51353

Решение системы линейных уравнений методом Гаусса

Лабораторная работа

Информатика, кибернетика и программирование

Руководство программиста Описание структуры программы Функции PHod осуществляет прямой ход; OHod осуществляет обратный ход; Описание структур данных Описание глобальных переменных использующихся в программе: int n размер матрицы; flot rr массив в котором хрантся элементы матрицы; flot ms копия масива rr; flot x массив решений системы уравнений; FILE file файл из которого берется матрица; FILE file2 файл в который записываются результаты; Описание алгоритмов Метод Гаусса для решения системы линейных...

Русский

2014-02-10

158 KB

11 чел.

Федеральное агентство по образованию Российской Федерации

Государственное образовательное учреждение

высшего профессионального образования

Нижегородский государственный университет им. Н.И. Лобачевского

Факультет вычислительной математики и кибернетики

Отчёт по лабораторной работе

Решение системы линейных уравнений методом Гаусса

Выполнил:

 студент ф-та ВМК гр. 81-05

Ляшук Д.А.

Проверил:

 ассистент каф. МО ЭВМ, ВМК

Кукаева С.А.

Нижний Новгород

2013 г.


Содержание

[1] Решение системы линейных уравнений методом Гаусса

[2] Введение

[3] Постановка задачи

[4] Руководство пользователя

[5]
Руководство программиста

[5.1] Описание структур данных

[5.2] Описание алгоритмов

[6]
Заключение

[7] Приложения

[7.1] Приложение 1


Введение

Метод Гаусса — классический метод решения системы линейных алгебраических уравнений. Это метод последовательного исключения переменных, когда с помощью элементарных преобразований система уравнений приводится к равносильной системе ступенчатого (или треугольного) вида, из которой последовательно, начиная с последних (по номеру) переменных, находятся все остальные переменные.

Пусть исходная система выглядит следующим образом

Матрица  называется основной матрицей системы,  — столбцом свободных членов.

Тогда согласно свойству элементарных преобразований над строками основную матрицу этой системы можно привести к ступенчатому виду (эти же преобразования нужно применять к столбцу свободных членов):


Постановка задачи

При выполнении лабораторной работы необходимо разработать программный комплекс для поиска методом Гаусса решений систем линейных уравнений вида

A*x = b,                                   

где А - числовая не особая (т.е. имеющая не равный нулю детерминант) квадратная матрица размером N на N, b - числовой вектор-столбец размером N, а x - искомый вектор-столбец размером N. Программный комплекс должен обеспечивать:

задание пользователем исходной системы уравнений  в текстовом файле;

решение полученной системы уравнений методом Гаусса;

экранное отображение формирующейся системы уравнений, результата, а так же запись результатов в текстовый файл.

 


Руководство пользователя

Для работы с программой пользователю необходимо ввести значения элементов матрицы в файл inp.txt. Причем матрица в файле должна быть записана следующим образом – первое число должно означать размер матрицы, а далее со следующей строки записана сама матрица, элементы которой разделены пробелом. Затем запустить программу.

Файл inp.txt.

Работа программы.

Результаты вычислений записываются в файл out.txt.


Руководство программиста

Описание структуры программы

Функции

PHod – осуществляет прямой ход;

OHod – осуществляет обратный ход;

Описание структур данных

Описание глобальных переменных, использующихся в программе:

     int n – размер матрицы;

 float** arr – массив, в котором хрантся элементы матрицы;

 float** mas – копия масива arr;

 float* x – массив решений системы уравнений;

FILE* file – файл, из которого берется матрица;

FILE* file2 – файл в который записываются результаты;

Описание алгоритмов

Метод Гаусса для решения системы линейных уравнений состоит в приведении матрицы А посредством эквивалентных преобразований (не меняющих решение системы [12]) к треугольному виду и последующему поиску решений для вновь полученной матрицы. Краткая схема первой части метода Гаусса - прямого хода - состоит в следующем.

Алгоритм прямого хода.

  1.  Движение по главной диагонали матрицы  А.
    В цикле по переменной  
    I  от  1 до N выполняются  Шаг 2 Шаг 6.

Выбор главного элемента. Полагается R:=A[I, I]. Если R=0, то реализуется поиск главного элемента.

Преобразование текущей строки матрицы путем деления всех значений ее элементов на главный элемент. В цикле по переменной  J  от  I до N+1 выполняются вычисления
A[IJ]:= A[IJ] / R.

Вычитание текущей строки из всех ниже расположенных строк с занулением I - ого элемента в каждой из них. В цикле по K от I + 1 до N выполняются Шаг 5 Шаг 6.

Полагается m:= A[KI].

Вычитание из очередной строки текущей строки. В  цикле по J  от  I  до  N+1  делаем A[KJ]:= A[KJ] - A[IJ]* m.

Конец алгоритма.

Алгоритм обратного хода.

  1.  Поиск, начиная с последнего, всех неизвестных системы - элементов вектора x. В цикле по переменной I от N до 0 выполняются Шаг 2 Шаг 3.

Задается начальное значение элемента x[I].
x[I]:=A[I,N] .

Корректируется искомое значение x[I]. В цикле по J от N-1 до I+1 (в случае, когда I=N, этот шаг не выполняется) производятся вычисления x[I]:=  x[I] - x[J]* A[IJ].

Конец алгоритма. 

Поиск главного элемента

  1.  Если главный элемент R=A[II] равен нулю, то в остальных элементах этого столбца ищется первый ненулевой элемент. Если такой найден и его номер равен K, то меняются местами I -ая и K -ая строки матрицы А.


Заключение

В данной программе реализован метод гаусса, с помощью которого решаются системы линейных уравнений. В ней реализован прямой ход, где считается сначала верхняя треугольная матрица, и обратный ход, где находятся решения уравнений.


Приложения

Приложение 1

Исходный код программы

#define _CRT_SECURE_NO_WARNINGS

#include<stdio.h>

#include<Windows.h>

void phod(float**,int);

void ohod(float**, float*, int);

int main()

{

 int n,i,j;

 float** arr;

 float** mas;

 float* x;

FILE* file;

FILE* file2;

 

{

 file=fopen("inp.txt","r+");

 fscanf(file,"%d\n",&n);

}

   x=(float*)malloc(n*sizeof(float));

arr=(float**)malloc(n*sizeof(float*));

 for(i=0; i<n; ++i)

{

 arr[i]=(float*)malloc(n*sizeof(float));

}

mas=(float**)malloc(n*sizeof(float*));

 for(i=0; i<n; ++i)

{

 mas[i]=(float*)malloc(n*sizeof(float));

}

 for(i=0; i<n; ++i)

{

 for(j=0; j<n+1; ++j)

 {

  fscanf(file,"%f ",&arr[i][j]);

  mas[i][j]=arr[i][j];

 }

}

 //вывод массива  

 for(i=0; i<n; ++i)

{

 for(j=0; j<n+1; ++j)

 {

  printf("%.3f ", arr[i][j]);

 }

 printf("\n");

}

printf("\n");

//прямой ход  

 phod(arr,n);

 //зануляем массив x

  for(i=0; i<n+1; ++i)

  {

   x[i]=0;

  }   

//обратный ход

ohod(arr,x,n);

 

 for(i=0; i<n; ++i)

  {

   printf("\n x%d=%.4f ",i+1,x[i]);

  }

//запись результатов в файл

 

 file2=fopen("out.txt","w");

 

 for(i=0; i<n; ++i)

 {

  fprintf(file2,"x%d=%.4f  ",i+1,x[i]);

 }

 fprintf(file2,"\n\n");

 fclose(file2);

 

{

 return 0;

}

 

}

 //прямой ход

void phod(float** arr,int n)

{

 int i,j,k,l;

 float r,m;

 float h;

 

 

  for(i=0; i<n; ++i)

  {

   if (arr[i][i]==0)

   {

    for(l=i+1; l<n; ++l)

    {

     if (arr[l][i]!=0)

     {

      for(j=0; j<n+1; ++j)

      {

      h=arr[l][j];

      arr[l][j]=arr[i][j];

      arr[i][j]=h;

      }

     }

   }

   }

   r=(arr[i][i]);

   for(j=0; j<n+1; ++j)

   {

  (arr[i][j])= (arr[i][j])/r;

   }

  

   for(k=i+1; k<n; ++k)

  {

   m=arr[k][i];

   for(j=i; j<n+1; ++j)

   {

    arr[k][j]= arr[k][j]- arr[i][j]*m;

   }

     }

    }

// вывод прямого хода

 for(i=0; i<n; ++i)

{

 for(j=0; j<n+1; ++j)

 {

  printf("%.3f ", arr[i][j]);

   

 }

printf("\n");

}

}

//обратный ход

void ohod(float** arr, float* x, int n)

{

 int i,j;

 float c;

  for(i=n-1; i>=0; --i)

  {

   c=arr[i][n];

   x[i]=c;

   for(j=n-1; j>i; j--)

   {

    x[i]=x[i]-x[j]*arr[i][j];

   }

  }

  system("pause");

}


 

А также другие работы, которые могут Вас заинтересовать

17532. Базові поняття С++ 184.5 KB
  Лабораторна робота №1 Базові поняття Мета роботи вивчити правила синтаксису мови програмування С особливості використання різних типів даних операції потокового введення / виведення. Теоретичні положення 1.1 Правила синтаксису Множина символів ...
17533. Реалізація розгалужених обчислювальних процесів в С++ 109 KB
  Лабораторна робота №2 Реалізація розгалужених обчислювальних процесів. Мета роботи вивчити особливості використання: умовного оператора; стандартних математичних функцій. Умовний оператор Умовний оператор має наступний формат: ...
17534. Дослідження операторів ітерації (циклів) в С++ 58 KB
  Лабораторна робота №3 Дослідження операторів ітерації циклів Мета Набути практичних навичок щодо використання циклів у програмного коду. Теоретичні відомості Цикл оператор ітерації це різновид керуючої конструкції яка призначена для організації багат
17535. Індексований тип (одновимірні масиви) в С++ 77 KB
  Дослідження індексованого типу одновимірні масиви Мета лабораторної роботи дослідити опис ініціювання індексованого типу та навчитися виконувати практичні завдання над ним. Завдання Написати програму на мові Сі яка складається
17536. Дослідження індексованого типу (одновимірні масиви) в С++ 55.5 KB
  ЛАБОРАТОРНА РОБОТА № 5 Дослідження індексованого типу одновимірні масиви Мета лабораторної роботи дослідити опис ініціювання індексованого типу та навчитися виконувати практичні завдання над ним. Мета: набути умінь і навичок роботи зі статичними масивами
17537. ДОСЛІДЖЕННЯ ВКАЗІВНИКІВ ТА ДИНАМІЧНОЇ ПАМ’ЯТІ в С++ 85 KB
  ЛАБОРАТОРНА РОБОТА № 6 ДОСЛІДЖЕННЯ ВКАЗІВНИКІВ ТА ДИНАМІЧНОЇ ПАМЯТІ Мета роботи дослідити механізми створення та використання вказівників та механізми роботи з динамічною памяттю. Завдання Вивчити поняття вказівників та методи виділення динамічної п...
17538. Дослідження багатовимірних масивів на С++ 184 KB
  ЛАБОРАТОРНА РОБОТА № 7 Дослідження багатовимірних масивів на С. Мета лабораторної роботи ознайомитися з основними принципами роботи з багатовимірними масивами. Теоретичні положення Багатовимірний масив це масив який має дві чи більше розмірност
17539. Робота з рядками символів. Обробка масивів на С++ 71.5 KB
  Основи програмування та алгоритмічні мови Лабораторна робота №8 Лабораторна робота №8 Робота з рядками символів. Обробка масивів Мета роботи вивчити особливості опису і використання символьних маси...
17540. Системи числення (позиційні, непозиційні) 1.16 MB
  Лабораторна робота №1 Тема: Системи числення позиційні непозиційні. Мета: Виконати переведення чисел між різними системами числення та основні алгебраїчні операції між числами двійкової системи. Теоретичні відомості Сукупність прийомів та правил найменування й...