51294

Изучение поляризации отраженного от диэлектриков света

Лабораторная работа

Физика

Цель работы: Изучение свойств света поляризованного при отражении от диэлектриков; изучение законов поляризации света при отражении от прозрачной среды; изучение методов определения показателя преломления диэлектрика по степени поляризации отраженного света...

Русский

2014-02-08

328 KB

0 чел.

Министерство образования Республики Беларусь

Учреждение образования

Брестский государственный технический университет

Кафедра физики.

Отчет

По лабораторной работе № О-9

«Изучение поляризации отраженного от диэлектриков света».

Выполнил студент

Строительного факультета

Группы РП-12

Тукало М.М.

Проверил : Кандилян Г.С.

Брест 2004

Лабораторная работа О-9

 Изучение поляризации отраженного от диэлектриков света

Цель работы: Изучение свойств света, поляризованного при отражении от                         диэлектриков; изучение законов поляризации света при отражении от прозрачной среды; изучение методов определения показателя преломления диэлектрика по степени поляризации отраженного света..

Приборы и принадлежности: Источник света; коллиматор; исследуемые образцы; анализатор; фотоэлемент; собирающая линза; миллиамперметр; транспортир.

Ход работы:

Подробно явление поляризации света рассмотрено в лабораторной работе №3, где введены понятия линейно и циклически (эллиптически) поляризованного света. Качественно объясняется различие между естественным и поляризованным светом. Напомним  лишь, что частично поляризованный свет можно рассматривать как совокупность одновременно распространяющихся в одном и том же направлении естественного и линейно поляризованного света.

    Рассмотрим случай, когда на анализатор (в качестве анализатора может быть использована призма Николя или поляроид) перпендикулярно плоскости рисунка (рис.1) падает линейно поляризованный свет, световой вектор которого  направлен вдоль линии р—р’. Пусть электрический вектор  света, пропускаемого анализатором, направлен вдоль линии а—а’, составляющий с р—р’ 

угол . Падающий свет в плоскости р—р’ можно представить в виде двух волн, линейно поляризованных во взаимно перпендикулярных плоскостях. Волна, электрический вектор которой  перпендикулярен а—а’,не может пройти через анализатор. Вторая волна, электрический вектор  которой лежит в плоскости а—а’,полностью проходит через анализатор. Из рис. 1 видно, что , где - угол между электрическим вектором падающей волны и осью анализатора. Как известно, интенсивность электромагнитной пропорциональна квадрату амплитуды электрического вектора (I  E2). Следовательно, интенсивность света Ia, прошедшего через анализатор, будет пропорциональна интенсивности падающего линейно поляризованного света Ip и cos2

                                         Ia=Ipcos2                               (9.1)

Это соотношение называется законом Малюса.

    Рассмотрим теперь, что происходит при отражении естественного света от диэлектрика. Естественный свет можно представить в каждый момент времени как суперпозицию двух линейно поляризованных волн. В нашем случае удобно выбрать направление электрического вектора одной электромагнитной волны в плоскости падения, а второй - перпендикулярно плоскости падения.

      Падая на границу раздела двух диэлектрических сред, свет возбуждает во второй среде колебания диполей, которые являются источниками вторичных волн, формирующих отраженную волну (рис.2). Если молекулы изотропны, направление колебаний диполей совпадает с электрическим вектором световой волны, т.е. для второй среды оно перпендикулярно оси ОС. Колебания диполей во второй среде рассмотрим как суперпозицию колебаний двух диполей, один из которых перпендикулярен плоскости падения, а другой параллелен. Интенсивность излучения диполя , где Q- угол между направлением колебания диполя и направлением наблюдения.

    Из рис.2 видно, что угол между направлением колебания диполя, колеблющимся в плоскости падения, и направлением отражения света составляет  , следовательно, интенсивность отраженной волны, поляризованной в плоскости падения .

    Рассмотрим случай, когда выполняется условие  , т.е. угол между преломленной и отраженной волной составляет 90 , которое известно как условие Брюстера. В этом случае волна, поляризованная в плоскости падения, отражаться не будет, т.к. диполь в направлении своих колебаний не излучает ( )

    Количественной мерой поляризации света при отражении служит степень поляризации

                                                                          (9.2)

где I1 и I2 - интенсивности отраженных волн, поляризованных соответственно перпендикулярно и в плоскости падения.

    При выполнении условия Брюстера отраженный свет будет полностью поляризован Р=1, потому что I2=0. Тогда закон преломления перепишется в следующем виде: ,т.е. Здесь Б- называют углом

                                                                                           (9.3)

Брюстера, а п- относительный показатель преломления диэлектрической среды. Т.о. естественный свет, падающий на диэлектрик, при отражении от него частично линейно поляризуется в плоскости, перпендикулярной плоскости падения. Максимальная поляризация отраженного света достигается при падении его на диэлектрик под углом Брюстера (б). Полной поляризации наблюдаться не будет из-за немонохроматичности излучение, расходимости пучка, неидеальной поверхности образца, наличии поглощения в диэлектрике и т.д. В этом случае выполняется условие б+=90 и . Сказанное составляет содержание закона Брюстера.

Описание установки.

    Установка, используемая для проведения настоящей работы (рис.3) состоит из источника света (1), коллиматора (2), исследуемого образца (3), анализатора (4), линзы (5), фотоприемника (6) и миллиамперметр (7).

Свет от источникам (1), проходя через коллиматор (2), параллельным пучком падает на исследуемый образец (3), имеющий ось вращения перпендикулярную плоскости падения луча. Отраженный пучок, проходя через анализатор (4), собирается линзой (5) на фотоэлементе (6), электрический сигнал с которого регистрируются миллиамперметром (7). Анализатор может вращаться  вокруг оси АА. Угол поворота  анализатора определяется по шкале. Величина фототока, регистрируемая миллиамперметром (7), пропорциональна интенсивности светового  потока, падающего на фотоэлементе.

Проводим измерения данные заносим в таблицы:

Угол падения

max фототок

min фототок 

Степень поляризации

1

30

72

63

0,067

2

35

70

61

0,069

3

40

74

60

0,104

4

45

78

59

0,139

5

50

87

65

0,145

6

55

95

76

0,111

7

60

114

92

0,107

8

65

119

98

0,097

9

70

74

68

0,042

10

75

82

72

0,064

11

80

80

80

0,053

Угол Бюстера равен 50

Угол падения

max фототок

min фототок 

Степень поляризации

1

45

66

52

0,119

2

46

63

48

0,135

3

47

72

53

0,152

4

48

68

52

0,133

5

49

71

53

0,145

6

50

77

56

0,158

7

51

69

52

0,140

8

52

66

52

0,119

9

53

70

55

0,120

10

54

74

56

0,138

11

55

74

58

0,140

Вывод: В ходе лабораторной работы ознакомились с установкой и изучили поляризации отраженного от диэлектриков света.


 

А также другие работы, которые могут Вас заинтересовать

55274. Пригоди у королівстві Кровоносної системи 79 KB
  Мета: - продовжувати формувати уявлення про імунітет як реакцію – відповідь організму на проникнення в нього чужорідних тіл; - встановити біологічну роль імунної системи у збереженні гомеостазу; - ознайомити учнів з історією розвитку імунітету, роллю вчених (І.І.Мечников, П. Ерліх) у створені вчення про імунітет
55275. Географічне положення, історія дослідження Австралії. Рельєф і корисні копалини материка 271 KB
  Рельєф і корисні копалини материка Зміст кейсу Розділ програми Тема заняття Мета заняття Практичне завдання Режим роботи Теоретичний матеріал за темою Наочний матеріал Питання для перевірки засвоєння вивченого матеріалу Алгоритм виконання практичної частини завдання...
55276. Частини мови. Прикметник 121 KB
  Мета: повторити і закріпити прикметники; навчити учнів складати загадки, використовуючи дану частину мови; розвивати творчі здібності, естетичний смак.
55277. Богатство и своеобразие культуры Древней Руси 93 KB
  К УРОКУ РУССКОЙ ЛИТЕРАТУРЫ В 9 КЛАССЕ Сообщение по теме Богатство и своеобразие культуры Древней Руси примерное направление повествования к презентации Архитектура Древней Руси Высокого уровня развития достигла архитектура. на Руси не было монументального каменного зодчества. На территории Руси известно 15 каменных храмов XI нач. В отличие от Новгорода и Киева во ВладимироСуздальской земле и ГалицкоВолынской Руси основным стройматериалом был белый камень.
55279. ПРИМЕНЕНИЕ ИНТЕРАКТИВНЫХ ТЕХНОЛОГИЙ НА УРОКАХ ИСТОРИИ И ОБЩЕСТВОЗНАНИЯ 371 KB
  Таким образом интерактивное обучение позволяет: развивать коммуникативные умения и навыки приучать работать в команде обеспечивать обучающихся необходимой информацией без которой невозможно реализовать совместную деятельность; развивать общие учебные умения анализ синтез постановка целей...
55280. Применение производной к решению задач 125 KB
  Цели урока: Обучающие: повторить основные формулы и правила дифференцирования применение производной к исследованию функции нахождению наибольшего и наименьшего значения функции физический и геометрический смысл производной; сформировать умение комплексного применения знаний умений навыков...
55281. Изготовления мячика в технологии «Мокрое валяние». Простые формы 49.5 KB
  Цель: Изготовление мячиков для уроков английского языка Задачи: научить технике Мокрое валяние; выяснить основные качества шерсти области ее применение и использование; изучить историческое значение шерсти; развивать наблюдательность мышление память восприятие ощущения.