52121

Розвязування тригонометричних рівнянь зведенням до однієї тригонометричної функції

Конспект урока

Педагогика и дидактика

Розв’язування тригонометричних рівнянь зведенням до однієї тригонометричної функції. Формування в учнів умінь розв’язувати тригонометричні рівняння способом зведення до однієї тригонометричної функції алгебраїчний спосіб розвивати логічне мислення уяву пам'ять виховувати інтерес до математики уважність відповідальність культуру математичних записів. Ми ніколи не станемо математиками...

Украинкский

2014-02-13

7.06 MB

30 чел.

Тема уроку. Розв’язування   тригонометричних  рівнянь зведенням до однієї тригонометричної функції.

Мета. Формування в учнів умінь розв’язувати тригонометричні рівняння способом зведення до однієї тригонометричної функції (алгебраїчний спосіб), розвивати логічне мислення, уяву, пам'ять, виховувати інтерес до математики, уважність, відповідальність, культуру математичних записів.

Тип уроку: комбінований.

Обладнання: дошка, комп’ютер, мультимедійний проектор, екран.

Хід уроку.

                                          Ми ніколи не станемо математиками,                                                                                                               навіть знаючи напам’ять усі чужі доведення,                                                                    якщо наш розум нездатний самостійно                                                                                   розв’язувати які б то не було проблеми.

                                                                                   Р. Декарт

І. Вступна бесіда   

   Ми навчилися розв’язувати  найпростіші тригонометричні рівняння  sin x = a, cosx = a, tgx = a, ctgx = a.

   Сьогодні на уроці ми будемо розв’язувати складніші тригонометричні рівняння і познайомимось з одним із способів розв’язування тригонометричних рівнянь, а саме, способом зведення до однієї тригонометричної функції, тобто алгебраїчним способом.

Повідомлення теми, мети уроку.

Слайд 1

Слайд 2

   Епіграфом сьогоднішнього уроку я взяла слова великого математика Р.Декарта.

Слайд 3

   Кожен наш урок – це невеликий крок до зовнішнього незалежного оцінювання. Тому всі завдання, які ми будемо розв’язувати на уроці, підібрані із збірників завдань по підготовці до ЗНО з математики.    

Слайд 4

ІІ. Актуалізація опорних знань

1. Фронтальне опитування

   Пригадаємо, для чого у 10 класі було введено поняття арксинуса, арккосинуса, арктангенса і арккосинуса (для розв’язування тригонометричних рівнянь).

Слайд 5

  •  Якою формулою записується розвязок рівняння cos x = a ?
  •   При якому значенні а рівняння cos x = a має розвязок ?
  •   Який розвязок рівняння cos x = 0 ?
  •   Який розвязок рівняння cos x = 1 ?
  •  Який розвязок рівняння cos x = -1 ?
  •  Якою є функція  arccos а ?  Як знайти  arccos (-а) ?

Слайд 6

  •  Якою формулою записується розвязок рівняння sin x = a ?
  •   При якому значенні а рівняння sin x = a має розвязок ?
  •   Який розвязок рівняння sin x = 0 ?
  •  Який розвязок рівняння sin x = 1 ?
  •  Який розвязок рівняння sin x = -1 ?
  •   Якою є функція  arcsin а ?  Як знайти  arcsin (-а) ?

Cлайд 7

  •  Якою формулою записується розвязок рівняння tg x = a ?
  •   Який розвязок рівняння tg x = 0 ?
  •   Якою є функція  arctg а ?  Як знайти arctg (-а) ?

Слайд 8

  •  Якою формулою записується розвзок рівняння сtg x = a ?
  •   Який розвязок рівняння ctg x = 0 ?
  •   Якою є функція  arсctg а ?  Як знайти  arсctg (-а) ?

Слайд 9

Пригадаємо деякі значення arcsin x, arccos x, arcctg x, arctg x.

Слайд 10

  1.  Усне розвязування вправ

Слайд 11

Слайд 12

  1.  Самостійна робота

Слайд 13

ІІІ. Сприймання та усвідомлення нового матеріалу   

Сьогодні на уроці ми навчимось розв’язувати складніші тригонометричні рівняння, які шляхом поточних перетворень можна привести до рівнянь з однією тригонометричною функцією, потім зробити заміну і звести до алгебраїчного рівняння

Слайд 14

Розглянемо приклади розвязання тригонометричних рівнянь.

Приклад 1. Розв’язати рівняння
2
sin2x + sinx – 1 = 0

   В ході пояснення задаю питання учням, спонукаю до спільного обговорення розв’язку, учні записують розв’язання у зошит.

Слайд 15

Слайд 16

Приклад 2. Розв’язати рівняння

6sin2x + 5cosx – 2 = 0

   Обговорюється хід розв’язування рівняння, проектується розв’язання, учні записують у зошит.

Слайд 17

Слайд 18

Приклад 3. Розв’язати рівняння
tg x + 2 сtg x = 3.

   Чи можна це рівняння записати відносно однієї тригонометричної функції? Виконайте це.

   Чи можна це рівняння записати у вигляді квадратного рівняння відносно  однієї змінної?

   Розв’яжіть рівняння, перевірте правильність виконання, виправте помилки.

Слайд 19

Слайд 20

Слайд 21

IV. Формування вмінь і навичок.

Слайд 22

  1.  Розв’язати рівняння  cos2x = 7 – 8sinx

Розв’язання.

   Застосуємо формулу косинуса подвійного кута у вигляді  

сos2x = 12sin2 x,

12sin2 x = 7 – 8sinx,

12sin2 x – 7 + 8sinx = 0,

2sin2 x + 8sinx – 6 = 0,

sin2 x – 4sinx + 3 = 0,

sin x = t,

t2 – 4t + 3 = 0,

t1 = 1,  t2 = 3.

sin x = 1,      sin x = 3,

x = π/2 + 2πk, kZ,      коренів немає.

Відповідь. π/2 + 2πk, kZ.   

  1.  Розв’язати рівняння  2сos23x + sin(– 3x) – 1 = 0

Розв’язання.

   За формулами зведення  sin(– 3x) = сos3x,

os23x + сos3x – 1 = 0,

cos3x = t,

2t2 + t – 1 = 0,

D = 1 + 8 = 9,

t1 =  = 1,               t2 =  = ,

cos3x = 1,             cos3x = ,

3x = π + 2πk, kZ,        3x = ± arccos + 2πn, nZ,

 x =  +  , kZ,        3x = ± + 2πn, nZ,

      x = ± +  , nZ.

Відповідь.  +  , kZ;   ± +  , nZ.

  1.  Розв’язати рівняння (tgx + ctgx)2 + 3(tgx + ctgx) = 4

Розв’язання.

tgx + ctgx = t,

t2 + 3t – 4 = 0,

t1 = –4,   t2 = 1,

 tgx + ctgx = – 4,    tgx + ctgx = 1,

tgx + + 4 = 0,                                   tgx +  – 1 = 0,

tgx = y                                            tgx = z

у +  + 4 = 0                                    z +   1 = 0

= 0,                                          = 0,

при      у ≠ 0                                          при      z ≠ 0

маємо рівняння                                   маємо рівняння                             

у2 + 4у +1 = 0,                                      z2 z + 1 = 0,   

D = 16 – 4 = 12,     D= 1 – 4 = – 3 < 0, 

y1 == = –2 -   коренів немає 

y2 == = –2 + 

tgx = 2 –      tgx = 2 +

x = arctg(–2 –) + πn, nZ,  x = arctg(–2 + ) + πk, kZ,

x = arctg(2 + ) + πn, nZ.

Відповідь.  arctg(–2 + ) + πk, kZ,  –arctg(2 + ) + πn, nZ.

   4. Розв’язати рівняння 2 cos2 x – 5cos(π – x) + 2 = 0

   Розв’язання.

2 cos2 x – 5cos(π – x) + 2 = 0

За формулами зведення  cos(π – x) = сosx,

2 cos2 x + 5cosx + 2 = 0,

cos x = t,

2t2 + 5t + 2 = 0,

D = 25 – 16 = 9,

t1 =  = –2,                  t2 =  = – ,

cos x = –2                           cos x = –

коренів немає                    x = ± arccos(–) + 2πn, nZ,

                                           x = ± (π – ) + 2πn, nZ,

                                           x = ±  + 2πn, nZ.

Відповідь. ±  + 2πn, nZ.

5. Розв’язати рівняння  cos 2х +sin²x +sin х = 0,25

Розв’язання.

cos² х  sin²x +sin²x +sin х 0,25 = 0,

1 sin²x +sin х  0,25 = 0,

4sin²x 4sin х  3 = 0,

sin x = t,

4t²  4t  3=0,

D = 16 + 48 = 64,

t1 = 1/2,   t2=3/2

sin х = 1/2                                                    sin x = 3/2

                                                                      коренів немає

  

                        

 Відповідь. .

V. Робота в групах

Слайд 23

   Учні розбиваються на групи по 3-4 учні і розвязують тригонометричне рівняння, потім звіряють відповідь з кодовим словом і в результаті отримують зашифроване слово.

   І група   3sin²x + 2cos x – 2 = 0

Відповідь. (Д)

   ІІ група  cos 2x + sin x = 0

Відповідь.  (Р)

   ІІІ група  2sin²x  cos x  1= 0

Відповідь.                                 (У)

   ІV група  tg x – 2 ctg x + 1 = 0

Відповідь.    (Ж)

   V група   cos 2xsin x = 0

Відповідь. (Б)

   VІ група  tg x + 5 ctg x = 6

Відповідь. (А)

Слайд 24

Слайд 25

VІ. Підсумок уроку

Слайд 26

Виставлення оцінок.

   Сьогоднішній урок я б хотіла закінчити словами Сократа: «Те, що я встиг пізнати, - чудове. Сподіваюся, таке ж чудове те, що ще мені доведеться пізнати».

Слайд 27

VІІ. Домашнє завдання

Слайд 28

Слайд 29


 

А также другие работы, которые могут Вас заинтересовать

1567. Внутренние методы диагностики беременности вагинальный и ректальный 19.26 KB
  Вагинальный метод диагностики беременности включает осмотр и пальпацию. Метод пальпации заключается во введении руки во влагалище и в прощупывании плода через свод влагалища.
1568. Врожденное бесплодие: инфатилизм, фриматизм, гермафродизм и другие 22.64 KB
  Бесплодие — это потеря животным способности к воспроизводству при нарушении функции размножения взрослого организма. Врожденное бесплодие — неспособность к воспроизводству как следствие аномалий развития полового аппарата самцов и самок.
1569. Гигиена нормальных родов. Прием новорожденного и уход за ним. Уход за родильницей 22.24 KB
  Роды - сложный физиологический процесс, заключается в выведении зрелого, жизнеспособного плода и его плодной оболочки из полости матки через родовые пути. Родовые пути-шейка матки, влагалище и его преддверие, вульва.
1570. Финансовая система Российской Федерации 199.5 KB
  Финансовая система РФ: понятие, структура. Фонды социального страхования. Пособие по временной нетрудоспособности. Единовременное пособие женщинам, вставшим на учет в женской консультации в ранние сроки беременности. Пособие по беременности и родам выплачивается застрахованной женщине за весь период отпуска по беременности и родам продолжительностью.
1571. Підприємницька діяльність як суб’єкт господарювання 204.27 KB
  Охарактеризувати сфери і напрямки діяльності підприємств. Розкрити сутність добровільних об’єднань підприємств. Розкрити сутність життєвого циклу підприємства та характеристика його етапів. Характеристика соціальної інфраструктури підприємства. Охарактеризувати організаційні структури управління підприємством.
1572. Реконструкція житлового кварталу в центральній частині міста 58.25 KB
  Місцеположення кварталу відносно центру міста – квартал знаходиться в центральній частині міста і розміщається у ІІ зоні містобудівної цінності. Планувальна структура, границі й розміри території (га), функціональне зонування.
1573. Супружеские конфликты в молодых семьях 712.55 KB
  Особенности стиля поведения и механизмов психологических защит в супружеских конфликтах у членов молодых семей. Мужчины и женщины из молодых семей в конфликтной ситуации реже всего используют сотрудничество, как стиль поведения, и наиболее часто проявляют такие психологические защиты как проекция и отрицание.
1574. Особенности профессии Электромеханик по ремонту и обслуживанию счетно–вычислительных машин 217 KB
  Служебные обязанности практиканта. Техническое обслуживание и ремонт лазерного принтера. Замена и ремонт печки. Чистка поверхности от пыли и грязи. Типовые проблемы с лазерными принтерами HP.
1575. Сети ЭВМ 154.93 KB
  Основные характеристики корпоративных компьютерных систем. Производительность корпоративных компьютерных сетей. Надёжность, отказоустойчивость и безопасность корпоративных компьютерных сетей. Расширяемость и масштабируемость корпоративных компьютерных сетей. Исследование и выбор базового метода при построении системы информационного обеспечения объекта.