52121

Розвязування тригонометричних рівнянь зведенням до однієї тригонометричної функції

Конспект урока

Педагогика и дидактика

Розв’язування тригонометричних рівнянь зведенням до однієї тригонометричної функції. Формування в учнів умінь розв’язувати тригонометричні рівняння способом зведення до однієї тригонометричної функції алгебраїчний спосіб розвивати логічне мислення уяву пам'ять виховувати інтерес до математики уважність відповідальність культуру математичних записів. Ми ніколи не станемо математиками...

Украинкский

2014-02-13

7.06 MB

28 чел.

Тема уроку. Розв’язування   тригонометричних  рівнянь зведенням до однієї тригонометричної функції.

Мета. Формування в учнів умінь розв’язувати тригонометричні рівняння способом зведення до однієї тригонометричної функції (алгебраїчний спосіб), розвивати логічне мислення, уяву, пам'ять, виховувати інтерес до математики, уважність, відповідальність, культуру математичних записів.

Тип уроку: комбінований.

Обладнання: дошка, комп’ютер, мультимедійний проектор, екран.

Хід уроку.

                                          Ми ніколи не станемо математиками,                                                                                                               навіть знаючи напам’ять усі чужі доведення,                                                                    якщо наш розум нездатний самостійно                                                                                   розв’язувати які б то не було проблеми.

                                                                                   Р. Декарт

І. Вступна бесіда   

   Ми навчилися розв’язувати  найпростіші тригонометричні рівняння  sin x = a, cosx = a, tgx = a, ctgx = a.

   Сьогодні на уроці ми будемо розв’язувати складніші тригонометричні рівняння і познайомимось з одним із способів розв’язування тригонометричних рівнянь, а саме, способом зведення до однієї тригонометричної функції, тобто алгебраїчним способом.

Повідомлення теми, мети уроку.

Слайд 1

Слайд 2

   Епіграфом сьогоднішнього уроку я взяла слова великого математика Р.Декарта.

Слайд 3

   Кожен наш урок – це невеликий крок до зовнішнього незалежного оцінювання. Тому всі завдання, які ми будемо розв’язувати на уроці, підібрані із збірників завдань по підготовці до ЗНО з математики.    

Слайд 4

ІІ. Актуалізація опорних знань

1. Фронтальне опитування

   Пригадаємо, для чого у 10 класі було введено поняття арксинуса, арккосинуса, арктангенса і арккосинуса (для розв’язування тригонометричних рівнянь).

Слайд 5

  •  Якою формулою записується розвязок рівняння cos x = a ?
  •   При якому значенні а рівняння cos x = a має розвязок ?
  •   Який розвязок рівняння cos x = 0 ?
  •   Який розвязок рівняння cos x = 1 ?
  •  Який розвязок рівняння cos x = -1 ?
  •  Якою є функція  arccos а ?  Як знайти  arccos (-а) ?

Слайд 6

  •  Якою формулою записується розвязок рівняння sin x = a ?
  •   При якому значенні а рівняння sin x = a має розвязок ?
  •   Який розвязок рівняння sin x = 0 ?
  •  Який розвязок рівняння sin x = 1 ?
  •  Який розвязок рівняння sin x = -1 ?
  •   Якою є функція  arcsin а ?  Як знайти  arcsin (-а) ?

Cлайд 7

  •  Якою формулою записується розвязок рівняння tg x = a ?
  •   Який розвязок рівняння tg x = 0 ?
  •   Якою є функція  arctg а ?  Як знайти arctg (-а) ?

Слайд 8

  •  Якою формулою записується розвзок рівняння сtg x = a ?
  •   Який розвязок рівняння ctg x = 0 ?
  •   Якою є функція  arсctg а ?  Як знайти  arсctg (-а) ?

Слайд 9

Пригадаємо деякі значення arcsin x, arccos x, arcctg x, arctg x.

Слайд 10

  1.  Усне розвязування вправ

Слайд 11

Слайд 12

  1.  Самостійна робота

Слайд 13

ІІІ. Сприймання та усвідомлення нового матеріалу   

Сьогодні на уроці ми навчимось розв’язувати складніші тригонометричні рівняння, які шляхом поточних перетворень можна привести до рівнянь з однією тригонометричною функцією, потім зробити заміну і звести до алгебраїчного рівняння

Слайд 14

Розглянемо приклади розвязання тригонометричних рівнянь.

Приклад 1. Розв’язати рівняння
2
sin2x + sinx – 1 = 0

   В ході пояснення задаю питання учням, спонукаю до спільного обговорення розв’язку, учні записують розв’язання у зошит.

Слайд 15

Слайд 16

Приклад 2. Розв’язати рівняння

6sin2x + 5cosx – 2 = 0

   Обговорюється хід розв’язування рівняння, проектується розв’язання, учні записують у зошит.

Слайд 17

Слайд 18

Приклад 3. Розв’язати рівняння
tg x + 2 сtg x = 3.

   Чи можна це рівняння записати відносно однієї тригонометричної функції? Виконайте це.

   Чи можна це рівняння записати у вигляді квадратного рівняння відносно  однієї змінної?

   Розв’яжіть рівняння, перевірте правильність виконання, виправте помилки.

Слайд 19

Слайд 20

Слайд 21

IV. Формування вмінь і навичок.

Слайд 22

  1.  Розв’язати рівняння  cos2x = 7 – 8sinx

Розв’язання.

   Застосуємо формулу косинуса подвійного кута у вигляді  

сos2x = 12sin2 x,

12sin2 x = 7 – 8sinx,

12sin2 x – 7 + 8sinx = 0,

2sin2 x + 8sinx – 6 = 0,

sin2 x – 4sinx + 3 = 0,

sin x = t,

t2 – 4t + 3 = 0,

t1 = 1,  t2 = 3.

sin x = 1,      sin x = 3,

x = π/2 + 2πk, kZ,      коренів немає.

Відповідь. π/2 + 2πk, kZ.   

  1.  Розв’язати рівняння  2сos23x + sin(– 3x) – 1 = 0

Розв’язання.

   За формулами зведення  sin(– 3x) = сos3x,

os23x + сos3x – 1 = 0,

cos3x = t,

2t2 + t – 1 = 0,

D = 1 + 8 = 9,

t1 =  = 1,               t2 =  = ,

cos3x = 1,             cos3x = ,

3x = π + 2πk, kZ,        3x = ± arccos + 2πn, nZ,

 x =  +  , kZ,        3x = ± + 2πn, nZ,

      x = ± +  , nZ.

Відповідь.  +  , kZ;   ± +  , nZ.

  1.  Розв’язати рівняння (tgx + ctgx)2 + 3(tgx + ctgx) = 4

Розв’язання.

tgx + ctgx = t,

t2 + 3t – 4 = 0,

t1 = –4,   t2 = 1,

 tgx + ctgx = – 4,    tgx + ctgx = 1,

tgx + + 4 = 0,                                   tgx +  – 1 = 0,

tgx = y                                            tgx = z

у +  + 4 = 0                                    z +   1 = 0

= 0,                                          = 0,

при      у ≠ 0                                          при      z ≠ 0

маємо рівняння                                   маємо рівняння                             

у2 + 4у +1 = 0,                                      z2 z + 1 = 0,   

D = 16 – 4 = 12,     D= 1 – 4 = – 3 < 0, 

y1 == = –2 -   коренів немає 

y2 == = –2 + 

tgx = 2 –      tgx = 2 +

x = arctg(–2 –) + πn, nZ,  x = arctg(–2 + ) + πk, kZ,

x = arctg(2 + ) + πn, nZ.

Відповідь.  arctg(–2 + ) + πk, kZ,  –arctg(2 + ) + πn, nZ.

   4. Розв’язати рівняння 2 cos2 x – 5cos(π – x) + 2 = 0

   Розв’язання.

2 cos2 x – 5cos(π – x) + 2 = 0

За формулами зведення  cos(π – x) = сosx,

2 cos2 x + 5cosx + 2 = 0,

cos x = t,

2t2 + 5t + 2 = 0,

D = 25 – 16 = 9,

t1 =  = –2,                  t2 =  = – ,

cos x = –2                           cos x = –

коренів немає                    x = ± arccos(–) + 2πn, nZ,

                                           x = ± (π – ) + 2πn, nZ,

                                           x = ±  + 2πn, nZ.

Відповідь. ±  + 2πn, nZ.

5. Розв’язати рівняння  cos 2х +sin²x +sin х = 0,25

Розв’язання.

cos² х  sin²x +sin²x +sin х 0,25 = 0,

1 sin²x +sin х  0,25 = 0,

4sin²x 4sin х  3 = 0,

sin x = t,

4t²  4t  3=0,

D = 16 + 48 = 64,

t1 = 1/2,   t2=3/2

sin х = 1/2                                                    sin x = 3/2

                                                                      коренів немає

  

                        

 Відповідь. .

V. Робота в групах

Слайд 23

   Учні розбиваються на групи по 3-4 учні і розвязують тригонометричне рівняння, потім звіряють відповідь з кодовим словом і в результаті отримують зашифроване слово.

   І група   3sin²x + 2cos x – 2 = 0

Відповідь. (Д)

   ІІ група  cos 2x + sin x = 0

Відповідь.  (Р)

   ІІІ група  2sin²x  cos x  1= 0

Відповідь.                                 (У)

   ІV група  tg x – 2 ctg x + 1 = 0

Відповідь.    (Ж)

   V група   cos 2xsin x = 0

Відповідь. (Б)

   VІ група  tg x + 5 ctg x = 6

Відповідь. (А)

Слайд 24

Слайд 25

VІ. Підсумок уроку

Слайд 26

Виставлення оцінок.

   Сьогоднішній урок я б хотіла закінчити словами Сократа: «Те, що я встиг пізнати, - чудове. Сподіваюся, таке ж чудове те, що ще мені доведеться пізнати».

Слайд 27

VІІ. Домашнє завдання

Слайд 28

Слайд 29


 

А также другие работы, которые могут Вас заинтересовать

37843. ПРИБЛИЖЕНИЕ ФУНКЦИЙ МЕТОДОМ НАИМЕНЬШИХ КВАДРАТОВ 304 KB
  Метод среднеквадратического приближения функций заданных набором экспериментальных данных называется методом наименьших квадратов МНК. Рассмотрим применение метода наименьших квадратов для среднеквадратического приближения функции полиномом степени . Метод наименьших квадратов наиболее просто применить когда искомые параметры входят в аппроксимирующую зависимость линейно.
37844. Комп’ютерна електроніка та схемотехніка. Лабораторний практикум 1.78 MB
  Цель работы: Приобрести минимально необходимые навыки работы с пакетом EWD 4.0. Исследовать схемы пассивных RС – фильтров в частотной и временной области.
37845. ИССЛЕДОВАНИЕ ОСНОВНЫХ МЕТРОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК ЭЛЕКТРОМЕХАНИЧЕСКИХ ИЗМЕРИТЕЛЬНЫХ ПРИБОРОВ 204 KB
  Определить основную погрешность комбинированного измерительного прибора тестера в следующих режимах работы: вольтметра постоянного тока вольтметра переменного тока миллиамперметра постоянного тока. Определить амплитудночастотную характеристику АЧХ вольтметра переменного тока. Построить график АЧХ определить рабочую полосу частот вольтметра. Для поверки вольтметра собрать поверочную схему рис.
37846. ЭЛЕКТРОННО-ЛУЧЕВОЙ ОСЦИЛЛОГРАФ 595 KB
  Оценить погрешности измерений используя результаты исследования осциллографа и его метрологические характеристики указанные в описании. Объекты измерений задаются преподавателем. ОБРАБОТКА РЕЗУЛЬТАТОВ ПРЯМЫХ И КОСВЕННЫХ ИЗМЕРЕНИЙ Цель работы – ознакомление с методами обработки результатов прямых и косвенных измерений при однократных и многократных измерениях. 2 при наличии относительно больших случайных погрешностей число измерений и уровень случайных погрешностей задаются преподавателем.
37848. Розробка алгоритмів задач з використанням складних структур 163 KB
  Преподаватель Егорова Кривой рог 1997 Контрольні запитання: Яка структура має назву списки Яким чином у мові С описується список Що таке стек Що таке черга Чим відрізняється черга від стека та списку Теоретичні відомості: Покажчики. Кількість елементів у послідовності називається довжиною списку. При роботі з списками часто доводиться виконувати такі операції: знайти елемент із заданною властивістю; визначити iй елемент у лінійному списку; внести додатковий елемент до або після вказанного вузла; вилучити певний елемент зі...
37849. Знайомство з середовищем програмування DELPHI 411.5 KB
  Borlnd Delphi 7 Studio дозволяє створювати самі різні програми: від найпростіших одновіконних додатків до програм керування розподіленими базами. 5 яких можна побачити відсунувши убік вікно форми треба набирати текст програми. На початку роботи над новим проектом це вікно редактора коду містить сформований Delphi шаблон програми. Так на етапі розробки програми називають діалогові вікна.
37850. Створення форм 66.5 KB
  Помістити обєкт Lbel у вікно форми Form1. Вибрати в палітрі компонентів на сторінці стандартних компонентів компонентів Lbel. Обєкт буде доданий у форму і за замовчуванням одержить імя Lbel1. Перемістити обєкт Lbel1 на бажане місце у формі.
37851. СТВОРЕННЯ НАЙПРОСТІШОЇ ПРОГРАМИ ДЛЯ ЛІНІЙНОГО АЛГОРИТМУ 285.5 KB
  Звіт до лабораторної роботи повинен сладатися з коротких теоретичних відомостей відповідей до контрольних запитань та програми. Головне вікно завжди присутнє на екрані і призначено для керування процесом створення програми. Вікно форми являє собою проект Windowsвікна програми.