51162

Исследование параметров воздуха рабочей зоны и защиты от тепловых излучений

Лабораторная работа

Безопасность труда и охрана жизнедеятельности

Холодный период года – период года характеризуемый среднесуточной температурой наружного воздуха равной 10 С и ниже. Теплый период года – период года характеризуемый среднесуточной температурой наружного воздуха выше 10 С. Среднесуточная температура – средняя величина температуры наружного воздуха измеренная в определенные часы суток через одинаковые интервалы времени.

Русский

2014-02-07

42.9 MB

26 чел.

3. Учебно-исследовательская

лабораторная работа

Исследование параметров воздуха рабочей

зоны и защиты от тепловых излучений


3.1. Цель работы

Цель работы – ознакомление с теорией теплового излучения, физической сущностью и инженерным расчетом теплоизоляции, инструментальными методами измерения интенсивности тепловых излучений в зависимости от расстояния до источника и оценка эффективности защиты от теплового излучения с помощью экранов.

3.2. Теоретическая часть

3.2.1. Термины, встречающиеся в работе

  1.  Производственное помещение – замкнутое пространство в специально предназначенных зданиях и сооружениях, в которых постоянно (по сменам) или периодически (в течение рабочего дня) осуществляется деятельность людей.
  2.  Рабочая зона – пространство, ограниченное по высоте 2 м над уровнем пола или площадки, на которых находятся места постоянного или непостоянного (временного) пребывания работающих.
  3.  Рабочее место – место постоянного или временного пребывания работающего в процессе трудовой деятельности.
  4.  Постоянное рабочее место – место, на котором работающий находится большую часть своего рабочего времени (более 50 % или более 2 ч непрерывно). Если работа осуществляется в различных пунктах рабочей зоны, постоянным рабочим местом считается вся рабочая зона.
  5.  Непостоянное рабочее место – место, на котором работающий находится меньшую часть (менее 50 % или менее 2 ч непрерывно) своего рабочего времени.
  6.  Холодный период года – период года, характеризуемый среднесуточной температурой наружного воздуха, равной 10 °С и ниже.
  7.  Теплый период года – период года, характеризуемый среднесуточной температурой наружного воздуха выше 10 °С.
  8.  Среднесуточная температура – средняя величина температуры наружного воздуха, измеренная в определенные часы суток через одинаковые интервалы времени. Она принимается по данным метеорологической службы.

3.2.2. Микроклимат помещения, его влияние

на организм человека

Жизнедеятельность работающего человека происходит в двух основных сферах - производственной и непроизводственной. Потеря здоровья может произойти в каждой из них: в первой - в большей степени за счет неблагоприятного воздействия факторов производственной сферы, во второй - под влиянием неблагоприятных факторов внешней среды, социально-бытовых условий, образа жизни.

Процесс адаптации организма к условиям его жизнедеятельности в производственных условиях, а следовательно, здоровье, безопасность и работоспособность в большей степени будет определяться состоянием климатических параметров на рабочем месте.

Микроклимат производственных помещений – климат внутренней среды этих помещений, который определяется действующими на организм человека сочетанием температуры, влажности, скорости движения воздуха и теплового излучения.

Сочетание параметров, обеспечивающих наилучшее самочувствие и наивысшую работоспособность человека, называют комфортными условиями.

Организм человека постоянно находится в состоянии теплообмена с окружающей средой.

Вследствие белкового, углеводного и жирового обмена в организме вырабатывается тепло (теплопродукция) QТ, количество которого зависит от степени тяжести и категории выполняемых работ. Это тепло для спокойного состояния человека составляет 80 - 100 Вт.

Теплообмен между человеком и окружающей средой в рабочей зоне осуществляется посредством конвекции в результате омывания тела воздухом, теплопроводностью, излучением на окружающие поверхности и в процессе тепломассообмена при испарении влаги, выводимой на поверхность кожи потовыми железами при дыхании.

Тепло, передающееся конвекцией QК (Вт) определяется:

,     (3.1)

где α – коэффициент теплоотдачи конвекцией, который зависит от скорости движения воздуха, Вт/(м2*град.);

S – площадь поверхности тела, м2;

tТ, tВ – температура тела и воздуха.

Основными параметрами, характеризующими воздух рабочей зоны являются: температура, относительная влажность и скорость движения воздуха.

Влажность воздуха характеризуют относительной влажностью.

Относительная влажность воздуха φ в процентах определяется по формуле:

,      (3.2)

где А – абсолютная влажность воздуха (г/кг) - количество водяного пара, содержащегося в 1 кг воздуха при данной температуре и давлении;  

F – максимальная влажность воздуха  (г/кг) - количество водяного пара, которое может содержаться в 1 кг воздухе при тех же условиях.

Согласно ГОСТ 8.221–76 «Влагометрия и гигрометрия. Термины и определения» [7] относительная влажность воздуха определяется как отношение парциального давления водяного пара к давлению насыщенного пара при одних и тех же давлении и температуре. Тогда относительная влажность воздуха определяется по формуле:

,      (3.3)

где РП и РН - соответственно парциальные давления водяного пара, содержащегося в воздухе, и насыщенного водяного пара.

Скорость движения воздуха измеряется в метрах в секунду (м/с).

Тепловое излучение измеряется в ваттах на метр квадратный (Вт/м2).

Температура воздуха измеряется в градусах Цельсия (0С), Кельвина (К) и др.

Помимо перечисленных параметров воздуха, большое значение имеют: атмосферное давление и качество воздуха (газовый и ионный состав). Вышеперечисленные параметры обычно характеризуют как микроклимат. Микроклимат рабочей зоны – это климат внутренней среды помещения этой рабочей зоны, который определяется сочетанием действующих на организм человека температуры, скорости движения воздуха, относительной влажности, интенсивности теплового излучения и температуры поверхностей.

В соответствии с ГОСТ 12.0.006–74* «Опасные и вредные производственные факторы. Классификация» [6] повышенная или пониженная температура, влажность и скорость воздуха рабочей зоны, а также пониженное или повышенное барометрическое давление в рабочей зоне или его резкое изменение относятся к группе физических опасных и вредных производственных факторов.

При неблагоприятных микроклиматических условиях, которые в основном определяются температурой воздуха, у человека может изменяться частота пульса, артериальное давление, напряжение нервной системы, затрудняется терморегуляция и, как следствие, возрастает заболеваемость, связанная с профессиональной деятельностью. Снижается производительность труда и качество выполняемой работы, появляется неудовлетворенность трудом, увеличивается частота травматизма и текучесть кадров. В особых случаях при оценке социальной значимости следует учитывать специфические особенности отдельных трудовых процессов и видов деятельности, при которых вследствие воздействия неблагоприятных микроклиматических условий возрастает опасность возникновения аварийных ситуаций с трудно оцениваемыми последствиями не только для самого работающего, но и для окружающих людей, для предприятия и экологии района в целом.

3.2.3. Общие сведения о лучистом теплообмене и

его влиянии на организм человека

Действие теплового излучения на организм человека определяется многими факторами, основными из которых являются: интенсивность и продолжительность теплового облучения, площадь облученной поверхности организма, спектр излучения, угол падения лучистой энергии, температура и скорость движения воздуха, категория выполняемой работы, защитные свойства спецодежды и т.п.

Лучистый теплообмен между телами представляет собой процесс распространения энергии, которая излучается в том числе в виде электромагнитных волн в видимой и инфракрасной (ИК) области спектра. Длина волны видимого излучения – от 0,38 до 0,77 мкм, инфракрасного – более 0,77 мкм. Такое излучение называется тепловым или лучистым.

Существенным источником теплового излучения в производственных условиях являются расплавленный или нагретый металл, открытое пламя, нагретые поверхности.

Количество тепла, переданного через излучение Qи (Дж) от более нагретого твердого тела с температурой Т1 (К) к менее нагретому Т2 (К), определяется выражением

,    (3.4)

где  S – поверхность излучения, м2;

 τ – время, с;

 С1-2 – коэффициент взаимного излучения, Вт/(м2К4);

Θ – средний угловой коэффициент, определяемый формой и размерами участвующих в теплообмене поверхностей, их взаимным расположением в пространстве и расстоянием между ними.

Передача тепла инфракрасным излучением является наиболее эффективным способом теплоотдачи и составляет в среднем 44 – 59% общей теплоотдачи. Тело человека излучает в диапазоне длин волн от 5 до 25 мкм с максимумом энергии на длине волны 9,4 мкм.

В производственных условиях, когда работающий окружен предметами, имеющими температуру, отличную от температуры тела человека, соотношение способов теплоотдачи может существенно изменяться. Отдача человеческим телом тепла во внешнюю среду возможна лишь тогда, когда температура окружающих предметов ниже температуры тела человека. В обратном случае направление потока лучистой энергии меняется на противоположное и уже тело человека будет получать извне дополнительную тепловую энергию. Воздействие ИК лучей приводит к перегреву организма и тем быстрее, чем больше мощность излучения, выше температура и влажность воздуха в рабочем помещении, выше интенсивность выполняемой работы.

Характерной особенностью воздействия теплового излучения на организм является способность лучей в зависимости от длины волны проникать в ткани организма на различную глубину. Так, при облучении коротковолновыми ИК-лучами наблюдается повышение температуры легких, почек, мышц и других органов. В крови, лимфе, спинномозговой жидкости появляются специфические биологически активные вещества, наблюдаются нарушения обменных процессов, изменяются функциональное состояние центральной нервной системы.

3.2.4. Нормирование микроклимата

Неблагоприятное воздействие на человека микроклиматических параметров воздуха рабочей зоны возможно только при отклонении их значений установленных гигиенических норм.

С учетом действия микроклимата на человека и осуществления терморегуляции без значительных затруднений все работы в зависимости от интенсивности энергозатрат организма в ккал/ч (Вт) подразделяются в соответствии с СанПиН 2.2.4.548–96 на следующие категории:

– категория I а - относятся работы с интенсивностью энергозатрат до 120 ккал/ч (до 139 Вт), производимые сидя и сопровождающиеся незначительным физическим напряжением (ряд профессий на предприятиях точного приборо- и машиностроения, на часовом, швейном производствах, в сфере управления и т.п.).

 – категория I б - относятся работы с интенсивностью энергозатрат 121-150 ккал/ч (140-174 Вт), производимые сидя, стоя или связанные с ходьбой и сопровождающиеся некоторым физическим напряжением (ряд профессий в полиграфической промышленности, на предприятиях связи, контролеры, мастера в различных видах производства и т.п.).

– категория II а - относятся работы с интенсивностью энергозатрат 151-200 ккал/ч (175-232 Вт), связанные с постоянной ходьбой, перемещением мелких (до 1 кг) изделий или предметов в положении стоя или сидя и требующие определенного физического напряжения (ряд профессий в механосборочных цехах машиностроительных предприятий, в прядильно-ткацком производстве и т.п.).

– категория II б - относятся работы с интенсивностью энергозатрат 201-250 ккал/ч (233-290 Вт), связанные с ходьбой, перемещением и переноской тяжестей до 10 кг и сопровождающиеся умеренным физическим напряжением (ряд профессий в механизированных литейных, прокатных, кузнечных, термических, сварочных цехах машиностроительных и металлургических предприятий и т.п.).

– категория III - относятся работы с интенсивностью энергозатрат более 250 ккал/ч (более 290 Вт), связанные с постоянными передвижениями, перемещением и переноской значительных (свыше 10 кг) тяжестей и требующие больших физических усилий (ряд профессий в кузнечных цехах с ручной ковкой, литейных цехах с ручной набивкой и заливкой опок машиностроительных и металлургических предприятий и т.п.).

Показатели микроклимата должны обеспечивать сохранение теплового баланса человека с окружающей средой и поддержание оптимального или допустимого теплового состояния организма.

Оптимальные микроклиматические условия установлены по критериям оптимального теплового и функционального состояния человека. Они обеспечивают общее и локальное ощущение теплового комфорта в течение 8-часовой рабочей смены при минимальном напряжении механизмов терморегуляции, не вызывают отклонений в состоянии здоровья, создают предпосылки для высокого уровня работоспособности и являются предпочтительными на рабочих местах. Их необходимо соблюдать на рабочих местах, на которых выполняются работы операторского типа, связанные с нервно-эмоциональным напряжением, и ряде других работ в соответствии с установленными нормами. Перепады температуры воздуха по высоте и горизонтали в течение рабочей смены при этом не должны превышать 20С и выходить за пределы величин для отдельных категорий работ. Относительная влажность воздуха для всех категорий работ должна быть в пределах 40-60%.

Допустимые микроклиматические условия установлены в соответствии с СанПиН 2.2.4.548-96  по критериям допустимого теплового и функционального состояния человека на период 8-часовой рабочей смены. Они не вызывают повреждений или нарушений состояния здоровья, но могут приводить к возникновению общих и локальных ощущений теплового дискомфорта, напряжению механизмов терморегуляции, ухудшению самочувствия и понижению работоспособности. Допустимые величины устанавливаются в случаях, когда по технологическим требованиям и другим обоснованным причинам не могут быть обеспечены оптимальные величины (Таблицы 3.1 и 3.2).

Таблица 3.1

Оптимальные величины показателей микроклимата

на рабочих местах производственных помещений

Период

года

Категория работ

по уровню энерго-затрат, Вт

Темпера-тура воздуха, 0С

Темпера-тура поверх-ностей, 0С

Относительная влажность воздуха, %

Скорость движения воздуха, м/с

Холодный

Iа

22-24

21-25

60-40

0,1

Iб

21-23

20-24

60-40

0,1

IIа

19-21

18-22

60-40

0,2

IIб

17-19

16-20

60-40

0,2

III

16-18

15-19

60-40

0,3

Теплый

Iа

23-25

22-26

60-40

0,1

Iб

22-24

21-25

60-40

0,1

IIа

20-22

19-23

60-40

0,2

IIб

19-21

18-22

60-40

0,2

III

18-20

17-21

60-40

0,3


Таблица 3.2

Допустимые величины показателей микроклимата

на рабочих местах производственных помещений

Период года

Катего-рии работ

по уров-ню

энер-гозат-рат, Вт

Температура

воздуха, 0С

Температура поверхности, 0С

Относительная влажность, %

Скорость движения воздуха, м/с

диапазон ниже оптималь-ных величин

диапазон выше оптималь-ных величин

для диапазона температур воздуха ниже оптимальных величин, не более

для диапазона температур воздуха выше оптимальных величин, не более

Холод-ный

Iа

20,0-21,9

24,1-25,0

19,0-25,0

15-75

0,1

0,1

Iб

19,0-20,9

23,1-24,0

18,0-25,0

15-75

0,1

0,2

IIа

17,0-18,9

21,1-23,0

16,0-24,0

15-75

0,1

0,3

IIб

15,0-16,9

19,1-22,0

14,0-23,0

15-75

0,2

0,4

III

13,0-15,9

18,1-21,0

12,0-22,0

15-75

0,2

0,4

Теп-лый

Iа

21,0-22,9

25,1-28,0

20,0-29,0

15-75

0,1

0,2

Iб

20,0-21,9

24,1-28,0

19,0-29,0

15-75

0,1

0,3

IIа

18,0-19,9

22,1-27,0

17,0-28,0

15-75

0,1

0,4

IIб

16,0-18,9

21,1-27,0

15,0-28,0

15-75

0,2

0,5

III

15,0-17,9

20,1-26,0

14,0-27,0

15-75

0,2

0,5

При этом абсолютные значения температуры воздуха не должны выходить за пределы величин, указанных в таблице 3.2 для отдельных категорий работ.

При нормировании микроклимата учитываются периоды года: теплый и холодный ( см. 3.2.1 «Термины, встречающиеся в работе»).

Все производственные помещения по избыткам явной теплоты делятся на помещения с незначительными избытками явной теплоты,  приходящимися на 1 м3 объема помещения, 23,2 Дж/(м3 с) и менее, и со значительными избытками - более 23,2 Дж/(м3 с).

Интенсивность теплового облучения человека регламентируется, исходя из субъективного ощущения человеком энергии облучения. Согласно ГОСТ 12.1.005-88 [4] интенсивность теплового облучения работающих от нагретых поверхностей технологического оборудования, осветительных приборов не должна превышать: 35 Вт/м2 при облучении более 50 % поверхности тела; 70 Вт/м2 при облучении от 25 до 50 % поверхности тела; 100 Вт/м2 – при облучении не более 25 % поверхности тела. От открытых источников (нагретые металл и стекло, открытое пламя) интенсивность теплового облучения не должна превышать 140 Вт/м2 при облучении не более 25 % поверхности тела и обязательном использовании средств индивидуальной защиты, в том числе средств защиты лица и глаз.

Нормы ограничивают также температуру нагретых поверхностей оборудования в рабочей зоне, которая не должна превышать 45°С, а для оборудования, внутри которого температура близка к 100°С, температура на его поверхности должна быть не выше 35°С.

Допустимые величины интенсивности теплового облучения на рабочих местах  от производственных источников, нагретых до темного свечения  (заготовок, изделий и т.п.) должны соответствовать  значениям, приведенным в таблице 3.3.

Таблица 3.3

Допустимые величины интенсивности теплового облучения

поверхности тела работников от производственных источников

нагретых до темного свечения (заготовок, изделий и т.п.)

Облучаемая поверхность тела, %

Интенсивность теплового облучения, Вт/м2, не более

50 и более

35

25-50

70

не более 25

100

 

3.2.5. Методы и средства нормализации микроклимата и защиты

от неблагоприятных климатических параметров

В производственных условиях не всегда возможно выполнить нормативные требования. В этом случае должны быть предусмотрены мероприятия по защите работающих от тепловых излучений: дистанционное управление ходом технологического процесса; воздушное или водо-воздушное душирование рабочих мест; устройство специально оборудованных комнат, кабин или рабочих мест для кратковременного отдыха с подачей в них кондиционированного воздуха; использование защитных экранов, водяных и воздушных завес; применение средств индивидуальной защиты: спецодежды, спецобуви и др.

Выбор средств защиты в каждом отдельном случае должен осуществляться с учетом требований безопасности для данного вида работ.

Средства индивидуальной защиты применяются в тех случаях, когда безопасность работ не может быть обеспечена конструкцией оборудования, организацией производственных процессов, архитектурно-планировочными решениями и средствами коллективной защиты.

Организационные мероприятия: сокращенный рабочий день, предоставление дополнительного отпуска, предоставление дополнительных оплачиваемых перерывов, обеспечение работающих помещениями для отдыха, питьевой водой (в горячих цехах подсоленной и газированной), полное прекращение наружных работ при особо низких или высоких температурах.

Наиболее распространенными способами нормализации метеорологических условий производственной среды являются устройство вентиляции и отопления при необходимости – кондиционирования.

 Вентиляция – обмен воздуха в помещениях для удаления избытков теплоты, влаги, вредных и других веществ с целью обеспечения допустимых метеорологических условий и чистоты воздуха в обслуживаемой или рабочей зоне при средней необеспеченности 400 ч/г – при круглосуточной работе и 300 ч/г – при односменной работе в дневное время (СНиП 41-01-2003) [8].

Организация системы вентиляции направлена на обеспечение чистоты воздуха и заданных метеорологических условий в производственных помещениях.

По способу перемещения воздуха вентиляция бывает с естественным побуждением (естественной) и с механическим (механической). Возможно также сочетание естественной и механической вентиляции (смешанная вентиляция).

Вентиляция бывает приточной, вытяжной или приточно-вытяжной в зависимости от того, для чего служит система вентиляции,  для подачи (притока) или удаления воздуха из помещения или (и) для того и другого одновременно.

По месту действия вентиляция бывает общеобменной и местной.

Действие общеобменной вентиляции основано на разбавлении загрязненного, нагретого, влажного воздуха помещения свежим воздухом до предельно допустимых норм. Эту систему вентиляции наиболее часто применяют в случаях, когда вредные вещества, теплота, влага выделяются равномерно по всему помещению. При такой вентиляции обеспечивается поддержание необходимых параметров воздушной среды во всем объеме помещения.

Воздухообмен при естественной вентиляции происходит вследствие разности температур воздуха в помещении и наружного воздуха, а также в результате действия ветра.

Естественная вентиляция может быть неорганизованной и организованной. При неорганизованной вентиляции поступление и удаление воздуха происходит через неплотности и поры наружных ограждений (инфильтрация), через окна, форточки и т.п. К организованной естественной вентиляции относится аэрация.

В системах механической вентиляции движение воздуха осуществляется вентиляторами и в некоторых случаях эжекторами.

Приточная вентиляция. Установки приточной вентиляции обычно состоят из следующих элементов (рис. 3.1,а ): воздухозаборное устройство 1 для забора чистого воздуха; воздуховоды 2, по которым воздух подается в помещение; фильтры 3; калориферы 4 для нагрева воздуха; вентилятор 5; приточные насадки 6; регулирующие устройства, которые устанавливаются в воздухоприемном устройстве и на ответвлениях воздуховодов.

Вытяжная вентиляция. Установки вытяжной вентиляции включают в себя (рис. 3.1,б): вытяжные отверстия или насадки 7; вентилятор 5; воздуховоды 2; устройство для очистки воздуха от пыли и газов 8; устройство для выброса воздуха 9, которое должно быть расположено на 11,5 м выше конька крыши.

Приточно-вытяжная вентиляция. В этой системе воздух подается в помещение приточной вентиляцией, а удаляется вытяжной вентиляцией (рис. 3.1,а и б), работающими одновременно.

При работе вытяжной системы чистый воздух поступает в помещение через неплотности в ограждающих конструкциях. В ряде случаев это обстоятельство является серьезным недостатком данной системы вентиляции, так как неорганизованный приток холодного воздуха (сквозняки) может вызвать простудные заболевания.

Ф

К

1

3

6

5

4

2

а)

О

5

9

8

2

7

б)

Ф

К

в)

10

11

12

12

Рис. 3.1. Механическая вентиляция:

а) – приточная; б) – вытяжная; в) – приточно-вытяжная

Приточно-вытяжная вентиляция с рециркуляцией (рис.3.1,в) характерна тем, что часть воздуха, отсасываемого из помещения 10 вытяжной системой повторно подается в это помещение через приточную систему, соединенную с вытяжной системой воздуховодом 11. Регулировка количества свежего, вторичного и выбрасываемого воздуха производится клапанами 12. В результате использования такой системы достигается экономия расходуемой теплоты на нагрев воздуха в холодное время года и на его очистку.

Для рециркуляции разрешается использовать воздух помещений, в которых отсутствуют выделения вредных веществ или выделяющиеся вещества относятся к 4-му классу опасности, причем концентрация этих веществ в подаваемом в помещение воздухе не превышает 0,3 концентрации ПДК.

Отопление предусматривает поддержание во всех производственных зданиях и сооружениях (включая кабины крановщиков, помещения пультов управления и другие изолированные помещения, постоянные рабочие места и рабочую зону во время проведения основных и ремонтно-вспомогательных работ) температуры, соответствующей установленным нормам.

Отопление устраивается в тех случаях, когда потери тепла превышают тепловыделения в помещении. В зависимости от теплоносителя системы отопления разделяются на водяные, паровые, воздушные и др.

Системы водяного отопления наиболее приемлемы в санитарно-гигиеническом отношении в которых вода в систему подается либо от собственной котельной предприятия, либо от районной или городской котельной или ТЭЦ.

Система парового отопления целесообразна на предприятиях, где пар используется для технологического процесса. Нагревательные приборы парового отопления имеют высокую температуру, которая вызывает подгорание пыли.

В качестве нагревательных приборов применяют радиаторы, ребристые трубы и регистры из гладких труб.

В производственных помещениях со значительным выделением тепла устанавливают приборы с гладкими поверхностями, допускающими их легкую очистку. Ребристые батареи в таких помещениях не применяют, так как осевшая пыль вследствие нагрева будет пригорать, издавая запах гари. Пыль при высоком нагреве может быть опасна из-за возможности воспламенения.

Воздушная система отопления, характерна тем, что подаваемый в помещение воздух предварительно нагревается в калориферах.

В зависимости от расположения и устройства системы воздушного отопления бывают центральными и местными. В центральных системах, которые часто совмещаются с приточными вентиляционными системами, нагретый воздух подается по системе воздуховодов.

Местная система воздушного отопления представляет собой устройство, в котором воздухонагреватель и вентилятор совмещены в одном агрегате, устанавливаемом в отапливаемом помещении.

Теплоноситель может быть получен от системы центрального водяного или парового отопления. Возможно применение электрического автономного нагрева (например, тепловые пушки).

В административно-бытовых помещениях часто применяется панельное отопление, которое работает в результате отдачи тепла от строительных конструкций, в которых проложены трубы с циркулирующим в них теплоносителем.

Воздушные и воздушно-тепловые завесы (воздушные завесы с подогревом воздуха) предусматриваются у постоянно открытых проемов в наружных стенах помещений, у ворот и проемов в наружных стенах без тамбуров и открывающихся чаще пяти раз или не менее чем на 40 минут в смену, у технологических проемов отапливаемых зданий и сооружений, строящихся в районах с расчетной температурой наружного воздуха для проектирования отопления 15 град. С и ниже, а также при соответствующем обосновании и при более высоких расчетных температурах наружного воздуха и при любой продолжительности открывания ворот и других проемов.

Система кондиционирования воздуха включает в себя комплекс технических средств, осуществляющих требуемую обработку воздуха (очистку, подогрев, охлаждение, осушку и увлажнение), транспортирование его и распределение в обслуживаемых помещениях. Устройство, в котором осуществляется требуемая тепловлажностная обработка воздуха и его очистка, называется установкой кондиционирования воздуха, или кондиционером.

                      

3.2.6. Защита работников от теплового излучения

Для защиты от теплового излучения используют различные теплоизолирующие материалы, устраивают теплозащитные экраны и специальные системы вентиляции (воздушное душирование). Перечисленные выше средства защиты носят обобщающее понятие теплозащитных средств. Теплозащитные средства должны обеспечивать тепловую облученность на рабочих местах не более 35 Вт/м2 и температуру поверхности оборудования не выше 35°С при температуре внутри источника тепла до 100°С и не выше 45°С – при температуре внутри источника тепла выше 100°С.

Основным показателем, характеризующим эффективность теплоизоляционных материалов, является низкий коэффициент теплопроводности, который составляет для большинства из них 0,025-0,2 Вт/(м·К).

Наиболее простым методом защиты от тепловых излучений является защита расстоянием.

Защита расстоянием от опасного воздействия осуществляется  в помещениях с избытками тепла от производственных объектов (печей, топок, реакторов и т.д.). Обычно осуществляется механизацией и автоматизацией производственных процессов, дистанционным управлением ими. Автоматизация процессов не только повышает производительность, но и улучшает условия труда, поскольку работники выводятся из опасной зоны и осуществляют контроль или управление технологическими процессами из помещений с нормальными  микроклиматическими условиями.

При температуре воздуха на рабочих местах выше или ниже допустимых величин в целях защиты работающих от возможного перегревания или переохлаждения ограничивают время пребывания на рабочих местах (непрерывно или суммарно за рабочую смену) СанПиН 2.2.4.548–96 [5]. При работе закрытых необогреваемых помещениях в холодное время года при определенных температурах и скоростях движения воздуха устанавливают перерывы для обогревания рабочих.

Одним из самых распространенных способов борьбы с тепловым инфракрасным излучением является экранирование излучающих поверхностей. Различают экраны трех типов: непрозрачные, прозрачные и полупрозрачные.

В непрозрачных для ИК излучения экранах поглощаемая энергия электромагнитных колебаний, взаимодействуя с веществом экрана, превращается в тепловую энергию. При этом экран нагревается и, как всякое нагретое тело, становится источником теплового излучения. При этом излучение поверхностью экрана, противолежащей экранируемому источнику, условно рассматривается как пропущенное излучение источника. К непрозрачным экранам относятся, например, металлические (в т.ч. алюминиевые), альфолевые   (алюминиевая фольга), футерованные (пенобетон, пеностекло, керамзит, пемза), асбестовые и др.

В прозрачных для ИК излучения экранах излучение, взаимодействуя с веществом экрана, минует стадию превращения в тепловую энергию и распространяется внутри экрана по законам геометрической оптики, что и обеспечивает видимость через экран. Так ведут себя экраны, выполненные из различных стекол: силикатного, кварцевого, органического, металлизированного, а также пленочные водяные завесы (свободные и стекающие по стеклу), вододисперсные завесы.

Полупрозрачные экраны объединяют в себе свойства прозрачных и непрозрачных экранов. К ним относятся металлические сетки, цепные завесы, экраны из стекла, армированного металлической сеткой.

По принципу действия экраны классифицируют на теплоотражающие, теплопоглощающие и теплоотводящие.

Теплоотражающие экраны имеют низкую степень черноты поверхностей, вследствие чего они значительную часть падающей на них лучистой энергии отражают в обратном направлении. В качестве теплоотражающих материалов в конструкции экранов широко используют альфоль, листовой алюминий, оцинкованную сталь, алюминиевую краску.

Теплопоглощающими называют экраны, выполненные из материалов с высоким термическим сопротивлением (малым коэффициентом теплопроводности). В качестве теплопоглощающих материалов применяют огнеупорный и теплоизоляционный кирпич, асбест, шлаковату.

В качестве теплоотводящих экранов наиболее широко используются водяные завесы, свободно падающие в виде пленки, орошающие другую экранирующую поверхность (например, металлическую), либо заключенные в специальный кожух из стекла (акварильные экраны), металла (змеевики) и др.

Оценить эффективность снижения интенсивности от теплового излучения с помощью экранов можно по формуле:

,    (3.5)

где Q – интенсивность теплового излучения без применения защиты, Вт/м2;

 QЗ – интенсивность теплового излучения с применением защиты, Вт/м2.

При устройстве общеобменной вентиляции, предназначенной для удаления избытка явного тепла, объем приточного воздуха LПР3/ч) определяют по формуле:

,    (3.6)

где QИЗБ – избыток явного тепла, кДж/ч;

 TУД – температура удаляемого воздуха, °С;

 TПР – температура приточного воздуха, °С;

 ρПР – плотность приточного воздуха, кг/м3;

 c – удельная теплоемкость воздуха, кДж/кгград.

Температуру воздуха, удаляемого из помещения, определяют по формуле:

,    (3.7)

где TРЗ – температура в рабочей зоне, которая не должна превышать установленную санитарными нормами, °С;

 T – температурный градиент по высоте помещения, °С/м; (обычно 0,5 – 1,5 °С/м);

Н – расстояние от пола до центра вытяжных проемов, м;

2 – высота рабочей зоны, м.

3.2.7.  Приборы для измерения климатических

параметров воздуха рабочей зоны

Приборы для измерения скорости движения воздуха

Скорость движения воздуха в помещениях, в отверстиях приточных и вытяжных воздуховодов, местных отсосов, в открытых проемах окон, ворот и т.п. измеряется анемометрами. По принципу действия анемометры подразделяются на механические и электрические. К механическим анемометрам относятся крыльчатые типа АСО-3 и чашечные типа MC-13. Скорости воздуха этими приборами измеряются путем предварительного определения частоты вращения оси прибора, которая линейно зависит от скорости. Крыльчатый анемометр служит для измерения скоростей в пределах 0,2-5 м/с с точностью до 0,1 м/с и имеет в качестве ветроприемника восемь лопастей из фольги, закрепленных на оси под углом 45°.

Чашечный анемометр имеет на оси четырехчашечную вертушку и служит для измерения скоростей от 1 до 24 м/с с точностью 0,2-0,5 м/с.

Независимо от направления движения воздуха вертушка с чашечками вращается всегда в одну сторону.

Оси анемометров с помощью червячной передачи соединены со счетными механизмами, которые при замерах включаются и выключаются арретиром. Циферблат каждого прибора имеет три шкалы, по которым отсчитываются тысячи, сотни, десятки и единицы оборотов крыльчатки. Каждый прибор для определения скорости снабжен тарировочным графиком.

Малые величины скорости движения воздуха (менее 0,3 м/c), особенно при наличии разнонаправленных потоков, измеряют электро-анемометрами, а также цилиндрическими и шаровыми кататермометрами и другими приборами.

При пользовании механическими анемометрами соблюдают следующую последовательность:

1. Записать начальные показания N1 стрелок на циферблатах (например, 1255).

2. Установить крыльчатый анемометр в потоке воздуха рабочей зоны так, чтобы ось вращения крыльчатки располагалась параллельно направлению потока. Чашечный анемометр устанавливается в поток осью вращения перпендикулярно.

3. После установления равномерной скорости вращения крыльчатки (чашечек) через 10-15 с после включения вентилятора, поворотом арретира по часовой стрелке включить счетный механизм и одновременно секундомер.

4. Через Т = 50 или 100 с после начала измерения поворотом арретира против часовой стрелки выключить счетный механизм и секундомер.

5. Записать конечное положение N2 стрелок анемометра (например, 1460) и продолжительность измерения в секундах (например, 50 с).

6. Вычислить разность показаний анемометра N2 - N1 (1460 - 1255 = 205).

7. Определить число оборотов оси за одну секунду (например, П = 205/50 = 4,1 об/c).

8. Определить скорость движения воздуха по графику (рис. 3.2).

Рис. 3.2. Тарировочный график для чашечного (а) и крыльчатого (б)

анемометров

Приборы для измерения влажности воздуха

Влажность воздуха (относительная) при контроле воздуха рабочей зоны определяется с помощью аспирационных психрометров.

Принцип действия аспирационного психрометра (психрометра Ассмана) основан на разности показаний сухого в смоченного (влажного) термометров в зависимости от влажности  окружающего воздуха.

Прибор состоит из двух одинаковых расположенных рядом термометров, резервуар одного из которых обертывается слоем ткани (батиста) и при замерах увлажняется. Испарение влаги с батиста сопровождается отбором теплоты, поэтому показания влажного термометра оказываются ниже показаний сухого термометра, Сухой термометр показывает температуру окружающего воздуха. Показания влажного термометра зависят от влажности исследуемого воздуха. В отличие от других приборов психрометр Ассмана снабжен вентилятором, который прогоняет воздух по трубкам, в которых расположены термометры со скоростью 4 м/с и может работать в помещениях и вне помещений при высоких скоростях движения воздуха.

В данной работе использован прибор гигрометр ВИТ-2 психрометрический, который предназначен для измерения влажности в помещениях с незначительными скоростями движения воздуха в них.

При работе с гигрометром ВИТ-2 снимают показания по «сухому» и «увлажненному» термометрам.

Определяют температуру по сухому и влажному  термометрам с точностью до 0,1 °С и рассчитывают разность температур.

По таблице расположенной на гигрометре определяют относительную влажность воздуха.

Температура воздуха в производственных помещениях измеряется ртутными или спиртовыми термометрами различных типов и термоанемометрами. Как правило, одновременно с измерением влажности температуру определяют по сухому термометру. Вне помещений в холодный период года температуру измеряют спиртовыми термометрами. Для непрерывного контроля температуры применяют самопишущие приборы - термографы.

Приборы для измерения интенсивности теплового излучения

Интенсивность теплового излучения (Вт/м2) определяется с помощью измерителя плотности теплового потока ИПП–2.

Измеритель ИПП-2 предназначен для измерений по ГОСТ 25380-82 интенсивности теплового потока, проходящего через обмуровку и теплоизоляцию энергообъектов. В комплект с прибором входит преобразователь плотности теплового потока с датчиком на пружине ПТП–Х–П (рис. 3а) и зонд для измерения температуры поверхности (рис. 3б).

Рис. 3.3а. Зонд для измерения плотности теплового потока

с пружиной  (ПТП-Х-П)

Рис. 3.3б. Зонд для измерения температуры поверхности

Конструктивно прибор ИПП-2 (рисунок 4) выполнен в пластмассовом корпусе. На передней панели блока располагаются кнопки В и »,  а на боковой поверхности располагаются разъёмы для подключения прибора к компьютеру и сетевого адаптера. На верхней панели расположен разъем для подключения первичного преобразователя плотности теплового потока или температуры.

Рис. 3.4. Внешний вид прибора ИПП-2:

1 – индикация режимов работы аккумулятора; 2 – индикация нарушения порогов; 3 – кнопка »; 4 – кнопка В; 5 – разъём подключения первичного преобразователя; 6 – светодиодный четырехразрядный семисегментный индикатор; 7 – разъем для подключения к компьютеру; 8 – разъем для подключения сетевого адаптера

Функционирование прибора осуществляется в одном из режимов: РАБОТА и НАСТРОЙКА.

Режим РАБОТА. Является основным эксплуатационным режимом. В  данном режиме производится циклическое измерение выбранного параметра. Кратковременным нажатием кнопки » осуществляется переход между режимами измерения плотности теплового потока и температуры, а также индикации заряда аккумуляторов в процентах 0...100%. Нажатием кнопки » в течение двух секунд осуществляется переход прибора в режим «SLEEP», в этом режиме прибор гасит светодиодную индикацию, но продолжает измерения температуры и запись статистики. Выход из режима «SLEEP» производится нажатием любой кнопки. Нажатием кнопки В в течение двух секунд осуществляется переход прибора в режим НАСТРОЙКА. Кратковременное нажатие кнопки В выключает/включает прибор. В выключенном состоянии прибор прекращает измерения и запись автоматической статистики, при этом все настройки работы прибора и часов реального времени сохраняются. В режиме РАБОТА прибор может производить периодическую автоматическую запись измеренных значений в энергонезависимую память с привязкой ко времени. Схема режима РАБОТА приведена на рисунке 5.

Рис.  3.5. Схема режима РАБОТА

Светодиодная индикация в режиме РАБОТА. Светодиод 1 (рис. 3.4) характеризует состояние аккумуляторной батареи. В режиме заряда при подключенном сетевом адаптере светодиод горит постоянно до состояния 100% зарядки, затем гаснет. В режиме работы с отключенным сетевым адаптером светодиод погашен, и в случае если батарея заряжена менее чем на 10%. Светодиод 2 (рис. 3.4) миганием информирует о нарушении порогов. В режиме «SLEEP» мигает точка в четвертом разряде семисегментного индикатора.

Режим НАСТРОЙКА. Предназначен для задания и записи в энергонезависимую память прибора требуемых при эксплуатации рабочих параметров измерения. Заданные значения параметров сохраняются в памяти прибора при отсутствии питания (исключение составляют дата/время). Общая схема режима НАСТРОЙКА приведена на рис. 3.6.

Рис. 3.6. Общая схема работы режима НАСТРОЙКИ

Данный режим позволяет настроить два порога, имеющиеся в приборе, по одному на каждый параметр. Пороги - это верхняя или нижняя границы допустимого изменения соответствующей величины. При превышении измеряемой температуры верхнего порогового значения или снижении ниже нижнего порогового значения прибор обнаруживает это событие и на индикаторе загорается светодиод 2 (рис. 3.4). Нарушение порогов также сопровождается звуковым сигналом.

Под настройкой порога подразумевается выбор вида порога: нижний или верхний, уровня сигнализации: предупреждение или тревога и собственно значение порога (параметр предупреждение/тревога выражается только в разной звуковой сигнализации нарушения порога). Меню SET0 и SET1 служат для настройки порога по плотности теплового потока и температуре соответственно. Оба порога являются независимыми и могут быть настроены в произвольной комбинации. Схема настройки порогов приведена на рис. 3.7.

В меню SET2 включается/выключается звуковая сигнализация нарушения порогов.

Рис.3.7. Схема меню установки параметров порогов по температуре


3.3. Экспериментальная часть

3.3.1. Описание стенда

Внешний вид стенда представлен на рис. 3.8. Стенд представляет собой стол со столешницей 1, на которой размещаются бытовой электрокамин 2 и модель производственного помещения 3 с вентиляционным зонтом 4. Передняя и задняя стенки модели помещения глухие, а боковые стенки – съемные. На боковой поверхности модели помещения (со стороны электрокамина) закреплены крючки, на которые навешиваются сменные экраны 5. Внутри модели установлена стойка 6 с измерительной головкой 7 измерителя тепловых потоков ИПП-2.

Рис. 3.8. Фотография стенда

Бытовой электрокамин 2 используется в качестве источника теплового излучения.

Вентиляционный зонт 4 используется для удаления нагретого воздуха. Внутри вентиляционного зонта установлена лампа накаливания, которая служит для освещения модели производственного помещения, а также в качестве дополнительного источника тепла для изменения теплового режима внутри модели. Снаружи вентиляционного зонта находятся выключатель лампы накаливания и два выключателя вентилятора зонта для разных режимов работы.

Измерительная головка 7 с помощью винтов крепится к вертикальной стойке 6, которая закреплена на плоском основании. Вся эта конструкция может вручную перемещаться по столешнице внутри стенда для изменения расстояния между источником теплового излучения и измерительной головкой.

Для измерения расстояния от источника теплового излучения (электрокамина 2) до измерительной головки 7 используется стандартная линейка.

Сменные экраны 5 имеют один типоразмер и выполнены из металла с темной и светлой окраской, брезента и набора параллельных цепей.

На задней стенке модели помещения установлен гигрометр ВИТ-2 для измерения относительной влажности воздуха внутри модели. Для измерения скорости движения воздуха используется чашечный анемометр.

3.3.2. Требования безопасности при выполнении

лабораторной работы

К работе допускаются студенты, ознакомленные с устройством лабораторного стенда, принципом действия и мерами безопасности при проведении лабораторной работы.

Перед включением стенда в сеть необходимо внешним осмотром убедиться в исправности электропроводки.

Запрещается прикасаться к электронагревательному элементу электрокамина.

Во избежание повреждения электропроводки и поломки приборов запрещается двигать стол с лабораторной установкой.

В случае появления электрического напряжения на корпусе стенда или прибора, а также появления дыма или запаха гари следует немедленно обесточить стенд и сообщить об этом преподавателю.

По окончании работы обесточить стенд и привести в порядок рабочее место.

3.3.3. Порядок выполнения лабораторной работы

Задание 1. Исследовать изменение интенсивности излучения в зависимости от расстояния до источника.

Подключить стенд к сети переменного тока. Включить электрокамин и дать ему прогреться в течение 2 3 мин. Включить измеритель теплового потока ИПП-2.

Установить головку измерителя теплового потока в штативе таким образом, чтобы она была смещена относительно стойки (см. рис. 3.8) на 100 мм. Установить головку измерителя на крайнюю точку боковой левой стенки модели помещения (нулевая точка). Перемещать штатив вдоль линейки, устанавливая головку измерителя на различном расстоянии (через 3–5 см) начиная от первой (нулевой) точки, и определять интенсивность теплового излучения в этих точках (интенсивность определять как среднее значение). Данные замеров занести в таблицу 3.4.


Таблица 3.4

Изменение интенсивности излучения в зависимости от расстояния

Расстояние, мм

0

50

100

150

200

Интенсивность излучения Q, Вт/м2

По данным таблицы 3.4 построить график изменения интенсивности излучения в зависимости от расстояния до источника теплового излучения.

Задание 2. Исследовать эффективность защитного действия различных экранов.

Устанавливая различные защитные экраны, имеющиеся в комплекте: 1 – стальной светлый экран, 2 – стальной черный экран, 3 – экран из цепей, 4 – брезентовый экран, определить интенсивность теплового излучения на определенном расстоянии, где интенсивность теплового излучения наибольшая (исходя из таблицы 4.1 и графика). До проведения измерений экран необходимо прогреть в течение 2 – 3   мин. Оценить эффективность защитного действия экранов по формуле (3.5). Полученные данные занести в таблицу 3.5.

Таблица 3.5

Интенсивность излучения и эффективность

теплозащиты при использовании экранов

№ экрана

Без экрана

1

2

3

4

Интенсивность излучения, Вт/м2

Эффективность

экранирования, %

По данным таблицы построить графическую зависимость эффективности защиты от теплового излучения при использовании различных экранов.

 

Задание 3. Исследовать эффективность комбинированной тепловой защиты (экран – вытяжная вентиляция).

Определение эффективности вытяжной вентиляции.

Установить защитный экран (по указанию преподавателя) и прогреть его в течение 2 – 3 мин. Включить тумблер 1 вентилятора вытяжного зонта. Измерить интенсивность теплового излучения на расстоянии, где зафиксирована наибольшая интенсивность теплового излучения Qв (таблица 3.4). Сравнить полученную интенсивность теплового излучения со значением из таблицы 3.4. Определить эффективность «вытяжной вентиляции» по формуле (3.5).

Повторить определение эффективности вытяжной вентиляции, включив второй тумблер вентилятора вытяжного зонта.

Повторить определение эффективности вытяжной вентиляции, включив оба тумблера  вентилятора вытяжного зонта.

Полученные данные занести в таблицу 3.6.

Измерить температуру теплозащитного экрана с помощью датчика температуры измерителя ИПП-2 с использованием зонда для измерения температуры поверхности (см. рис. 3б) в режиме без использования вентиляции и с использованием «вытяжной вентиляции», включив первый тумблер вентилятора вытяжного зонта. Определить эффективность «вытяжной вентиляции» по формуле (3.5), подставив вместо интенсивности теплового излучения температуру.

Повторить определение эффективности «вытяжной вентиляции», включив второй тумблер  вентилятора вытяжного зонта.

Повторить определение эффективности «вытяжной вентиляции», включив оба тумблера вентилятора вытяжного зонта.

Полученные данные измерений и расчетов занести в таблицу 3.6.

Таблица 3.6

Эффективность вытяжной вентиляции при включенном электрокамине

Условия опыта

С помощью датчика температуры измерителя ИПП-2

С помощью учета количества тепла уносимого вентилятором

Температура, 0С

Эффектив-ность, %

Q, Вт/м2

Эффектив-ность, %

Без использования «вытяжной вентиляции

С использованием «вытяжной вентиляции» включен тумблер 1

С использованием «вытяжной вентиляции» включен тумблер 2

С использованием «вытяжной вентиляции» включен тумблер1+2

Задание 4. Определение влияния параметров микроклимата на человека

Выключить электрокамин. Установить брезентовый экран, имитирующий тело человека, а за ним в непосредственной близости разместить датчик температуры. Включить осветительную лампу внутри зонта, которая в данном случае будет использоваться в качестве источника тепла (!). Спустя 2 – 3 минуты замерить температуру и с помощью гигрометра ВИТ-2 замерить влажность воздуха внутри модели помещения. Включить оба тумблера вентилятора зонта и спустя 2 – 3 минуты снова замерить температуру и влажность. По результатам измерений определить эффективность вытяжной вентиляции.

Измерить анемометром скорость движения воздуха в патрубке на выходе из зонта при трех различных режимах работы вентилятора зонта. Методику замера скорости воздуха чашечным анемометром смотри в разделе 3.2.7.

Данные измерений занести в таблицу 3.7.

Таблица 3.7

Эффективность «вытяжной вентиляции» при использовании

осветительной лампы в качестве источника тепла

Положение тумблеров

Температура

0С

Скорость движения воздуха

м/с

Влажность

%

Эффективность вытяжной вентиляции (по температуре)%

Лампа выключена

Лампа включена

С использованием «вытяжной вентиляции» включен тумблер 1

С использованием «вытяжной вентиляции» включен тумблер 2

С использованием «вытяжной вентиляции» включены оба тумблера

По окончании работы выключить стенд и измерительные приборы, привести установку в порядок, сдать лабораторный стенд учебному мастеру или преподавателю.


3.3.4. Требования к содержанию отчёта

  1.  Название работы.
  2.  Цель и задачи работы.
  3.  Общие теоретические сведения о нормировании параметров микроклимата в рабочей зоне, методы и средства защиты человека от тепловых воздействий в рабочей зоне.
  4.  Схема лабораторной установки.
  5.  Порядок выполнения работы.
  6.  Результаты исследований в виде таблиц, графиков, комментариев к ним.
  7.  Выводы по работе.
  8.  Список литературы, включающий нормативные документы, регламентирующие параметры микроклимата.

3.4. Литература

  1.  Безопасность жизнедеятельности: учеб./под ред. С.В. Белова. – М.: Высшая школа, 2004.
  2.  Методы и средства защиты человека от опасных и вредных производственных факторов / под ред. В.А. Трефилова. – Пермь: Изд-во Перм. гос. техн. ун-та, 2008.
  3.  ГОСТ 12.4.123-83. ССБТ. Средства защиты от инфракрасного излучения. Классификация. Общие технические требования. Госстандарт СССР, 1983.
  4.  ГОСТ 12.1.005-88. ССБТ. Воздух рабочей зоны. Общие санитарно-гигиенические требования». Госстандарт СССР, 1988.
  5.  СанПиН 2.2.4.548-96. Гигиенические требования к микроклимату производственных помещений.
  6.  ГОСТ 12.0.006–74*. Опасные и вредные производственные факторы.
  7.  ГОСТ 8.221–76. Влагометрия и гигрометрия. Термины и определения.
  8.  СНиП 41-01-2003. Отопление, вентиляция и кондиционирование.


 

А также другие работы, которые могут Вас заинтересовать

48846. Проектирование привода цепного конвейера 632 KB
  Коэффициент потерь одной зубчатой пары при тщательном выполнении и надлежащей смазке не превышает обычно 001. Коэффициент нагрузки: Cg= 1.45 Мпа; SH – коэффициент безопасности SH = 11; ZN – коэффициент долговечности учитывающий влияние ресурса. – продолжительность смены; kг=085 – коэффициент годового использования; kс=06 – коэффициент суточного использования.