51354

КОРРЕКЦИЯ ЗАМКНУТОЙ САУ

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

Определение характеристик разомкнутой системы 1. Собрать схему исследования разомкнутой системы автоматического регулирования. Сделать вывод об устойчивости или неустойчивости замкнутой системы построенной на основе такой разомкнутой системы. По величине запаса фазы определить тип переходной характеристики замкнутой системы полученной на основе анализируемой разомкнутой системы колебательная апериодическая близкая к апериодической с небольшим перерегулированием.

Русский

2014-02-10

200.72 KB

5 чел.

ЛАБОРАТОРНАЯ РАБОТА № 3

КОРРЕКЦИЯ ЗАМКНУТОЙ САУ

1. Определение характеристик разомкнутой системы

1.1. Собрать схему исследования разомкнутой системы автоматического регулирования . Система состоит из звена вычитателя X1, регулятора и объекта. Регулятор и объект – это усилители с равной верхней частотой среза. Их суммарный коэффициент усиления равен 1000.

1.2. В режиме анализа Transient получить переходную характеристику (переходную функцию) разомкнутой САУ (реакцию на единичный скачок). Время расчета 2 мс. Максимальный шаг расчета 1 мкс. На одном графике вывести напряжение в узле In, на втором – напряжение в узлах Out. Перенести графики в отчет.

1.3. В режиме анализа AC получить ЛАЧХ и ЛФЧХ разомкнутой САУ. Частотный диапазон 10 Гц–1 МГц, число точек 1001, шаг по оси частот логарифмический. Масштаб для по оси Y для ЛАЧХ от -60 до 80 дБ, шаг сетки 20 дБ. Масштаб для по оси Y для ЛФЧХ от -270º до 90º, шаг сетки 90º. Перенести графики в отчет.

1.4. Определить запас по фазе и запас по амплитуде. Сделать вывод об устойчивости или неустойчивости замкнутой системы, построенной на основе такой разомкнутой системы. По величине запаса фазы определить тип переходной характеристики замкнутой системы, полученной на основе анализируемой разомкнутой системы (ко-лебательная, апериодическая, близкая к апериодической с небольшим перерегулированием).

Запас по фазе = -178+180= 2 – запас по фазе положительный, значит система будет устойчивой.

Запас по амплитуде приблизительно равен 11 Дб, следовательно система будет устойчивой.

2. Определение временных характеристик замкнутой нескорректированной системы

2.1. В схеме  замкнуть ключ Switch1. Получится замкнутая система автоматического управления, поддерживающая на выходе напряжение, равное входному сигналу In.

2.2. В режиме анализа Transient получить переходную характеристику (переходную функцию) замкнутой САУ (реакцию на единичный скачок). Время расчета 2 мс. Максимальный шаг расчета 1 мкс. На одном графике вывести напряжение в узле In, на втором – напряжение в узлах Out. Перенести графики в отчет.

2.3. .Определить величину перерегулирования и время выхода на режим (время установления переходного процесса). Полученные результаты внести в отчет.

Время выхода на режим 202m.

Величина перерегулирования: 1.8.

3. Коррекция системы при помощи инерционного звена

3.1. Коррекция при помощи инерционного звена является простейшим типом коррекции замкнутой системы. Для того, чтобы замкнутая система была устойчивая и не было колебаний при выходе на режим, необходимо, чтобы частотная характеристика разомкнутой системы пересекала уровень 0дБ с наклоном 20 дб/дек.

Инерционное звено обеспечивает спад 20дб/дек начиная с частоты среза для этого звена. Частота среза ω определяется постоянной времени звена: ω=1/T или f=1/(2πT).

T=0.12.

3.2. Определить постоянную времени инерционного звена, необходимого для коррекции заданной САУ. Включить в состав САУ последовательное инерционное корректирующее звено. Задать для инерционного звена вычисленную постоянную времени.

3.3. В режиме анализа AC получить ЛАЧХ и ЛФЧХ разомкнутой САУ. Частотный диапазон 0.1 Гц–1 МГц, число точек 1001, шаг по оси частот логарифмический. Мас- штаб для по оси Y для ЛАЧХ от -60 до 80 дБ, шаг сетки 20 дБ. Масштаб для по оси Y для ЛФЧХ от -270º до 90º, шаг сетки 90º. Перенести графики в отчет.

3.4. Замкнуть ключ Switch1. В режиме анализа Transient получить переходную характеристику (переходную функцию) замкнутой САУ (реакцию на единичный скачок). Время расчета 4 мс. Максимальный шаг расчета 1 мкс. На одном графике вы вести напряжение в узле In, на втором – напряжение в узлах Out. Перенести графики в отчет.

3.5. .Определить величину перерегулирования и время выхода на режим (время установления переходного процесса). Полученные результаты внести в отчет.

Время выхода на режим: 1.621m

Величина перерегулирования:1.45.

4. Оптимальная коррекция САУ методом асимптотических ЛАЧХ

Недостатком коррекции при помощи инерционного звена является очень сильное уменьшение быстродействия скорректированной системы (время выхода на установившейся режим значительно увеличивается). Для повышения быстродействия можно сформировать АЧХ системы, которая будет иметь наклон 20 дБ/дек лишь вблизи уровня 0дБ, а на меньших частотах – 40дБ или 60дБ. (начиная с частоты среза нескорректированной системы). Этот метод используется при выполнении курсовой работы и принципы построения ЛАЧХ скорректированной системы были рас- смотрены в ходе консультации по КР.

4.1. По ЛАЧХ разомкнутой нескорректированной системы , полученной в п. 1.3 построить асимптотическую ЛАЧХ.

4.2. Построить желаемую асимптотическую ЛАЧХ скорректированной системы. Определить тип корректирующих звеньев, которые необходимо включить в САУ для получения желаемой ЛАЧХ. Определить постоянные времени этих звеньев.

4.3. Построить схему скорректированной САУ .

F1=1.686 kГц;T=9u;(T=34u).

F2=15.96kГц;

F3=164.76kГц;

w1=10588,08

w2=1034692;T=0.096n

4.4. В режиме анализа AC получить ЛАЧХ и ЛФЧХ разомкнутой САУ. Частотный диапазон 10Гц–1 МГц, число точек 1001, шаг по оси частот логарифмический. Масштаб для по оси Y для ЛАЧХ от -60 до 80 дБ, шаг сетки 20 дБ. Масштаб для по оси Y для ЛФЧХ от -270º до 90º, шаг сетки 90º. Перенести графики в отчет.

4.5. Сравнить полученную ЛАЧХ с желаемой асимптотической скорректированной ЛАЧХ. При несовпадении внести коррективы в постоянные времени звеньев и повторить п. 4.4.

4.6. Определить запас по фазе и запас по амплитуде. Сделать вывод об устойчивости или неустойчивости замкнутой системы, построенной на основе такой разомкнутой системы. По величине запаса фазы определить тип переходной характеристики замкнутой системы, полученной на основе анализируемой разомкнутой системы (ко-лебательная, апериодическая, близкая к апериодической с небольшим перерегулированием).

4.7. Замкнуть ключ Switch1. В режиме анализа Transient получить переходную характеристику (переходную функцию) замкнутой САУ (реакцию на единичный скачок). Время расчета 100 мкс. Максимальный шаг расчета 10 нс. На одном графике вывести напряжение в узле In, на втором – напряжение в узлах Out. Перенести графики в отчет.

4.8. .Определить величину перерегулирования и время выхода на режим (время установления переходного процесса). Полученные результаты внести в отчет.

Время выхода:26.3u;(17.6u).

Величина перерегулирования:1.559.(1.090)

4.9. Сравнить полученные результаты с результатами п. 3.5. Сделать вывод о быстродействии полученной скорректированной системы автоматического регулирования.

Вывод: получили более быстро действенную и точную систему.


 

А также другие работы, которые могут Вас заинтересовать

77309. СОВРЕМЕННЫЕ ТЕНДЕНЦИИ В РАЗРАБОТКЕ СРЕДСТВ ВИЗУАЛИЗАЦИИ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ ПАРАЛЛЕЛЬНЫХ ВЫЧИСЛЕНИЙ 33 KB
  Схема функционирования разрабатываемых в последние годы систем отладки примерно следующая в ходе вычислений собираются данные о работе процессов которые являются входными при построении того или иного вида отображения например графов вызовов или графов потоков данных. Однако все эти приемы скорее носят характер паллиативов изза возникающих проблем с реализацией как самого процесса вывода данных так и с интерфейсом удобным для программиста. В этой связи можно рассмотреть методику и среду распределенного и параллельного...
77310. ИССЛЕДОВАНИЕ ПОЛЬЗОВАТЕЛЕЙ СРЕДЫ ВИРТУАЛЬНОЙ РЕАЛЬНОСТИ 29.5 KB
  В этой связи можно рассмотреть историю развития средств интерактивной машинной графики предназначенных для обеспечения интерпретации данных и отметить увеличение ldquo;плотностиrdquo; при передаче информации от порядка тысячи элементарных векторов на экране до генерации в реальном времени практически полноценных фотореалистичных фильмов. Это состояние характеризуется как ощущение пребывания в ldquo;другом миреrdquo; в отличие от обычного для компьютерной графики...
77311. Психологические феномены виртуальной реальности 29 KB
  Ниже даются определения основных состояний переживаемых в виртуальной реальности показана их связь и взаимодействие что представляется важным как для дальнейших исследований так и для разработки систем компьютерной визуализации использующих среды виртуальной реальности. Среды виртуальной реальности являются развитием симуляторов и тренажеров созданных еще в 60ые и 70ые годы XX столетия для летчиков и космонавтов. Одновременно с феноменом присутствия описывается феномен погружения как явление когда органы чувств пользователя...
77312. MODERN TENDENCIES IN THE DEVELOPMENT OF VISUALIZATION TOOLS FOR PARALLEL COMPUTING SOFTWARE 25 KB
  Urosov s fr s one cn see it is nturlly to use visuliztion tools both for needs of prllel progrmming nd presenttion of redymde prllel softwre. In the mid 90s of the 20th century mny systems for softwre visuliztion of prllel computing hve been developed. Judging by our observtions lst yers the intensity of development in the field of Softwre Visuliztion declined considerbly.
77313. СИСТЕМНЫЕ И ВИЗУАЛИЗАЦИОННЫЕ ПРЕДПОСЫЛКИ СОЗДАНИЯ ВИРТУАЛЬНОГО ИСПЫТАТЕЛЬНОГО СТЕНДА 84.5 KB
  Важную роль в большинстве этих системах играют средства визуализации связанные со сложной вычислительной моделью. Причем система визуализации служит в тоже время и средством управления численным экспериментом. Успех компьютерного эксперимента во многом зависит от средств визуализации которые могут использовать технологии виртуальной реальности как в ldquo;чистомrdquo; виде так и в варианте ldquo;расширеннойrdquo; ugumented реальности. Известная схема получения результата в области численного компьютерного моделирования...
77314. ФЕНОМЕНЫ ПРИСУТСТВИЯ И ВОВЛЕЧЁННОСТИ В СРЕДАХ ВИРТУАЛЬНОЙ РЕАЛЬНОСТИ 27 KB
  Ключевым понятием позволяющим отличить виртуальную реальность от трехмерной графики является феномен присутствия определяемый как перцептивная иллюзия непосредственности или чаще как sense of beening there ощущение нахождения себя там в противоположность наблюдению за изображением со стороны. Отдельно указывается что при переживании присутствия пользователь забывает о машинах поставляющих ему изображения. Изучению присутствия посвящен достаточно обширный пласт работ которые в основном концентрируются на определении...
77315. ФЕНОМЕН ПРИСУТСТВИЯ И ЕГО ВЛИЯНИЕ НА ЭФФЕКТИВНОСТЬ РЕШЕНИЯ ИНТЕЛЛЕКТУАЛЬНЫХ ЗАДАЧ В СРЕДАХ ВИРТУАЛЬНОЙ РЕАЛЬНОСТИ 125.5 KB
  Эта статья посвящена изучению особенностей взаимодействия пользователя с виртуальной реальностью состояния присутствия его влияние на способности пользователя решать задачи на пространственное преобразование тест кубики Коса. Основным фактором определяющим виртуальную реальность в отличие от объемной компьютерной графики является состояние присутствия которое большинством авторов характеризуется как ощущение пребывания в другом мире отличающееся от обычного для компьютерной графики наблюдения за картинкой на экране Fencott 1999;...
77316. К обоснованию проекта визуализационной компоненты виртуального испытательного стенда 82 KB
  Характерным в этой работе является во-первых огромная роль технологий виртуальной реальности в визуализации а во-вторых неразрывная связь системы визуализации и мощной вычислительной модели для которой система визуализации служит средством управления численным экспериментом. Вычислительный компьютерный эксперимент известный с 70-ых годов становится реальным инструментом исследования после появления супер-производительных параллельных вычислителей и мощных средств визуализации включая средства виртуальной реальности. Предметом...
77317. SEARCH AND ADAPTATION OF METAPHORS FOR HUMAN-COMPUTER INTERACTION 47.5 KB
  on The complexity of the metphor serching is relted to the fct tht the serch re is very wide the whole world. t this point serch of metphors is often spontneous nd unstructured process. Tht is why it is importnt to py ttention to resonble methods of selection nd dpttion of the interfce metphors. In this rticle we would like to highlight the min fctors ffecting the process of finding interfce metphors nd to tell bout the methods of selection nd...