51307

Шифраторы

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

Цель работы: изучение принципов построения дешифратора и шифратора путем осуществления следующих действий: составление таблицы истинности работы логического устройства; составление логического выражения в соответствии с составленной таблицей истинности и его минимизация; составление схемы электрической функциональной синтезируемого устройства в соответствии с составленным логическим выражением с помощью эмулятора; проверка работоспособности схемы по таблице истинности с помощью эмулятора; Шифратором называется устройство...

Русский

2014-02-09

82 KB

32 чел.

Санкт-Петербургский Государственный Электротехнический Университет

им. В.И. Ульянова (Ленина)

кафедра САПР

Схемотехника

Лабораторная работа по теме

«Шифраторы»

Выполнил: Лебедь П.В.

                                                                                                                    Факультет: КТИ

Группа: 1361

Преподаватель: Фахми Ш.С.

Санкт-Петербург 2013г.

  1.  Цель работы: изучение принципов построения дешифратора и шифратора путем осуществления следующих действий:

 составление таблицы истинности работы логического устройства;

 составление логического выражения в соответствии с составленной таблицей истинности и его минимизация;

 составление  схемы электрической функциональной синтезируемого устройства в соответствии с составленным логическим выражением с помощью эмулятора;

 проверка работоспособности схемы по таблице истинности с помощью эмулятора;

  1.  Шифратором называется устройство, преобразующее сигнал логической единицы на одном из входов в соответствующую кодовую комбинацию выходных сигналов.

Комбинационные микросхемы выполняют более сложные функции, чем простые логические элементы. Их входы объединены в функциональные группы и не являются полностью взаимозаменяемыми. Например, любые два входа логического элемента И-НЕ совершенно спокойно можно поменять местами, от этого выходной сигнал никак не изменится, а для комбинационных микросхем это невозможно, так как у каждого входа — своя особая функция.

Объединяет комбинационные микросхемы с логическими элементами то, что они не имеют внутренней памяти. То есть уровни их выходных сигналов всегда однозначно определяются текущими уровнями входных сигналов и никак не связаны с предыдущими значениями входных сигналов. Любое изменение входных сигналов обязательно изменяет состояние выходных сигналов. Именно поэтому логические элементы иногда также называют комбинационными микросхемами, в отличие от последовательных (или последовательностных) микросхем, которые имеют внутреннюю память и управляются не уровнями входных сигналов, а их последовательностями.

Строго говоря, все комбинационные микросхемы внутри построены из простейших логических элементов, и эта их внутренняя структура часто приводится в справочниках. Но для разработчика цифровой аппаратуры эта информация обычно лишняя, ему достаточно знать только таблицу истинности, только принцип преобразования входных сигналов в выходные, а также величины задержек между входами и выходами и уровни входных и выходных токов и напряжений. Внутренняя же структура важна для разработчиков микросхем, а также в тех редчайших случаях, когда надо построить новую комбинационную микросхему из микросхем простых логических элементов.

Состав набора комбинационных микросхем, входящих в стандартные серии, был определен исходя из наиболее часто встречающихся задач. Требуемые для этого функции реализованы в комбинационных микросхемах наиболее оптимально, с минимальными задержками и минимальным потреблением мощности. Поэтому пытаться повторить эту уже проделанную однажды работу не стоит. Надо просто уметь грамотно применять то, что имеется.

Шифратор (ШР) решает задачу, обратную схемам ДШ, т. е. по номеру входного сигнала формирует однозначную комбинацию выходных сигналов. Номер входного сигнала определяется присутствием логической единицы на соответствующем входе (только одном).

Шифраторы – устройства, осуществляющие преобразование десятичных чисел в двоичный код. Шифратор содержит mвходов, последовательно пронумерованных десятичными числами (0,1,2, ..., m-1) и n выходов. Подача сигнала на один из входов приводит к появлению на выходах n-разрядного двоичного кода, соответствующего номеру возведенного входа (таблица 3.5). Шифраторы широко используются в разнообразных устройствах ввода информации в цифровые системы.

Двоичные шифраторы преобразуют код «1 из N» в двоичный код, т. е. выполняют микрооперацию, обратную микрооперации дешифраторов. При возбуждении одной из входных цепей шифратора на его выходах формируется слово, отображающее номер возбужденной цепи.

Кодирующие устройства (шифраторы) представляют собой преобразователи, в которых на выходе в цифровой форме представляются воспринимаемые ими перемещения. Угловые перемещения воспринимаются угловым или поворотным, а линейные - линейным кодирующим устройством. Поворотные шифраторы применяются в системах автоматизации как датчики для определения углов, положения, скорости и ускорения.

3.)  Таблица истинности восьмиричного шифратора (кодера)

Входы

Выходы

№ комбинации

1

2

3

4

5

6

7

A2

A1

A0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

1

2

0

1

0

0

0

0

0

0

1

0

3

0

0

1

0

0

0

0

0

1

1

4

0

0

0

1

0

0

0

1

0

0

5

0

0

0

0

1

0

0

1

0

1

6

0

0

0

0

0

1

0

1

1

0

7

0

0

0

0

0

0

1

1

1

1

На основании таблицы для каждого выхода шифратора можно записать следующие логические выражения:

4) Схема.

5) Синтез схемы

Засада

6) Временная диаграмма

7) Схема подключения и проверка

Одновременное или почти одновременное изменение сигналов на входе шифратора приводит к появлению периодов неопределенности на выходах. Выходной код может на короткое время принимать значение, не соответствующее ни одному из входных сигналов. Поэтому в тех случаях, когда входные сигналы могут приходить одновременно, необходима синхронизация выходного кода, например, с помощью разрешающего сигнала EI, который должен приходить только тогда, когда состояние неопределенности уже закончилось.

Задержка шифратора от входа до выхода кода примерно в полтора раза превышает задержку логического элемента, а задержка до выхода GS — примерно в два раза больше. Точные величины задержек микросхем надо смотреть в справочниках

8) Итак, в данной лабораторной работе  рассмотрены основы программирования на VHDL и получена работоспособная, синтезируемая модель приоритетного  8-разрядного шифратора/дешифратора . Эту модель можно совершенствовать, изменять число и функциональность портов ввода-вывода и т.п.

Были получены навыки разработки на языке VHDL.

ДЕШИФРАТОР
Дешифраторы. Это комбинационные схемы с несколькими входами и выходами, преобразующие код, подаваемый на входы в сигнал на одном из выходов. На выходе дешифратора появляется логическая единица, на остальных — логические нули, когда на входных шинах устанавливается двоичный код определённого числа или символа, то есть дешифратор расшифровывает число в двоичном, троичном или k-ичном коде, представляя его логической единицей на определённом выходе. Число входов дешифратора равно количеству разрядов поступающих двоичных, троичных или k-ичных чисел. Число выходов равно полному количеству различных двоичных, троичных или k-ичных чисел этой разрядности.

Для n-разрядов на входе, на выходе 2n, 3n или kn. Чтобы вычислить, является ли поступившее на вход двоичное, троичное или k-ичное число известным ожидаемым, инвертируются пути в определённых разрядах этого числа. Затем выполняется конъюнкция всех разрядов преобразованного таким образом числа. Если результатом конъюнкции является логическая единица, значит на вход поступило известное ожидаемое число.

Из логических элементов являющихся дешифраторами можно строить дешифраторы на большое число входов. Каскадное подключение таких схем позволит наращивать число дифференцируемых переменных.


 

А также другие работы, которые могут Вас заинтересовать

35488. Информационные системы в экономике. Общая характеристика методов формирования решений 124.5 KB
  Принятие решения это всегда выбор определенного направления деятельности из нескольких возможных. Следует различать два процесса: формирование решения и принятие решения. Формирование решения это подготовка исходных данных и их обработка таким образом что бы было ясно последствия его принятия. Принятие решения это изучение различных вариантов их последствий и утверждение одного из них.
35489. Экономические информационные системы 139.5 KB
  Наиболее распространенными формами такого рода моделей являются: диаграммы потоков данных сети Петри сети управления и планирования модели баз данных модели баз знаний и т. Большинство бизнеспроцессов воспроизводятся с помощью диаграмм потоков данных. В зависимости от целей моделирования внимание может быть сосредоточено либо на процессах бизнеспроцесса либо на объектах либо на потоках данных. Если необходимо воспроизвести объекты и связи между ними то пользуются стандартом IDEF1 а при необходимости моделирования потоков данных ...
35490. Информационные системы. Процесс информатизации 78.5 KB
  Информационный процесс. Характеристика его составляющих Информационный процесс процесс получения создания сбора обработки накопления хранения поиска распространения и использования информации. Базовыми фундаментальными понятиями экономической информатики являются: данные; информация и экономическая информация; информационный процесс; задача и экономическая задача; знания; Данные В повседневной жизни мы сталкиваемся с сообщениями об объектах событиях процессах от различных источников. Информационная система это...
35491. Информационные системы. Шпаргалка 163 KB
  Для информационных систем характерно Многоаспектность Многофункциональность Различные сферы применения Поэтому классифицировать информационные системы сложно. Могут быть системы: автоматизированные слабо автоматизированные и не автоматизированные Уровень интеграции информационных процессов. Могут быть системы: интегрированные процессные информационные системы выполненные на единой информационной базе и обеспечивающие сквозную связь между всеми элементами ИС. Онги поддерживают управление бизнеспроцессами ...
35492. Информационные системы и информационные технологии 93.5 KB
  TPS Транзакционные технологии TPS Trnsctions Processing Systems предназначены для ежедневной обработки поступающих в виде документов сообщений счета акты накладные и т. MIS Технологии поддерживающие управленческие функции MIS Mngement Informtion Systems предназначены для автоматизации планирования деятельности предприятия организации а также для организации контроля над ходом выполнения планов производства и реализации продукции. DSS Технологии аналитической обработки данных DSS Decision Support Systems...
35493. Автоматизированные системы управления (АСУ) 784 KB
  Основные компоненты АСУ ТП предназначена для выработки и реализации управляющего воздействия на ТОУ и представляют собой человекомашинную систему обеспечивающую автоматизированный сбор и обработку информации необходимой для оптимизации управления объектом в соответствии с принятым критерием. Основные компоненты: КТС комплекс технических средств; СПО системное программное обеспечение; ФАУ функциональные алгоритмы управления. Информационное обеспечение информация характеризующая состояние системы управления системы классификации и...
35494. Моделирование информационных систем 702.5 KB
  Модели гидродинамики потоков в аппаратах. Модель идеального смешения Условия физической реализуемости этой модели выполняются если во всем потоке происходит полное смешение частиц потока. Модели идеального перемешивания соответствует апериодическое звено 1го порядка и имеет передаточную функцию. Математическое описание модели: где: с концентрация вещества; τ время пребывания частиц в реакторе; ω линейная скорость потока; х координата.
35495. Системы автоматизированной работы (САР) 5.7 MB
  Разомкнутые САР системы в которых входными воздействиями управляющего устройства являются только внешние задающие и возмущающие воздействия; при этом значение выходной величины ОУ может существенно отклоняться от его заданного значения в силу изменения внутренних свойств ОУ параметров САР. Устойчивость САР свойство системы возвращаться в исходное состояние равновесия после прекращения воздействия выведшего систему из этого состояния. уравнения частотные определяют связь между устойчивостью системы и формой частотных характеристик...
35496. Представление данных в электронных таблицах в виде диаграмм и графиков 1.25 MB
  Что нужно знать: что такое столбчатая линейчатая и круговая диаграмма какую информацию можно получить с каждой из них адрес ячейки в электронных таблицах состоит из имени столбца и следующего за ним номера строки например C15 формулы в электронных таблицах начинаются знаком = равно знаки и ^ в формулах означают соответственно сложение вычитание умножение деление и возведение в степень в заданиях ЕГЭ могут использоваться стандартные функции СУММ сумма СРЗНАЧ среднее значение МИН минимальное...