51526

Диференціальні рівняння у частинних похідних

Лабораторная работа

Информатика, кибернетика и программирование

Проведемо дискретизацію крайових умов отримаємо: Початкову матрицю обираємо як нульову. На кожній ітерації перераховуємо значення елементів матриці за попередніми формулами. Умова завершення

Украинкский

2014-02-12

52.85 KB

1 чел.

Науково-навчальний комплекс "Інститут прикладного системного аналізу"  

при Національному технічному університеті України "КПІ"

Кафедра математичних методів системного аналізу

Лабораторна робота № 2

з курсу "Чисельні методи"

на тему "Диференціальні рівняння у частинних похідних"

                                

                                       Виконав:    студент 3-го курсу

                                        групи КА-06

                                        Анікін Вадим

                                   Прийняв:  Коновалюк М. М.

Київ 2012

 Дано:  Еліптична задача. Розв'язати рівняння Лапласа

uxx + uyy = 0,     0 < x < L1; 0 < y < L2 

var

L1

L2

При x = 0

При x = L1

При y = 0

При y = L2

1

0.90

1.10

u(0, y) - ux(0, y) = g1

ux(L1, y) = g2

uy(x, 0) = g3

uy(x, L2) = g4

 Як точний розвязок беремо функцію:

вар

a

b

c

d

f

1

-0.30

1.50

0.70

0.50

1.30

u(x,y) = a (x2 - y2) + b x y + c x + d y + f

Ход работы:

Розіб’ємо відрізок на відрізків довжиною

  ,

а відрізок на відрізків довжиною

  .

Позначимо , ; , .

Нехай – це значення точного розв’язку рівняння, а – значення наближеного розв’язку.

Проведемо дискретизацію рівняння:

В нашому випадку  При :

Проведемо дискретизацію крайових умов отримаємо:

Початкову матрицю обираємо як нульову. На кожній ітерації перераховуємо значення елементів матриці за попередніми формулами. Умова завершення

Результат:

//Result.txt

1.3 1.353 1.412  1.477 1.548  1.625 1.708  1.797 1.892  1.993 2.1  2.213

1.367  1.435 1.509  1.589 1.675  1.767 1.865  1.969 2.079  2.195 2.317  2.445

1.428  1.511 1.6  1.695 1.796  1.903 2.016  2.135 2.26  2.391 2.528  2.671

1.483  1.581 1.685  1.795 1.911  2.033 2.161  2.295 2.435  2.581 2.733  2.891

1.532  1.645 1.764  1.889 2.02  2.157 2.3  2.449 2.604  2.765 2.932  3.105

1.575  1.703 1.837  1.977 2.123  2.275 2.433  2.597 2.767  2.943 3.125  3.313

1.612  1.755 1.904  2.059 2.22  2.387 2.56  2.739 2.924  3.115 3.312  3.515

1.643  1.801 1.965  2.135 2.311  2.493 2.681  2.875 3.075  3.281 3.493  3.711

1.668  1.841 2.02  2.205 2.396  2.593 2.796  3.005 3.22  3.441 3.668  3.901

1.687  1.875 2.069  2.269 2.475  2.687 2.905  3.129 3.359  3.595 3.837  4.085

Приложение:

//method.cpp

#include <iostream>

#include <fstream>

#include <math.h>

#include <vector>

using namespace std;

const double eps = 0.000001;

const double a = -0.3, b = 1.5, c = 0.7, d = 0.5, f = 1.3, l1 = 0.9, l2 = 1.1, h1 = 0.1, h2 = 0.1;

const int n1 = (int)(l1 / h1), n2 = (int)(l2 / h2);

 

double u(double x, double y)

{

 return a * (x * x - y * y) + b * x * y + c * x + d * y + f;

}

double g1(const double y)

{

return -a * y * y + (d - b) * y + f - c;

}

double g2(const double y)

{

return 2 * a * l1 + b * y + c;

}

double g3(const double x)

{

return b * x + d;

}

double g4(const double x)

{

return - 2 * a * l2 + b * x + d;

}

double norm(vector< vector<double> >& matr)

{

 double sk = 0;

   for(int i = 0; i < matr.size(); i++)

   {

       for(int j = 0; j < matr[i].size(); j++)

 {

  sk += matr[i][j] * matr[i][j];

 }

   }

 return sqrt(sk);

}

int copy_matr(const vector< vector<double> > & source, vector< vector<double> > & cop)

{

 for(int i = 0; i < cop.size(); i++)

{

 for(int j = 0; j < cop[i].size(); j++)

 {

  cop[i][j] = source[i][j];

 }

}

   return 0;

}

int sub_matr(const vector< vector<double> > & source1, const vector< vector<double> > & source2, vector< vector<double> > & cop)

{

 for(int i = 0; i < cop.size(); i++)

{

 for(int j = 0; j < cop[i].size(); j++)

 {

  cop[i][j] = source1[i][j] - source2[i][j];

 }

}

   return 0;

}

int out_matrix(const vector< vector<double> > & matr, char * name_file, char * coment)

{

   ofstream f_out(name_file, ios :: app);

   f_out << coment;

   int size = matr.size();

   for(int i = 0; i < size; i++)

   {

       int size_i = matr[i].size();

       for(int j= 0; j< size_i; j++)  if(!f_out.fail()) f_out << matr[i][j] << "\t";

       f_out << endl;

   }

   f_out << endl;

   return 0;

}

int main()

{

 char* name_file = "result.txt";

ofstream f_ou(name_file, ios :: trunc);

f_ou.close();

ofstream f_out(name_file, ios :: app);

vector< vector<double> > now(n1 + 1, vector<double>(n2 + 1));

vector< vector<double> > last(n1 + 1, vector<double>(n2 + 1));

vector< vector<double> > temp(n1 + 1, vector<double>(n2 + 1));

 for(int i = 0; i <= n1; i++)

{

 for(int j = 0; j <= n2; j++)

 {

  last[i][j] = 0;

 }

}

copy_matr(last, now);

out_matrix(last, name_file, "pochatkova:\n");

f_out << norm(last) << endl;

 int i = 0;

 do

{

 copy_matr(now, last);

 for(int j = 0; j <= n2 - 1; j++)

 { now[0][j] = (now[1][j] + h1 * g1(j * h2)) / (h1 + 1); }

 

 for(int j = 0; j <= n2 - 1; j++)

 { now[n1][j] = now[n1-1][j] + h1 * g2(j * h2); }

 for(int i = 1; i <= n1 - 1; i++)

 { now[i][0] = now[i][1] - h2 * g3(i * h1); }

 for(int i = 0; i <= n1; i++)

 { now[i][n2] = now[i][n2-1] + h2 * g4(i * h1); }

 for(int i = 1; i <= n1 - 1; i++)

 {

  for(int j = 1; j <= n2 - 1; j++)

  {

   now[i][j] = ( now[i-1][j] + now[i+1][j] + now[i][j-1] + now[i][j+1] ) / 4;

  }

 }

 i++;

 f_out << i << " ";

 out_matrix(now, name_file, "iter:\n");

 f_out << norm(last) << endl;

 sub_matr(now, last, temp);

} while( h1 * norm(temp) >= eps);

vector< vector<double> > real(n1 + 1, vector<double>(n2 + 1));

 for(int i = 0; i <= n1; i++)

{

 for(int j = 0; j <= n2; j++)

 {

  real[i][j] = u(i * h1, j * h2);

 }

}

out_matrix(real, name_file, "real:\n");

f_out << "norm(real)=" << norm(real) << endl;

 return 0;

}


 

А также другие работы, которые могут Вас заинтересовать

13276. Исследование двигателя постоянного тока параллельного возбуждения 36.5 KB
  Лабораторная работа П3 по дисциплине Электрические машины Исследование двигателя постоянного тока параллельного возбуждения Цель работы: исследование рабочих скоростных механических и регулировочных характеристик двигателя параллельного возбуждения. Сх...
13277. Исследование рабочих, скоростных и регулировочных характеристик двигателя параллельного возбуждения 249 KB
  Лабораторная работа П3. Исследование двигателя постоянного тока параллельного возбуждения. Цель работы: исследование рабочих скоростных и регулировочных характеристик двигателя параллельного возбуждения. = 220 В  220 В ABC V6 PH
13278. Исследование двигателя постоянного тока последовательного возбуждения 416 KB
  Лабораторная работа П4. Исследование двигателя постоянного тока последовательного возбуждения. Цель работы: ознакомление с методами пуска и регулирования частоты вращения двигателя последовательного возбуждения изучение его рабочих характеристик. Параметры дви
13280. Исследование трехфазного двухобмоточного трансформатора 625.5 KB
  Лабораторная работа Т1. Исследование трехфазного двухобмоточного трансформатора. Цель работы: ознакомление с конструкцией и принципом работы трехфазного двухобмоточного трансформатора а также определение параметров его схемы замещения в симметричных режимах при
13281. Побудова комбінаційних схем та побудова часових діаграм 3.84 MB
  У даній курсовій роботі буде даний один із логічних виразів, який буде розв’язуватися, як і в ручну так і за допомогою пакетів прикладних програм (ППП). А саме ППП Proteus та ППП ORCAD...
13282. Теорії міжнародної торгівлі 37.71 KB
  Оскільки, історично міжнародна торгівля передувала іншим формами міжнародних економічних відносин, першими зявилися теоретичні розробки (концепції), що стосувалися саме проблем міжнародної торгівлі і намагалися відповісти на практичні запитання
13283. ДЕФОРМАЦИИ РАСТЯЖЕНИЯ И ИЗГИБА 717 KB
  ДЕФОРМАЦИИ РАСТЯЖЕНИЯ И ИЗГИБА Задание. Определить модуль Юнга стальной проволоки с предельной относительной погрешностью не превышающей. Задание. Определить модуль Юнга дерева с предельной относительной погрешностью не превышающей...
13284. Классификация затрат на производство и реализацию продукции 67.5 KB
  Деление затрат по функциям деятельности позволяет в планировании и учете определять величину затрат в разрезе подразделений каждой сферы, что является одним из важных условий организации внутрихозяйственного расчета.