51485

ИНТЕРПОЛЯЦИЯ

Лабораторная работа

Информатика, кибернетика и программирование

В данной работе был рассмотрен метод наименьших квадратов для интерполяции функции, заданной при помощи выборки ее значений в нескольких точках

Русский

2014-02-11

114 KB

1 чел.

Министерство образования и науки Украины

Приазовский государственный технический университет

Факультет информационных технологий

Кафедра автоматизации технологических процессов и производств

ОТЧЕТ

по лабораторной работе № 3

«ИНТЕРПОЛЯЦИЯ»

по дисциплине «Адаптивные системы АУТП»

Выполнил

студ. гр. КИТ-11-М    (подпись, дата)   Бабаенко Д.А.

Принял

профессор     (подпись, дата)   Зайцев В.С.

Мариуполь, 2011


Лабораторная работа № 3

Цель работы: изучить способы интерполяции функций, реализовать метод наименьших квадратов для интерполяции заданной выборки.

Ход работы:

Соответственно номеру варианта имеем выборку чисел:

X

1

2

3

4

5

6

7

Y

1.92

2.19

1.67

2.20

2.27

2.21

2.40

Задание 1:  занесем в окно MatLab следующий код программы:

%  interpolation

% method of splines

x=[1 2 3 4 5 6 7];

y=[1.92 2.19 1.67 2.20 2.27 2.21 2.40];

plot(x,y,'ko')

xi=[x(1):0.01:x(length(x))];

ynear=interp1(x,y,xi,'nearest');

yline=interp1(x,y,xi,'linear');

yspline=interp1(x,y,xi,'spline');

hold on

plot(xi,ynear,'k',xi,yline','k:',xi,yspline,'k-.')

title('different ways of interpolation of functions')

xlabel('\itx')

ylabel('\ity')

legend('tabulare function', 'nearest', 'linear', 'spline',4)

p4=polyfit(x,y,4)

p5=polyfit(x,y,5)

p6=polyfit(x,y,6)

Результатом работы будут следующие графики:

Рисунок 1 – Результат выполнения задания 1


Задание 2:  занесем в окно
MatLab следующий код программы:

%  interpolation

d=[1 2 3 4 5 6 7];

g=[1.92 2.19 1.67 2.20 2.27 2.21 2.40];

p1=polyfit(d,g,1);

p2=polyfit(d,g,2)

p3=polyfit(d,g,3);

p4=polyfit(d,g,4)

p5=polyfit(d,g,5);

p6=polyfit(d,g,6);

x=(0.1:0.02:7);

v=0.0117*x.^2-0.0190*x+1.9657;

s=-0.0027*x.^4+0.0385*x.^3-0.1708*x.^2+0.2973*x+1.8057;

hold on;

plot(x,v,x,s,d,g,'ko')

Результатом работы будут следующие графики:

Рисунок 2 – Результат выполнения задания 2


Реализовав алгоритм интерполяции на языке С++, получаем следующие результаты ее работы:

Рисунок 3 – Результат работы программы

Как видно на рисунке, результаты расчетов Мatlab и программы совпадают. Текст программы приведен в приложении 1.


Приложение 1

#include <stdio.h>

#include <conio.h>

#include <process.h>

#include <math.h>

float *a, *b, *x, *y, **sums;

int N, K;

//N - number of data points

//K - polinom power

//K<=N

char filename[256];

FILE* InFile=NULL;

void count_num_lines(){

  //count number of lines in input file - number of equations

  int nelf=0;       //non empty line flag

  do{

      nelf = 0;

      while(fgetc(InFile)!='\n' && !feof(InFile)) nelf=1;

      if(nelf) N++;

  }while(!feof(InFile));

}

void freematrix(){

  //free memory for matrixes

  int i;

  for(i=0; i<K+1; i++){

      delete [] sums[i];

  }

  delete [] a;

  delete [] b;

  delete [] x;

  delete [] y;

  delete [] sums;

}

void allocmatrix(){

  //allocate memory for matrixes

  int i,j,k;

  a = new float[K+1];

  b = new float[K+1];

  x = new float[N];

  y = new float[N];

  sums = new float*[K+1];

  if(x==NULL || y==NULL || a==NULL || sums==NULL){

      printf("\nNot enough memory to allocate. N=%d, K=%d\n", N, K);

      exit(-1);

  }

  for(i=0; i<K+1; i++){

      sums[i] = new float[K+1];

      if(sums[i]==NULL){

   printf("\nNot enough memory to allocate for %d equations.\n", K+1);

      }

  }

  for(i=0; i<K+1; i++){

      a[i]=0;

      b[i]=0;

      for(j=0; j<K+1; j++){

   sums[i][j] = 0;

      }

  }

  for(k=0; k<N; k++){

      x[k]=0;

      y[k]=0;

  }

}

void readmatrix(){

  int i=0,j=0, k=0;

  //read x, y matrixes from input file

  for(k=0; k<N; k++){

      fscanf(InFile, "%f", &x[k]);

      fscanf(InFile, "%f", &y[k]);

  }

  //init square sums matrix

  for(i=0; i<K+1; i++){

      for(j=0; j<K+1; j++){

   sums[i][j] = 0;

   for(k=0; k<N; k++){

       sums[i][j] += pow(x[k], i+j);

   }

      }

  }

  //init free coefficients column

  for(i=0; i<K+1; i++){

      for(k=0; k<N; k++){

   b[i] += pow(x[k], i) * y[k];

      }

  }

}

void printresult(){

  //print polynom parameters

  int i=0;

  printf("\n");

  for(i=0; i<K+1; i++){

      printf("a[%d] = %f\n", i, a[i]);

  }

}

/*void testsolve(){

  //test that ax=y

  FILE* OutFile;

  int i=0, j=0;

  float sum, s, begin, end, step;

  begin = x[0][1];

  end = x[N-1][1];

  step = (end-begin)/20;

  printf("\n");

  for(i=0; i<N; i++){

      sum = 0;

      for(j=0; j<N; j++){

   sum += x[i][j]*a[j];

      }

      printf("%f\t%f\n", s, y[i]);

  }

  OutFile = fopen("test.txt", "wt");

  for(s = begin; s<=end; s+=step){

      sum = 0;

      for(j=0; j<N; j++){

   sum += pow(s, j)*a[j];

      }

      fprintf(OutFile, "%f\t%f\n", s, sum);

  }

  fclose(OutFile);

}*/

/*void printresult(){

  int i=0;

  printf("\n");

  printf("Result\n");

  for(i=0; i<N; i++){

      printf("A%d = %f\n", i, a[i]);

  }

}*/

void diagonal(){

  int i, j, k;

  float temp=0;

  for(i=0; i<K+1; i++){

      if(sums[i][i]==0){

   for(j=0; j<K+1; j++){

       if(j==i) continue;

       if(sums[j][i] !=0 && sums[i][j]!=0){

    for(k=0; k<K+1; k++){

        temp = sums[j][k];

        sums[j][k] = sums[i][k];

        sums[i][k] = temp;

    }

    temp = b[j];

    b[j] = b[i];

    b[i] = temp;

    break;

       }

   }

      }

  }

}

void cls(){

  for(int i=0; i<25; i++) printf("\n");

}

void main(){

  int i=0,j=0, k=0;

  cls();

  do{

      printf("\nInput filename: ");

      scanf("%s", filename);

      InFile = fopen(filename, "rt");

  }while(InFile==NULL);

  count_num_lines();

  printf("\nNumber of points: N=%d", N);

  do{

      printf("\nInput power of approximation polinom K<N: ");

      scanf("%d", &K);

  }while(K>=N);

  allocmatrix();

  rewind(InFile);

  //read data from file

  readmatrix();

  //check if there are 0 on main diagonal and exchange rows in that case

  diagonal();

  fclose(InFile);

  //printmatrix();

  //process rows

  for(k=0; k<K+1; k++){

      for(i=k+1; i<K+1; i++){

   if(sums[k][k]==0){

       printf("\nSolution is not exist.\n");

       return;

   }

   float M = sums[i][k] / sums[k][k];

   for(j=k; j<K+1; j++){

       sums[i][j] -= M * sums[k][j];

   }

   b[i] -= M*b[k];

      }

  }

  //printmatrix();

  for(i=(K+1)-1; i>=0; i--){

      float s = 0;

      for(j = i; j<K+1; j++){

   s = s + sums[i][j]*a[j];

      }

      a[i] = (b[i] - s) / sums[i][i];

  }

  //InFile = fopen(filename, "rt");

  //readmatrix();

  //fclose(InFile);

  //printmatrix();

  //testsolve();

  printresult();

  getch();

  freematrix();

}


Вывод:
в данной работе был рассмотрен метод наименьших квадратов для интерполяции функции, заданной при помощи выборки ее значений в нескольких точках.


 

А также другие работы, которые могут Вас заинтересовать

8640. Немецкая классическая философия. Теория познания. Нравственная философия 263.5 KB
  Немецкая классическая философия. И. Кант: Теория познания. Нравственная философия. Г.В.Ф. Гегель: Наука логики. О природе диалектического. Всемирная история. В конце XVIII – XIX вв. в Германии наступил расцвет философии, который можно сравнит...
8641. Философия Нового времени и Просвещения. Экспериментальный метод научного познания 158 KB
  Философия Нового времени и Просвещения. Черникова И.В. Механизм – образ природы Нового времени. Рене Декарт: Научное познание: методология рационализма. Интеллектуальная интуиция. Френсис Бэкон: Цель научного познания. Экспериментальный метод н...
8642. Философия Средневековья. Августин Аврелий и Фома Аквинский 225 KB
  Философия Средневековья. Августин Аврелий и Фома Аквинский: О философии. Поиск Бога и доказательство Его бытия. Теодицея: причины возникновения зла в мире. Теория познания: вера и разум. Августин Аврелий. Время и вечность. Библия. Первая книга ...
8643. Определение философии. Речь Гегеля. Энциклопедия философских наук 181 KB
  Определение философии. Гегель Г.В.Ф. Речь Гегеля. Энциклопедия философских наук. Соловьев Вл. Исторические дела философии. Хайдеггер М. Основные понятия метафизики. Мамардашвили М.К. Философия - это сознание вслух. Г.В.Ф. Гегель (1770 - 18...
8644. Античная греческая философия 92.5 KB
  Античная греческая философия. ПЛАН 1. Становление античной философии. Философия досократиков (Милетская школа, Пифагор, Гераклит, Элейская школа, Демокрит). Философия классической эпохи (Софисты, Сократ, Платон, Аристотель). Фи...
8645. Основные направления современной западной философии 104 KB
  Основные направления современной западнойфилософии. План 1. Философия позитивизма: этапы развития 2. Прагматизм 3. Герменевтика 4.Сциентизм и антисциентизм 5.Философия жизни 6.Психоанализ и неофрейдизм 7. Экзистенциализм Позитивизм (от л...
8646. Бытие. Определение понятия былия 30.15 KB
  Бытие Определение понятия бытия. Проблема субстанции. Основные формы бытия. Основные свойства бытия: движение, пространство и время, системность, самоорганизация и сознание. Определение понятия бытия. Один из ц...
8647. Философия истории. Основные точки зрения на исторический процесс, подходы 51.5 KB
  Философия истории. Основные точки зрения на исторический процесс, подходы. Формационный подход Маркса, Энгельса, Ленина. 3.Цивилизационный подход Тойнби. Культурологический подход Шпенглера. Иные подходы к историческому процессу. В своих взгля...
8648. Диалектика. Понятие и категории диалектики 42.5 KB
  План. Понятие движения и развития. Основные законы диалектики. Основные категории диалектики. Динамическая, статистическая закономерности. Детерминизм и индетерминизм Диалектика (спор, дискуссия) - это такое видение мира, где п...