51294

Изучение поляризации отраженного от диэлектриков света

Лабораторная работа

Физика

Цель работы: Изучение свойств света поляризованного при отражении от диэлектриков; изучение законов поляризации света при отражении от прозрачной среды; изучение методов определения показателя преломления диэлектрика по степени поляризации отраженного света...

Русский

2014-02-08

328 KB

0 чел.

Министерство образования Республики Беларусь

Учреждение образования

Брестский государственный технический университет

Кафедра физики.

Отчет

По лабораторной работе № О-9

«Изучение поляризации отраженного от диэлектриков света».

Выполнил студент

Строительного факультета

Группы РП-12

Тукало М.М.

Проверил : Кандилян Г.С.

Брест 2004

Лабораторная работа О-9

 Изучение поляризации отраженного от диэлектриков света

Цель работы: Изучение свойств света, поляризованного при отражении от                         диэлектриков; изучение законов поляризации света при отражении от прозрачной среды; изучение методов определения показателя преломления диэлектрика по степени поляризации отраженного света..

Приборы и принадлежности: Источник света; коллиматор; исследуемые образцы; анализатор; фотоэлемент; собирающая линза; миллиамперметр; транспортир.

Ход работы:

Подробно явление поляризации света рассмотрено в лабораторной работе №3, где введены понятия линейно и циклически (эллиптически) поляризованного света. Качественно объясняется различие между естественным и поляризованным светом. Напомним  лишь, что частично поляризованный свет можно рассматривать как совокупность одновременно распространяющихся в одном и том же направлении естественного и линейно поляризованного света.

    Рассмотрим случай, когда на анализатор (в качестве анализатора может быть использована призма Николя или поляроид) перпендикулярно плоскости рисунка (рис.1) падает линейно поляризованный свет, световой вектор которого  направлен вдоль линии р—р’. Пусть электрический вектор  света, пропускаемого анализатором, направлен вдоль линии а—а’, составляющий с р—р’ 

угол . Падающий свет в плоскости р—р’ можно представить в виде двух волн, линейно поляризованных во взаимно перпендикулярных плоскостях. Волна, электрический вектор которой  перпендикулярен а—а’,не может пройти через анализатор. Вторая волна, электрический вектор  которой лежит в плоскости а—а’,полностью проходит через анализатор. Из рис. 1 видно, что , где - угол между электрическим вектором падающей волны и осью анализатора. Как известно, интенсивность электромагнитной пропорциональна квадрату амплитуды электрического вектора (I  E2). Следовательно, интенсивность света Ia, прошедшего через анализатор, будет пропорциональна интенсивности падающего линейно поляризованного света Ip и cos2

                                         Ia=Ipcos2                               (9.1)

Это соотношение называется законом Малюса.

    Рассмотрим теперь, что происходит при отражении естественного света от диэлектрика. Естественный свет можно представить в каждый момент времени как суперпозицию двух линейно поляризованных волн. В нашем случае удобно выбрать направление электрического вектора одной электромагнитной волны в плоскости падения, а второй - перпендикулярно плоскости падения.

      Падая на границу раздела двух диэлектрических сред, свет возбуждает во второй среде колебания диполей, которые являются источниками вторичных волн, формирующих отраженную волну (рис.2). Если молекулы изотропны, направление колебаний диполей совпадает с электрическим вектором световой волны, т.е. для второй среды оно перпендикулярно оси ОС. Колебания диполей во второй среде рассмотрим как суперпозицию колебаний двух диполей, один из которых перпендикулярен плоскости падения, а другой параллелен. Интенсивность излучения диполя , где Q- угол между направлением колебания диполя и направлением наблюдения.

    Из рис.2 видно, что угол между направлением колебания диполя, колеблющимся в плоскости падения, и направлением отражения света составляет  , следовательно, интенсивность отраженной волны, поляризованной в плоскости падения .

    Рассмотрим случай, когда выполняется условие  , т.е. угол между преломленной и отраженной волной составляет 90 , которое известно как условие Брюстера. В этом случае волна, поляризованная в плоскости падения, отражаться не будет, т.к. диполь в направлении своих колебаний не излучает ( )

    Количественной мерой поляризации света при отражении служит степень поляризации

                                                                          (9.2)

где I1 и I2 - интенсивности отраженных волн, поляризованных соответственно перпендикулярно и в плоскости падения.

    При выполнении условия Брюстера отраженный свет будет полностью поляризован Р=1, потому что I2=0. Тогда закон преломления перепишется в следующем виде: ,т.е. Здесь Б- называют углом

                                                                                           (9.3)

Брюстера, а п- относительный показатель преломления диэлектрической среды. Т.о. естественный свет, падающий на диэлектрик, при отражении от него частично линейно поляризуется в плоскости, перпендикулярной плоскости падения. Максимальная поляризация отраженного света достигается при падении его на диэлектрик под углом Брюстера (б). Полной поляризации наблюдаться не будет из-за немонохроматичности излучение, расходимости пучка, неидеальной поверхности образца, наличии поглощения в диэлектрике и т.д. В этом случае выполняется условие б+=90 и . Сказанное составляет содержание закона Брюстера.

Описание установки.

    Установка, используемая для проведения настоящей работы (рис.3) состоит из источника света (1), коллиматора (2), исследуемого образца (3), анализатора (4), линзы (5), фотоприемника (6) и миллиамперметр (7).

Свет от источникам (1), проходя через коллиматор (2), параллельным пучком падает на исследуемый образец (3), имеющий ось вращения перпендикулярную плоскости падения луча. Отраженный пучок, проходя через анализатор (4), собирается линзой (5) на фотоэлементе (6), электрический сигнал с которого регистрируются миллиамперметром (7). Анализатор может вращаться  вокруг оси АА. Угол поворота  анализатора определяется по шкале. Величина фототока, регистрируемая миллиамперметром (7), пропорциональна интенсивности светового  потока, падающего на фотоэлементе.

Проводим измерения данные заносим в таблицы:

Угол падения

max фототок

min фототок 

Степень поляризации

1

30

72

63

0,067

2

35

70

61

0,069

3

40

74

60

0,104

4

45

78

59

0,139

5

50

87

65

0,145

6

55

95

76

0,111

7

60

114

92

0,107

8

65

119

98

0,097

9

70

74

68

0,042

10

75

82

72

0,064

11

80

80

80

0,053

Угол Бюстера равен 50

Угол падения

max фототок

min фототок 

Степень поляризации

1

45

66

52

0,119

2

46

63

48

0,135

3

47

72

53

0,152

4

48

68

52

0,133

5

49

71

53

0,145

6

50

77

56

0,158

7

51

69

52

0,140

8

52

66

52

0,119

9

53

70

55

0,120

10

54

74

56

0,138

11

55

74

58

0,140

Вывод: В ходе лабораторной работы ознакомились с установкой и изучили поляризации отраженного от диэлектриков света.


 

А также другие работы, которые могут Вас заинтересовать

22234. Криптографическая система 256 KB
  Замыслом который стал определяющим при формировании настоящей программы Вашей подготовки стала задача ознакомления Вас с двумя наиболее сложными в теоретическом да и практическом отношении криптоаналитическими атаками позволившими в свое время найти слабости в широко известном и все еще применяемом до настоящего времени стандарте симметричного блочного шифрования США алгоритме DES. Поэтому хотя сегодня уже шифр DES можно считать уходящим со сцены представляется целесообразным изучение принципов выполнения указанных выше...
22235. Дифференциальный криптанализ 528 KB
  Для DESподобных криптосистем различие выбирается как побитовая сумма по модулю два XOR значений двух текстов в модульной арифметике  разность пары текстов. Эта операция в дальнейшем для краткости будет обозначаться аббревиатурой из английских букв  XOR2. Данное фиксированное значение XOR входной пары правых полу блоков для F функции легко определяет свое XOR значение после расширения по формуле: EXEX = EXX. XOR с ключом не изменяет значение XOR в паре т.
22236. Введение в дифференциальный криптанализ 741 KB
  Будем говорить что X может вызвать Y с вероятностью p для F функции если p есть доля всех возможных входных пар зашифрованных всеми возможными значениями подключа в которых входной XOR F функции равен X а выходной XOR равен Y. Если в DES X  Y X переходит в Y с вероятностью p для F функции то каждая фиксированная входная пара Z Z с Z = ZZ= X образует выходной XOR F функции равный Y с той же самой долей p возможных значений подключа. Очевидно что для каждого входного XOR имеем = независимо от ключа KS. Если имеется k входных пар...
22237. Введение в дифференциальный криптанализ. Итеративные характеристики 401.5 KB
  Статистическое поведение большинства характеристик не позволяет нам искать пересечение всех ключей предложенных поддерживаемых различными парами как это мы делали в примере 6 Л2 так как пересечение обычно пустое: неправильные пары не обязательно указывают на правильный ключ как возможное значение. Однако мы знаем что правильное ключевое значение должно быть результатом всех правильных пар которые встречаются приблизительно с характеристической вероятностью с вероятностью характеристики. Все другие возможные ключевые значения...
22238. Атака на DES уменьшенный до восьми циклов 414 KB
  Введение в дифференциальный криптанализ 1 Атака на DES уменьшенный до восьми циклов Чтобы найти другие биты Эли Бихам и Ади Шамир фильтруют все пары и оставляют только те которые имеют ожидаемое значение используя при этом известные значения h и значения ключевых битов K8 входящих в S6 S7 и S8. Ожидаемое число остающихся пар есть 53. Они применяют аналогичный метод счета используя увеличенное отношение S N созданное большой концентрацией правильных пар и затем снова фильтруют пары. Неправильная пара не отвергается этим или...
22239. Введение в дифференциальный криптанализ 626 KB
  Анализ требований к отбору S блоков разработчиков стандарта. В этом разделе мы хотим высказать свою версию обоснования требований к отбору S блоков выдвинутых разработчиками стандарта. Критерии отбора S блоков: 1. Если два входа S блока отличаются своими первыми двумя битами и имеют совпадающими 2 последних бита то выходные биты не должны быть теми же самыми  для любых e и f; Для любых ненулевых 6ти битовых различий между входами не более чем 8 из 32 пар входов могут показывать одни и те же выходные различия; Критерий подобный...
22240. Способ равных допусков 47 KB
  На размеры всех составляющих звеньев кроме увязочного назначается допуски из одного квалитета с учетом номинального размера звена. Вероятностный метод допусков расчета составляющих звеньев. допустить выбор подбор или изменение величины некоторых звеньев цепи от можно расширить в несколько раз допуски звеньев и соответственно снизить затраты за счет непринятия в расчет маловероятностных комбинаций числовых значений тех же звеньев цепи. Для вероятностного расчета допусков нужно располагать информацией о предполагаемых законах распределения...
22241. Отклонение формы и расположения 938 KB
  В основе нормирования и отсчетов отклонения формы и расположения поверхностей заложен принцип прилегающих поверхностей и профилей. База это есть элемент детали определяющий одну из плоскостей или осей системы координат по отношению к которой задается допуск расположения или определяется отклонение рассматриваемого элемента. Все отклонения и допуски подразделяются на 3 группы: отклонение формы; отклонение расположения; суммарное отклонение.
22242. Допуски и посадки подшипников качения 197 KB
  Присоединительными поверхностями подшипника качения являются наружный Диаметр D наружной поверхности подшипника и внутренний диаметр d внутреннего кольца подшипника а также ширина В колец. Таким образом за номинальные диаметры подшипника принимаются диаметры его посадочных поверхностей D и d. Основная присоединительная поверхность подшипников качения по которым они монтируются на валах и корпусах машин это отверстие во внутреннем кольце подшипника и наружная поверхность наружного кольца подшипника. Посадки подшипников на вал выполняются...