51132

Кореляційний аналіз сигналів. Властивості сигналів з використанням кореляційного аналізу

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

Мета роботи: дослідити властивості сигналів з використанням кореляційного аналізу; набути навичок кореляційного аналізу сигналів у середовищі MatLAB. Порядок роботи...

Украинкский

2015-01-19

199.85 KB

6 чел.

Національний технічний університет України

«Київський політехнічний інститут»

Факультет електроніки

Лабораторна робота № 7

з дисципліни «Теорія сигналів»

«Кореляційний аналіз сигналів»

Виконав:  студент 3-го курсу

групи ДП-92

 Лонтковський С.А.

Київ – 2011

Мета роботи: дослідити властивості сигналів з використанням кореляційного аналізу; набути навичок кореляційного аналізу сигналів у середовищі MatLAB.

Порядок роботи

1. Сформувати вектор відліків часу тривалістю 1 с для частоти дискретизації 256 Гц. Сформувати сигнал випадкового білого гаусівського шуму (функція randn). Розрахувати та побудувати графік автокореляційної функції за формулою 5.1.

2. Сформувати вектор відліків часу тривалістю 1 с для частоти дискретизації 256 Гц. Сформувати дискретний аналог сигналу x (t)=5cos(2*50t)+2cos(2*100t ) . Побудувати графік автокореляційної функції.

3. Сформувати вектор відліків часу тривалістю 10 с для частоти дискретизації 256 Гц. Сформувати сигнали прямокутний імпульс амплітуди 1 В. тривалості 1 сек. в момент часу 3 сек. (сигнал 1), та прямокутного імпульсу амплітуди 1 В тривалістю 1 сек. в момент часу 0 сек. (сигнал 2). Побудувати графік взаємнокореляційної функції (формула 5.8), зробити висновки. Повторити для сигналу 2 амплітуди 10 В.

4. Повторити п. 3 попередньо додавши до сигналу 1 шум з нульовим середнім значенням. Зробити висновки.

5. Розрахувати та побудувати графіки взаємнокореляційних функцій для пар зареєстрованих сигналів: ЕКГ та плетизмограма, ЕКГ з різних каналів. Зробити

висновки щодо зв’язку між цими сигналами.

6*. Розрахувати та побудувати графіки автокореляційних функцій для оцифрованих сигналів електрокардіограми, електроенцефалограми, прочитаної з файлу, а також ЕЕГ здорової та хворої людини, сигналів артеріального та внутрішньочерепного тиску та плетизмограми.

close all;

clear all;

clc;

 

%завдання 1-------------------------------------------

Fs=256;

T=1;

t=0:1/Fs:T;

s=randn(size(t));

for i=1:length(s)

   N=length(s);

   r(i)=(1/N)*sum(s(i:N).*s(1:(N-i+1)));

end;

figure

plot(1:length(t),r);xlabel('n');ylabel('r(n)');grid on

title('Графік автокореляційної функції сигналу s');

 

%завдання 2-------------------------------------------

Fs=256;

T=1;

t=0:1/Fs:T;

s=5*cos(2*pi*50*t)+2*cos(2*pi*100*t);

for i=1:length(s)

   N=length(s);

   r(i)=(1/N)*sum(s(i:N).*s(1:(N-i+1)));

end;

figure

plot(1:length(t),r);xlabel('n');ylabel('r(n)');grid on

title('Графік автокореляційної функції сигналу s');

 

% %завдання 3-------------------------------------------

T=10;

j=1;

Fs=256;

t=0:1/Fs:T-1/Fs;

am=[1 2 10];

s=rectpuls(t-3,1);

while j~=4

for i=1:length(s)

s1=am(j)*rectpuls(t,1);

   N=length(s);

   r(i)=(1/N)*sum(s(i:N).*s1(1:(N-i+1)));  

end;

subplot(3,1,j),plot(1:length(t),r);xlabel('n');ylabel('r(n)');grid on

title('Графік взаємнокореляційної функції сигналiв s i s1 ');j=j+1;

end;

 

%завдання 4--------------------------------------------

T=10;

j=1;

Fs=256;

t=0:1/Fs:T-1/Fs;

am=[1 2 10];

s=rectpuls(t-3,1);

re=rand(1,length(t));

while j~=4

for i=1:length(s)

   s1=am(j)*rectpuls(t,1)+re;

   N=length(s);

   r(i)=(1/N)*sum(s(i:N).*s1(1:(N-i+1)));  

end;

subplot(3,1,j),plot(1:length(t),r);xlabel('n');ylabel('r(n)');grid on

title('Графік взаємнокореляційної функції сигналiв s i s1 ');j=j+1;

end

 

%завдання 5-------------------------------------------

% load eeg_healthy_10

EKG=fopen('vavreschuk','r');

sig=fread(EKG,'int16');

for i=1:length(sig)

       N=length(sig);

   r(i)=(1/N)*sum(sig(i:N).*sig(1:(N-i+1)));  

end;

plot(1:length(sig),r);xlabel('n');ylabel('r(n)');grid on

title('Графік автокореляційної функції сигналу s');

Графіки:

1)        2)

3)       4)

5)


 

А также другие работы, которые могут Вас заинтересовать

19235. ПЕРЕНОСЫ В ЗАМАГНИЧЕННОЙ ПЛАЗМЕ 110.5 KB
  Переносы в замагниченной плазме В начале работ по управляемому термоядерному синтезу возникла проблема предохранения стенок камеры от высокотемпературной плазмы известным решением которой явился принцип магнитной термоизоляции плазмы. Огромное значение д
19236. УСТОЙЧИВОСТЬ ПЛАЗМЫ 98.5 KB
  Устойчивость плазмы Вопросы устойчивости плазмы важны для установок содержащих низкотемпературную и высокотемпературную плазму ввиду того что потеря устойчивости может означать разрушение плазмы исчезновение рабочих параметров и т.д. При проблеме управляемого т
19237. РАДИАЦИОННЫЕ ПОЯСА ЗЕМЛИ 93.5 KB
  Радиационные пояса Земли При запуске первых спутников был установлен факт существования радиационных поясов состоящих из заряженных частиц высоких энергий. Данные пояса можно объяснить исходя из представлений о структуре магнитного поля Земли и движении заря
19238. ТЕРМОЯДЕРНЫЙ СИНТЕЗ 1.14 MB
  Лекция № 1. Термоядерный синтез Условие необходимое для термоядерного синтеза. Термоядерные реакции сечения и скорость реакции формула Гамова. Критерий Лоусона. Оценка оптимальной температуры и произведения плотности на время удержания для циклов ДД и ДТ. Тер
19239. ПУТИ РЕШЕНИЯ ПРОБЛЕМЫ ТЕРМОЯДЕРНОГО СИНТЕЗА 72 KB
  Лекция № 2. Пути решения проблемы термоядерного синтеза Основные направления исследований по ядерному синтезу: а системы с магнитным удержанием; б квазистационарные открытые и закрытые; импульсные; в системы с инерциальным удержанием лазерные с различными пучк...
19240. СИСТЕМЫ ЭНЕРГОСНАБЖЕНИЯ ТЕРМОЯДЕРНЫХ УСТАНОВОК 731.5 KB
  Лекция 3 СИСТЕМЫ ЭНЕРГОСНАБЖЕНИЯ ТЕРМОЯДЕРНЫХ УСТАНОВОК Оценка требуемых параметров систем энергоснабжения термоядерных установок. Способы нагрева плазмы: омический или джоулев нагрев плазмы адиабатический нагревинжекция пучков быстрых нейтралов ВЧ методы н
19241. ТИПЫ ДРЕЙФОВЫХ ДВИЖЕНИЙ ЧАСТИЦ В ПЛАЗМЕ ТЕРМОЯДЕРНЫХ УСТАНОВОК ТИПА ТОКАМАК 850 KB
  Лекция № 4. типы дрейфовых движений частиц в плазме термоядерных установок типа токамак Дрейф в неоднородном поле центробежный и градиентный поляризационный дрейф тороидальный дрейф и вращательное преобразование тороидальной магнитной конфигурации Ра...
19242. АДИАБАТИЧЕСКИЕ ИНВАРИАНТЫ ДЛЯ ДВИЖЕНИЯ ЧАСТИЦ В МАГНИТНОМ ПОЛЕ 967.5 KB
  Лекция 5 Адиабатические инварианты для движения частиц в магнитном поле Инвариантность магнитного момента частицы во времени инвариантность частицы в постоянном во времени и неоднородном в пространстве магнитном пол инвариантность величины vl ...
19243. ПРИМЕНЕНИЕ АДИАБАТИЧЕСКОГО И ДРЕЙФОВОГО ПРИБЛИЖЕНИЙ. ОТКРЫТЫЕ МАГНИТНЫЕ ЛОВУШКИ 716.5 KB
  Лекция 6 Применение адиабатического и дрейфового приближений. Открытые магнитные ловушки. Квазистационарные открытые системы: пробкотрон. Желобковая неустойчивость. Принцип €œMin.B€. Плазменные центрифуги. Зеркальные ловушки пробкотроны На использовании ад