52151

Числові функції. Зростаючі і спадні, парні і непарні функції

Конспект урока

Педагогика и дидактика

На початку року в 10 класі декілька годин відводиться на узагальнення і систематизацію знань учнів про функції здобутих в попередніх класах. Тема: Числові функції. Зростаючі і спадні парні і непарні функції.

Украинкский

2014-02-13

962.5 KB

19 чел.

Розробка уроків алгебри з комп’ютерною підтримкою(10 клас)

Вступ

Поняття функції є важливим поняттям курсу алгебри і початків аналізу. На початку року в 10 класі декілька годин відводиться на узагальнення і систематизацію знань учнів про функції здобутих в попередніх класах. Я пропоную провести ці уроки в комп’ ютерному класі використовуючи такі програмні засоби як  GRAN1 ,( CHART 2002), MyTest. Названі програми прості у користуванні, оснащені зручним інтерфейсом, максимально наближеним до інтерфейсу найбільш поширених програм загального призначення. Від користувача не вимагається значного обсягу спеціальних знань з інформатики, програмування тощо. Використання цих програм дає змогу вчителю значно інтенсифікувати спілкування його з учнями та учнів між собою, перекласти на комп’ ютер рутинні, чисто технічні та нецікаві операції, ручне виконання яких практично не розвиває інтелекту дитини, а часто навіть, навпаки, гасить його, коли дитина уподібнюється до робота чи комп’ютера, виконуючи замість нього обчислювальні, графічні та інші технічні операції.

Тема: Числові функції. Зростаючі і спадні, парні і непарні функції.

Мета: Узагальнити і систематизувати знання учнів про числові функції(область визначення і область значення функцій, зростаючі і спадні функції, парні і непарні функції).Виховувати і розвивати  в учнів інтерес до математики, інформаційну культуру.

Комп’ютерна підтримка: Програми GRAN ,  MyTest.                                        

                                               Хід уроку

I Оголошення теми, мети та плану уроку.

План уроку

  1.  Мотивація навчання.
  2.  Систематизація і узагальнення основних відомостей про елементарні функції.
  3.  Розв’язування задач.
  4.  Підсумок уроку.
  5.  Д/З.

ІІ Мотивація навчання.

Вступне слово вчителя. Приклад задач, які приводять до поняття функції.

ІІІ Систематизація і узагальнення основних відомостей про елементарні функції.

Учні згадують означення функції, областей визначення і значень, способи її завдання, графіка функції.

Виконання вправ.

  1.  Знайдіть значення функції:

а)    у точках 1; -1; 3.   Відповідь: f(1)=0;  f(-1)=2;  f(3)=2/3.

б)   у точках 5; 14; 30. Відповідь: f(5)=0; f(14)=3; f(30)=5.

2. Побудуйте за допомогою комп’ютера графіки функцій (а і д) та знайдіть області визначення(а-г) і значень(а, д, е):

а)              Відповідь:D(y)=R; E(y)=R.(Мал..1)

б)                 Відповідь:D(y)=(-∞;-2)U(-2;+∞); E(y)=(-∞;0)U(0;+∞).

в)            Відповідь:D(y)=(-∞-2)U(-2;0)U(0;+∞); E(y)=(-∞;0)U(0;+∞).

г)              Відповідь:D(y)=(-∞;-3)U(-3;3)U(3;+∞); E(y)= )=(-∞;0)U(0;+∞).

д)              Відповідь:D(y)=[-5;+∞); E(y)=[0;+∞).

е)            Відповідь:D(y)=R; E(y)=[2;+∞).

Мал.2а)

Мал.2д)

Вчитель пропонує учням згадати, яка функція називається зростаючою, а яка спадною. Навести приклади зростаючих(спадних) елементарних функцій

Виконання вправ:

3.  Побудуйте за допомогою ПК графіки функцій та знайдіть проміжки зростання і спадання функції.

 а)   y = x-2;            Відповідь: зростає на R.

 б)   y = -x+2;          Відповідь: спадає на R.

в)  y = x2+2;          Відповідь: спадає на (-∞;0], зростає на [0;+∞).

г)   y = -x2+2;        Відповідь: зростає на (-∞;0], спадає на [0;+∞).

д)   y = ;     Відповідь: зростає на [4;+∞).

е)   y =    Відповідь: спадає на (-∞;4].

 мал.3 а) і б)

мал.3 в) і г)

Учні згадують, яка функція називається парною, яка непарною, записують на дошці рівності:  f(-x) = f(x)

                f(-x) = -f(x)

Наведіть приклади елементарних функцій, які є парними або непарними. Як за допомогою графіка функції визначити парність або непарність функції. (Графік парної функції симетричний відносно осі ОY, а непарної симетричний відносно початку координат).

4. Які із поданих функцій

   а)  f(x) = x2 + 1;

   б)  f(x) = x2 + x;

   в)   f(x) = x3x;

   г)   f(x) =

   д)   f(x) = |x|;

   е)   f(x) = x + 1;

    ж)  f(x) = |x| + 1;

є парними, а які – непарними? Побудуйте за допомогою ПК графіки функцій і зробіть висновки про їх симетричність.

 мал.3д) і е).

IV  Підведення підсумків уроку.

V   Домашнє завдання                                                               

Роздл1, § 1(п.1-2), Питання для повторення, с.24-25, вправи №1 (4,5,9,10), №2(7, 8, 9).

Тема: Огляд властивостей основних функцій.

Мета: Повторити і узагальнити властивості елементарних функцій

    

          Виховувати інформаційну культуру учнів.

Комп’ютерна підтримка:  Програми GRAN ,програма  тестів MyTest.

                                           Хід уроку

І Перевірка домашнього завдання.

12 учнів отримують тестові завдання і виконують їх на ПК, решта учнів відповідає на запитання для повторення, пояснює розв’язання домашніх вправ.

Приклад тестових завдань

В – 1

1.f(x) = x2 + x. Знайдіть  f(-2).

  а)  6;  б)  2 ;  в)  -2 ;  г)  4.

2. Знайдіть область визначення  функції  f(x) = .

  а) (-∞;+∞);  б)  (-∞; 1)U(1;+∞);  в) (-∞; 1);  г) (-∞; 0)U(0;+∞).  

3. Знайдіть область значень функції f(x) = x2-2.

   а) R; б)  [2;+∞); в) [-2;+∞);    г)  (-∞;-2].

4. Функція  f(x) = зростає на:

    а)  R;  б)  (-∞; 0) ;  в) (0;+∞);   г)  (-∞; 0)U(0;+∞).

5.  Функція  f(x) = (x-1)2  спадає на:

    а) [1;+∞);  б)  (-∞;1];   в)  R;   г)  (-∞; 1)U(1;+∞).

6.  Графік функції  f(x) = x3 симетричний відносно:

    а) осі OX; б)  осі OY; в) початку координат.

В – 2

1.f(x) = x3 + 2x. Знайдіть  f(-1).

  а)  1;  б)  3 ;  в)  -3 ;  г)  4.

2. Знайдіть область визначення  функції  f(x) = .

  а) (-∞;+∞);  б)  (-∞; -1)U(-1;+∞);  в) (-∞; 2);  г) (-∞; -2)U(-2;+∞).  

3. Знайдіть область значень функції f(x) =- x2+2.

   а) R; б)  [2;+∞); в) [-2;+∞);    г)  (-∞;2].

4. Функція  f(x) = зростає на:

    а)  R;  б)  (-∞; -2) ;  в) [-2;+∞);   г)  (-∞; 0)U(0;+∞).

5.  Функція  f(x) =  спадає на:

    а) [0;+∞);  б)  (-∞;0];   в)  R;   г)  (-∞; 0)U(0;+∞).

6.  Графік функції  f(x) = x2-1 симетричний відносно:

    а) осі OX; б)  осі OY; в) початку координат.

II Повторення і узагальнення властивостей основних видів функцій.

      За допомогою програми GRAN учні будують  графіки лінійних     функцій: y=2x + 5 , y = -2x+5 ,y = 2x , y = 5 i розповідають про властивості цієї функції.

       Аналогічно, будуються графіки функцій:

А)  

Б)  

В)  

Г)  

Д)  

Е)   

Ж)  

З)      і повторюються властивості елементарних функцій.

ІІІ Формування вмінь учнів знаходити область визначення функцій та досліджувати функцію на парність(непарність).

Виконання вправ №1(17,19), №2(15, 16)

IV Підведення підсумків уроку.

V  Домашнє завдання. Повторити §1, виконати вправи №1(13,18), №2(12,18)

Тема: Побудова графіків функцій за допомогою геометричних перетворень відомих графіків функцій.

Мета: Формувати уміння будувати графіки функцій за допомогою восьми базових перетворень графіка функції  

 Комп’ютерна підтримка: Програми GRAN або CHART 2002.

                                           Хід уроку

І Перевірка домашнього завдання

Розв’язування вправ, аналогічних до домашніх.

   1. Знайдіть область визначення функції:

      а) ;          б) .

                             Розв’язання:

а) Через те, що арифметичний квадратний корінь  існує лише з невід’ємних чисел, х2+7х+12≥0. Розв’яжемо нерівність методом інтервалів( знайдемо нулі функції g= х2+7х+12, нанесемо їх на координатну пряму і визначимо знак функції на кожному проміжку. Отже, D(y)=(-∞;-4]U[-3;+∞).

б) D(y) знаходимо розв’язавши систему:       

Отже, D(y)=(-∞;-2)U(-2;1).

  1.  Дослідіть на парність і непарність функцію:

а)       б)     

 

                                Розв’язання:

а) Через те, що D(f)=R i

-непарна.

б)  Через те, що D(f)=R i

то    парна.

ІІ Повторення і систематизація знань учнів про геометричні перетворення графіків.

Із курсів геометрії-8 і алгебри-9  нам відомо про перетворення фігур на площині. Згадаємо їх.  За допомогою програми GRAN(CHART) на одній координатній площині учні будують  графіки   функцій: y=x2  і y=-x2 , потім роблять висновки: перетворення графіків функцій  це симетрія відносно осі OX.

       Аналогічно, на одній координатній площині будуються графіки функцій і робляться висновки:

  а)   і ,висновок: перетворення графіків функцій  це симетрія відносно осі OY.

 б  висновок: перетворення графіків функцій  це паралельне перенесення вдовж осі OХ на  -а  одиниць.

 в)  висновок: перетворення графіків функцій  це паралельне перенесення вдовж осі OY на  b  одиниць.

 г)   висновок: перетворення графіків функцій   є таким - частина графіка у верхній півплощині і на осі абсцис без змін, а замість частини графіка в нижній півплощині будуємо симетричну їй відносно осі ОХ.

 д)   висновок: перетворення графіків функцій  є таким – частину графіка для х≥0 симетрично відображаємо відносно осі ОY.

 е)   висновок: перетворення графіків функцій  є таким – при k>1 розтяг від точки(0;0) вздовж осі ординат в k раз; при 0<k<1 стиск до точки (0;0) вздовж осі ординат в 1/k раз.

 ж)    висновок: перетворення графіків функцій  є таким – при k>0 стиск до точки (0;0) вздовж осі абсцис в k раз; при 0<k<1 розтяг від точки (0;0) в 1/k раз.

ІІІ Формування умінь будувати графіки за допомогою геометричних перетворень

Виконання вправ №3(3, 4,5, 6, 13, 14)

ІV Підсумок уроку

V  Домашнє завдання. §1(п.3), виконати вправи №3(7, 8, 9,17, 18).

Урок-семінар

Тема: Розв’язування вправ з теми „Властивості елементарних функцій. Геометричні перетворення графіків функцій”

Мета: Формування умінь :

            А) розв’язування  вправ на визначення властивостей заданих функцій;

            Б) будувати графіки функцій за допомогою геометричних перетворень.

Комп’ютерна підтримка:  Програми GRAN , програма  тестів MyTest .

                             Хід уроку

І Перевірка домашнього завдання.

10-12 учнів отримують тестові завдання і виконують їх на ПК, решта учнів відповідає на запитання для повторення, пояснює розв’язання домашніх вправ.

Приклад тестових завдань

В – 1

Якою формулою записується функція, графік якої одержано в результаті:

1.Паралельного перенесення графіка функції  на 4 одиниці вздовж осі ОХ

  а)  ;б)  ; в)   ; г)  .

2. Паралельного перенесення графіка функції  на -4 одиниці вздовж осі ОХ

  а)  ; б)  в)    г)  

3. Паралельного перенесення графіка функції   на 3 одиниці вздовж осі ОY

  а)   б)    в)   г)  

4. Паралельного перенесення графіка функції  на -3 одиниці вздовж осі ОY

  а)   б)    в)    г)  

5. Розтягу графіка функції   від точки (0;0) вздовж осі ординату 4 рази.

  а)   б)  в)  г)  

6. Cтиску графіка функції      до точки (0;0) вздовж осі абсцис 2 рази.

  а)   б)    в)   г)  

В – 2

Якою формулою записується функція, графік якої одержано в результаті:

1.Паралельного перенесення графіка функції  на 2 одиниці вздовж осі ОХ

  а)  ;б)  ; в)   ; г)  .

2. Паралельного перенесення графіка функції  на -2 одиниці вздовж осі ОХ

  а)  ; б)  в)    г)  

3. Паралельного перенесення графіка функції   на -3 одиниці вздовж осі ОY

  а)   б)    в)   г)  

4. Паралельного перенесення графіка функції  на 2 одиниці вздовж осі ОY

  а)   б)    в)    г)  

5. Розтягу графіка функції   від точки (0;0) вздовж осі ординату 2 рази.

  а)   б)  в)  г)  

6. Cтиску графіка функції      до точки (0;0) вздовж осі абсцис 3 рази.

  а)   б)    в)   г)  

ІІ Формування умінь учнів розв’язування  вправ на визначення властивостей заданих функцій, будувати графіки функцій за допомогою геометричних перетворень.

Виконання вправ.

  1.  Знайдіть область визначення функції:

а)    б)  

2.  Знайдіть область значень функції:

    а)     б)  

3.  Дослідіть на парність і непарність функцію:

    а)     б)  

4. За допомогою однієї із програм побудуйте графіки заданих функцій. За допомогою яких геометричних перетворень можна утворити ций графік із графіка елементарної функції.

    А)         б)    

    В)        г)     

          Д)             е)    

          Ж)         з)    

ІІІ  Підсумок уроку.

ІV  Домашнє завдання. Повторити §1, виконати №1(20), №2(17), №3(20, 23,24).

Література

  1.  Шкіль М.І. та ін. Алгебра та початок аналізу, підручник для 10 класу, К, „Зодіак-Еко” 2003.
  2.  Єршова А.П., В.В.Голобородько, Різнорівневі дидактичні матеріали з алгебри 10-11, Х, „Гімназія”, 2003.

 

                                         


 

А также другие работы, которые могут Вас заинтересовать

3558. Адміністративне право 121.5 KB
  Вступ до адміністративного права. Адміністративне право — це одна з профільних, фундаментальних галузей правової системи України. Адміністративне право визначається як сукупність юридичних норм та правових інститутів, призначених для ре...
3559. Ремонт машин і обладнання підприємств виробництва будівельних матеріалів 304 KB
  Метою курсового проекту по ремонту механічного устаткування є привити студентам навички рішення інженерних питань ремонту, економічних обґрунтувань і планування різних видів ремонту та складання необхідної документації.
3560. Изучение внешнего фотоэффекта 67.5 KB
  Цель работы: изучение внешнего фотоэффекта. Задача: определение световой и вольт-амперной характеристики фотоэлемента. Техника безопасности: напряжение 220 В подается от сети на трансформатор и выпрямитель, поэтому соответствующие токоведущие...
3561. Фінансовий контроль як різновид публічного контролю 80.12 KB
  Фінансовий контроль як різновид публічного контролю 1. Методологічні та теоретичні основи дослідження проблеми фінансового контролю: постановка проблеми. 2. Фінансовий контроль як особливий вид публічного контролю. 3. Поняття та правова природа фінан...
3562. Сучасна українська літературна мова 198.5 KB
  Лекція 1 Українська мова: походження, розвиток і функціонування План Предмет та завдання курсу «Українська мова (за професійним спрямуванням)». Мова і мовлення. Функції мови. Походження та основні етапи розвитку української мови. Літературна мова....
3563. Адвокатура в Україні 244 KB
  Адвокатура в Україні 1. Право громадян на кваліфіковану юридичну допомогу Важливим кроком у створенні таких умов є Закон «Про адвокатуру», ухвалений Верховною Радою України 19 грудня 1992 р. Він проголошує, що адвокатура України здійснює свою діяльн...
3564. Загальне поняття алгоритму. Алгоритмічні мови 84 KB
  Загальне поняття алгоритму. Алгоритмічні мови. У старому трактуванні алгоритм — це точний набір інструкцій, що описують послідовність дій виконавця для досягнення результату рішення задачі за кінцевий час. У міру розвитку паралельності в роботі...
3565. Послідовність рішення задачі по розробці програми 78 KB
  Послідовність рішення задачі по розробці програми Послідовність рішення задачі по розробці програм складається з наступних етапів: Формулювання задачі в термінах деякої прикладної області знань, Формалізація задачі, побудова математичної та інформац...
3566. Основні визначення. Приклади алгоритмів 122 KB
  Основні визначення. Приклади алгоритмів Аналіз (від др. греч. «розкладання, розчленовування») — операція уявного або реального розчленовування цілого (речі, властивості, процесу або відношення між предметами) на складові частини, виконуван...