'sym5','plot'); colorbar

figure

cwt(zapz2,a,'sym5','3Dplot');

 

Графіки

1)Пункт

2)Пункт

3)Пункт

4)Пункт

5)Пункт

7)Пункт

8)Пункт

9)Пункт

10)Пункт

11)Пункт


 

А также другие работы, которые могут Вас заинтересовать

76800. Медиальные и задние мышцы и фасции бедра 180.94 KB
  Медиальная бедренная мышечная группа Хорошо развита в связи с прямохождением и выполняет приведение бедра потому в основном укомплектована приводящими мышцами. Длинная приводящая мышца начинается толстым сухожилием от лобковой кости между гребнем и симфизом. Мышца лежит погранично с медиальной широкой из четырехглавой мышцы бедра. Короткая приводящая мышца с началом от тела и нижней ветви лобковой кости прикреплением к верхнему участку тернистой линии бедренной кости; приводит и сгибает бедро.
76801. Мышцы и фасции голени и стопы 190.57 KB
  Передняя мышечная группа голени Передняя большеберцовая мышца с началом от латерального мыщелка верхнелатеральной поверхности диафиза большеберцовой кости и межкостной мембраны. Мышца в голеностопном суставе разгибает и поворачивает стопу кнаружи поднимает ее медиальный край укрепляет продольный свод его пружинящую часть. От нижней части мышечного брюшка отходит в виде небольшого пучка третья малоберцовая мышца прикрепляющаяся к основанию Y плюсневой кости. Латеральная мышечная группа голени Длинная малоберцовая мышца начинается от...
76802. Развитие пищеварительной системы 184.66 KB
  Они расположены на боковых стенках головной кишки соответственно на уровне формирующейся глоточной камеры поэтому данную часть кишки называют глоточной. Передний отдел ротовой полости возникает из эктодермальных зачатков задний глубокий развивается из энтодермы глоточной кишки. Глотка развивается из краниального отдела первичной кишки путем превращения основной глоточной камеры зародыша в глотку растущего плода при отделении от нее глоточных висцеральных карманов.
76803. Полость рта 192.32 KB
  Через зев полость рта переходит в глотку. Мощная круговая мышца рта вместе с конечными частями мимических мышц смеха поднимающих и опускающих губы и угол рта все мышечные волокна вплетаются в кожу губ. Уздечки губ срединная и боковые это индивидуально выраженные складки слизистой оболочки короткие средние длинные расположенные в преддверии рта между резцовыми участками слизистой оболочки губ и деснами.
76804. Строение зубов 198.51 KB
  Зубы являются органами жевательноречевого аппарата человека и состоят из передних резцов и клыков задних малых и больших коренных зубов. Самый сложный рельеф несет поверхность смыкания зубов антагонистов окклюзионная которая у передних зубов представлена зубчатым режущим краем. Коронки передних и задних зубов сильно отличаются по форме: у резцов они прямоугольные трапециевидные или овоидные у клыков копьевидные у премоляров ромбические и квадратные у моляров кубические и прямоугольные.
76805. Язык - многофункциональный мышечный орган 182.07 KB
  Язык как орган подразделяется на кончик верхушку тело корень; верхнюю спинку и нижнюю поверхности которые смыкаются благодаря краям языка. Верхняя поверхность языка спинка покрыта слизистой оболочкой и продольной срединной бороздой делится на правую и левую половины. Посредине у вершины этой борозды находится слепое отверстие остаток щитоязычного протока который формируется при закладке и развитии щитовидной железы глотки и языка. Мышцы языка развиваются из мезодермы висцеральных дуг и затылочных миотомов.
76806. Большие слюнные железы 183.29 KB
  Обе железы входят в группу больших слюнных желез располагающихся в нижней стенке полости рта. Кроме них в полости рта находятся и малые слюнные железы: губные щечные язычные небные тоже вырабатывающие смешанный секрет но в небольшом количестве. Все слюнные железы обладают и малой эндокринной функцией выделяя калликреин инсулин факторы роста нервов и эпителия и др.
76807. Околоушная слюнная железа 179.92 KB
  От капсулы внутрь железы отходят перегородки которые отграничивают железистые дольки состоящие из альвеол. Он выходит из переднего и верхнего отростков железы располагается на щечной и жевательной мышцах параллельно скуловой кости прободает щечную мышцу и открывается на слизистой щеки в верхнем своде преддверия рта на уровне 2го верхнего коренного зуба. В толще поверхностной части железы находится сплетение двигательных ветвей лицевого нерва направляющихся к мимическим мышцам.
76808. Глотка, ее строение, кровоснабжение, иннервация, региональные лимфатические узлы. Лимфоидное кольцо глотки 186.13 KB
  Лимфоидное кольцо глотки. Нижний гортанный или гортаноглотка где в передней стенке находится отверстие входа в гортань а книзу от него выступ гортани по бокам от которого и выше лежат грушевидные карманы глотки по которым продвигается пища. Послойное строение стенки глотки изнутри кнаружи: слизистая оболочка покрытая в носоглотке мерцательным эпителием а в остальных отделах многослойным плоским содержит много слизистых желез; подслизистая основа представленная в носоглотке плотной глоточнобазилярной фасцией а в нижних...