51354

КОРРЕКЦИЯ ЗАМКНУТОЙ САУ

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

Определение характеристик разомкнутой системы 1. Собрать схему исследования разомкнутой системы автоматического регулирования. Сделать вывод об устойчивости или неустойчивости замкнутой системы построенной на основе такой разомкнутой системы. По величине запаса фазы определить тип переходной характеристики замкнутой системы полученной на основе анализируемой разомкнутой системы колебательная апериодическая близкая к апериодической с небольшим перерегулированием.

Русский

2014-02-10

200.72 KB

4 чел.

ЛАБОРАТОРНАЯ РАБОТА № 3

КОРРЕКЦИЯ ЗАМКНУТОЙ САУ

1. Определение характеристик разомкнутой системы

1.1. Собрать схему исследования разомкнутой системы автоматического регулирования . Система состоит из звена вычитателя X1, регулятора и объекта. Регулятор и объект – это усилители с равной верхней частотой среза. Их суммарный коэффициент усиления равен 1000.

1.2. В режиме анализа Transient получить переходную характеристику (переходную функцию) разомкнутой САУ (реакцию на единичный скачок). Время расчета 2 мс. Максимальный шаг расчета 1 мкс. На одном графике вывести напряжение в узле In, на втором – напряжение в узлах Out. Перенести графики в отчет.

1.3. В режиме анализа AC получить ЛАЧХ и ЛФЧХ разомкнутой САУ. Частотный диапазон 10 Гц–1 МГц, число точек 1001, шаг по оси частот логарифмический. Масштаб для по оси Y для ЛАЧХ от -60 до 80 дБ, шаг сетки 20 дБ. Масштаб для по оси Y для ЛФЧХ от -270º до 90º, шаг сетки 90º. Перенести графики в отчет.

1.4. Определить запас по фазе и запас по амплитуде. Сделать вывод об устойчивости или неустойчивости замкнутой системы, построенной на основе такой разомкнутой системы. По величине запаса фазы определить тип переходной характеристики замкнутой системы, полученной на основе анализируемой разомкнутой системы (ко-лебательная, апериодическая, близкая к апериодической с небольшим перерегулированием).

Запас по фазе = -178+180= 2 – запас по фазе положительный, значит система будет устойчивой.

Запас по амплитуде приблизительно равен 11 Дб, следовательно система будет устойчивой.

2. Определение временных характеристик замкнутой нескорректированной системы

2.1. В схеме  замкнуть ключ Switch1. Получится замкнутая система автоматического управления, поддерживающая на выходе напряжение, равное входному сигналу In.

2.2. В режиме анализа Transient получить переходную характеристику (переходную функцию) замкнутой САУ (реакцию на единичный скачок). Время расчета 2 мс. Максимальный шаг расчета 1 мкс. На одном графике вывести напряжение в узле In, на втором – напряжение в узлах Out. Перенести графики в отчет.

2.3. .Определить величину перерегулирования и время выхода на режим (время установления переходного процесса). Полученные результаты внести в отчет.

Время выхода на режим 202m.

Величина перерегулирования: 1.8.

3. Коррекция системы при помощи инерционного звена

3.1. Коррекция при помощи инерционного звена является простейшим типом коррекции замкнутой системы. Для того, чтобы замкнутая система была устойчивая и не было колебаний при выходе на режим, необходимо, чтобы частотная характеристика разомкнутой системы пересекала уровень 0дБ с наклоном 20 дб/дек.

Инерционное звено обеспечивает спад 20дб/дек начиная с частоты среза для этого звена. Частота среза ω определяется постоянной времени звена: ω=1/T или f=1/(2πT).

T=0.12.

3.2. Определить постоянную времени инерционного звена, необходимого для коррекции заданной САУ. Включить в состав САУ последовательное инерционное корректирующее звено. Задать для инерционного звена вычисленную постоянную времени.

3.3. В режиме анализа AC получить ЛАЧХ и ЛФЧХ разомкнутой САУ. Частотный диапазон 0.1 Гц–1 МГц, число точек 1001, шаг по оси частот логарифмический. Мас- штаб для по оси Y для ЛАЧХ от -60 до 80 дБ, шаг сетки 20 дБ. Масштаб для по оси Y для ЛФЧХ от -270º до 90º, шаг сетки 90º. Перенести графики в отчет.

3.4. Замкнуть ключ Switch1. В режиме анализа Transient получить переходную характеристику (переходную функцию) замкнутой САУ (реакцию на единичный скачок). Время расчета 4 мс. Максимальный шаг расчета 1 мкс. На одном графике вы вести напряжение в узле In, на втором – напряжение в узлах Out. Перенести графики в отчет.

3.5. .Определить величину перерегулирования и время выхода на режим (время установления переходного процесса). Полученные результаты внести в отчет.

Время выхода на режим: 1.621m

Величина перерегулирования:1.45.

4. Оптимальная коррекция САУ методом асимптотических ЛАЧХ

Недостатком коррекции при помощи инерционного звена является очень сильное уменьшение быстродействия скорректированной системы (время выхода на установившейся режим значительно увеличивается). Для повышения быстродействия можно сформировать АЧХ системы, которая будет иметь наклон 20 дБ/дек лишь вблизи уровня 0дБ, а на меньших частотах – 40дБ или 60дБ. (начиная с частоты среза нескорректированной системы). Этот метод используется при выполнении курсовой работы и принципы построения ЛАЧХ скорректированной системы были рас- смотрены в ходе консультации по КР.

4.1. По ЛАЧХ разомкнутой нескорректированной системы , полученной в п. 1.3 построить асимптотическую ЛАЧХ.

4.2. Построить желаемую асимптотическую ЛАЧХ скорректированной системы. Определить тип корректирующих звеньев, которые необходимо включить в САУ для получения желаемой ЛАЧХ. Определить постоянные времени этих звеньев.

4.3. Построить схему скорректированной САУ .

F1=1.686 kГц;T=9u;(T=34u).

F2=15.96kГц;

F3=164.76kГц;

w1=10588,08

w2=1034692;T=0.096n

4.4. В режиме анализа AC получить ЛАЧХ и ЛФЧХ разомкнутой САУ. Частотный диапазон 10Гц–1 МГц, число точек 1001, шаг по оси частот логарифмический. Масштаб для по оси Y для ЛАЧХ от -60 до 80 дБ, шаг сетки 20 дБ. Масштаб для по оси Y для ЛФЧХ от -270º до 90º, шаг сетки 90º. Перенести графики в отчет.

4.5. Сравнить полученную ЛАЧХ с желаемой асимптотической скорректированной ЛАЧХ. При несовпадении внести коррективы в постоянные времени звеньев и повторить п. 4.4.

4.6. Определить запас по фазе и запас по амплитуде. Сделать вывод об устойчивости или неустойчивости замкнутой системы, построенной на основе такой разомкнутой системы. По величине запаса фазы определить тип переходной характеристики замкнутой системы, полученной на основе анализируемой разомкнутой системы (ко-лебательная, апериодическая, близкая к апериодической с небольшим перерегулированием).

4.7. Замкнуть ключ Switch1. В режиме анализа Transient получить переходную характеристику (переходную функцию) замкнутой САУ (реакцию на единичный скачок). Время расчета 100 мкс. Максимальный шаг расчета 10 нс. На одном графике вывести напряжение в узле In, на втором – напряжение в узлах Out. Перенести графики в отчет.

4.8. .Определить величину перерегулирования и время выхода на режим (время установления переходного процесса). Полученные результаты внести в отчет.

Время выхода:26.3u;(17.6u).

Величина перерегулирования:1.559.(1.090)

4.9. Сравнить полученные результаты с результатами п. 3.5. Сделать вывод о быстродействии полученной скорректированной системы автоматического регулирования.

Вывод: получили более быстро действенную и точную систему.


 

А также другие работы, которые могут Вас заинтересовать

21495. ВЕДЕНИЕ ЧЕРЕПНО-МОЗГОВОЙ ТРАВМЫ 54.5 KB
  Это потенциально опасно, т.к. вызывает избыточную вазоконстрикцию и приводит к ишемии. Агрессивная гипервентиляция может стать неэффективной спустя несколько часов и должна использоваться только на короткий срок в абсолютно неотложных ситуациях. В этих ситуациях с целью снижения ВЧД пациента часто используется отсоединение от респиратора и ручная вентиляция
21496. ВОДНО-ЭЛЕКТРОЛИТНЫЙ ОБМЕН. НАИБОЛЕЕ ОПАСНЫЕ ФОРМЫ ЕГО НАРУШЕНИЙ 25 KB
  Как правило, все больные с тяжёлой травмой должны быть релаксированны на первые 24 часа, так как неконтролируемые подъёмы внутригрудного давления (в сочетании с подъёмами ЦВД и ВЧД) должны быть предупреждены. После 24 часов миорелаксация часто прекращается. Если на этой стадии пациент остаётся хорошо седатированным, без возбуждения, которое приводит к подъёму ВЧД
21497. СТАНДАРТНЫЕ ПРАВИЛА И РЕКОМЕНДАЦИИ ПО БЕЗОПАСНОСТИ АНЕСТЕЗИОЛОГИЧЕСКОЙ ПРАКТИКИ 66.5 KB
  Аргументация 1 оксигенация: Анестезиолог несет ответственность за адекватность концентрации кислорода в газовой дыхательной смеси и артериальной крови больного во время всего периода операции. Нейтральная позиция головы Предупреждает нарушение оттока крови по венам шеи. Использование лейкопластыря для фиксации эндотрахеальной трубки Фиксация трубки бинтом может вызвать нарушение оттока крови по венам шеи. Подтвердить адекватность оксигенации пульсоксиметрия газовый анализ крови  Обеспечить нормальную температуру тела  Проверить...
21498. ИСКУССТВЕННАЯ И ВСПОМОГАТЕЛЬНАЯ ВЕНТИЛЯЦИЯ ЛЕГКИХ 77 KB
  В частности содержание газов в крови не определяли в 5863 случаев во время интенсивной терапии мониторинг вентиляции и оксигенации не применяли в 5874 случаев. Если исследовали содержание газов в крови то часто не было интерпретации их и соответствующей коррекции респираторной терапии: при тяжелой гипокапнии РаСО2 снижалось иногда до 16 мм рт. аппарата ИВЛ Vi и выдыхаемого больным Ve л мин; частота дыхания аппарата больного Fi Fe мин1; давление в системе аппаратбольной Ppeк Pmen PEEP; отношение продолжительность...
21500. Интенсивная терапия травматического и ожогового шока 146 KB
  Определение патогенез шока. Но он всегда проявляется расстройствами кровообращения на тканевом уровне в виде кризиса микроциркуляции и эти нарушения косвенно отражаются на клинических проявлениях шока. Характерным для шока является возрастание активности симпатоадреналовой системы что проявляется тахикардией но иногда высокая симпатоадреналовая активность может быть завуалирована действием основного фактора гистамина при анафилактическом шоке сердечной блокады в результате повреждения проводящей системы тампонады перикарда.
21501. ИНФЕКЦИОННЫЕ ОСЛОЖНЕНИЯ У ПОСТРАДАВШИХ С ТЯЖЕЛОЙ МЕХАНИЧЕСКОЙ ТРАВМОЙ И БОЛЬНЫХ ХИРУРГИЧЕСКОГО ПРОФИЛЯ (Антибактериальная профилактика и химиотерапия) 116.5 KB
  Успехи достигнутые современной хирургией и в частности хирургией повреждений позволили существенно снизить вероятность развития инфекционных осложнений связанных с первичной контаминацией раны. Этиологическая структура возбудителей инфекционных осложнений Структура возбудителей инфекционных осложнений определяется следующими основными факторами: эволюцией микроорганизмов и приобретением ими резистентности к антибактериальным препаратам; путями передачи возбудителя Изменения структуры возбудителей инфекционных осложнений у пострадавших с...
21502. ИНФУЗИОННО-ТРАНСФУЗИОННАЯ ТЕРАПИЯ ПРИ КРИТИЧЕС 24.5 KB
  Влияние инфузионной терапии на организм. Методы и техника проведения инфузионной терапии. Техническое обеспечение инфузионной терапии. Осложнения инфузионной терапии.
21503. Инфузионно-трансфузионная терапия при критических состояниях 136 KB
  Ее развитие определялось прежде всего уровнем научных разработок по изучению электролитного состава крови для поддержания ионного равновесия плазмы придания ей коллоидных и питательных свойств и создания в конечном итоге оптимальных по составу кровезамещающих растворов пригодных для терапии тех или иных заболеваний. Поэтому в это время появляются ряд новых препаратов созданных на основе солевых растворов с добавлением гомогенной или обработанной физическими или химическими методами гетерогенной плазмы крови жидкость Петрова сыворотка...