51197

Цифровое управляющее устройство в контуре управления

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

Цифровое управляющее устройство в контуре управления Влияние периода дискретизации. Поэтому значения управляемых координат присутствующих в ЦВМ отличаются от значений их же в объекте управления.1 h=l Наилучшие параметры по результатам проведенных опытов а0=1 1=l с дискретизацией h=100 Вывод: По результатам исследования системы мы можем утверждать что при увеличении шага дискретизации цифрового управляющего устройства качество переходных процессов в системах управления ухудшается что связанно с запаздыванием по времени вносимым...

Русский

2014-02-07

466.86 KB

0 чел.

Поволжский государственный университет телекоммуникаций и информатики

Кафедра ПОУТС

Отчет

По лабораторным работам № 3-4.

«Цифровое управляющее устройство в контуре управления»

«Влияние периода дискретизации».

                                                             Выполнили:

                                                                             Софронов Н.

Юхина Д.

Самара 2013

Цель:

  1.  Определить установившуюся ошибку.
  2.  Определить максимальное перерегулирование:
  3.  Определить время затухания, определяется временем достижения 5% отклонения от установившегося значения.
  4.  Для отработки блока дискретизации рассмотрено упрощенное описание управляющего устройства в части исполнительных органов, динамика которых не учитывается.

Дискретное цифровое управляющее устройство работает, обновляя информацию с периодом дискретизации h. Поэтому значения управляемых координат, присутствующих в ЦВМ отличаются от значений их же в объекте управления. Интегрировали методом Эйлера, так как стандарт в MathCad Рунге-Кутт не позволяет вставить блок дискретизации.

2)                                                                             

                                                                                

                                                                                

                                                                      

                                                                                 

                                                                      

                                                                       h=30

                                                                       ∆t

            

                                                                       h=30∙∆t

Рис 1. Метод Эйлера

 - запрос перерегулирования

Т-время затухания переходного процесса

T1-время первого прохождения через установившееся значение

а0=2

Пр

Т

T1

а1=0.1

0.811

75

1.4

а1=0.4

0.58811

14

1.4

а1=0.7

0.36

7

1.4

а1=l

0.217

4.8

1.4

а0=1

Пр

Т

T1

а1=0.1

0.8

57

3

а1=0.4

0.34

7

3

а1=0.7

0.11

8

3

а1=l

0.02

5.5

5.3

а0=3

Пр

Т

T1

а1=0.1

0.9699

97

1

а1=0.4

0.71

19

1

а1=0.7

0.55

7

1

а1=l

0.38

5

1

а0=a1=1

1

Т

T1

h=1

0.02

5.5

5.3

h=10

0

5.9

6

h=20

0.04

5

5.5

h=30

0.046

4.7

4.9

h=100

0.246

2.75

10.5

Наилучшие параметры по результатам проведенных опытов а0=1, a1=l, h=l

Наихудшие параметры по результатам проведенных опытов а0=3, a0=0.1, h=l

Наилучшие параметры по результатам проведенных опытов а0=1, a1=l с дискретизацией h=100

Вывод:

  1.  По результатам исследования системы, мы можем утверждать, что при увеличении шага дискретизации цифрового управляющего устройства качество переходных процессов в системах управления ухудшается, что связанно с запаздыванием по времени, вносимым ЦВМ в контур управления.
  2.  Наилучший режим работы системы управления при значениях цифрового управляющего устройства в контуре управления при значениях коэффициентов закона управления а0=1, a1=l. Отклонение их от данных значений приводит к ухудшению качества переходных процессов.


 

А также другие работы, которые могут Вас заинтересовать

70749. Операционный усилитель 456.5 KB
  В идеальном случае выходное напряжение ДУ не зависит от уровня каждого из входных сигналов а определяется только их разностью Это свойство ДУ обусловлено их применением в случаях когда измеряются очень слабые сигналы на фоне больших синфазных помех.
70750. Генерирование электрических колебаний 414 KB
  Цель работы экспериментально изучить некоторые схемы RС-генераторов квазигармонических и релаксационных колебаний.Это условие можно отдельно записать в виде двух условий для амплитуд и для фаз...
70751. Нелинейные ипараметрические преобразования сигналов 652.5 KB
  Сущность этого преобразования состоит о смещении спектра сигнала в ту или другую сторону по шкале частот. Вместе с тем в параметрический цепям возможны процессы связанные с возникновением новых частотных составляющих в спектре сигнала что существенно при переходе от линейных систем...
70752. ОПРЕДЕЛЕНИЕ ИЗМЕРЕНИИ 790 KB
  Физический эксперимент, проводимый с целью получения информации о количественной характеристике интересующего нас объекта или процесса; полученная информация содержит результат сравнения полученной величины с однородной величиной, принятой за единицу меры...
70753. Изучение зависимости момента инерции точечных тел от их расстояния до оси вращения с помощью крестообразного маятника Обербека 147.5 KB
  Цель работы: Изучить основной закон динамики вращательного движения тел определить момент инерции ненагруженного маховика и проверить зависимость момент инерции нагруженного маховика от распределения его массы в пространстве относительно оси.
70754. Изучение гармонических колебаний 170 KB
  Цель работы: Изучить гармоническое колебательное движение на примерах колебаний математического физического и оборотного маятников. Свойства гармонических колебаний: Частота колебаний не зависит от амплитуды.
70756. Изучение прецессии гироскопа 495.5 KB
  Момент инерции тела относительно оси не проходящей через центр масс равен моменту инерции для параллельной оси проходящей через центр масс плюс произведение массы тела на квадрат расстояния между параллельными осями...