53027

Формули скороченого множення та узагальнення на основі квадрата двочлена

Конспект урока

Педагогика и дидактика

Мета: Узагальнити і систематизувати знання, вміння та навички у застосуванні формул квадрата двочлена і різниці квадратів. Вивести формули квадрата тричлена, куба двочлена. Розвивати вміння узагальнювати, робити висновки. Сприяти розвитку логічного мислення, математичної мови.

Украинкский

2014-02-21

908 KB

1 чел.

КОНСПЕКТ УРОКУ З АЛГЕБРИ, 7 КЛАС

Учитель вищої категорії Старостенко С.Б.

Тема: Формули скороченого множення та узагальнення на основі квадрата двочлена.

Мета: Узагальнити і систематизувати знання, вміння та навички у застосуванні формул квадрата двочлена і різниці квадратів. Вивести формули квадрата тричлена, куба двочлена. Розвивати вміння узагальнювати, робити висновки. Сприяти розвитку логічного мислення, математичної мови.

Обладнання: Таблиці, заготовлена сітка кросворду.

Хід уроку

І. Оргмоменти

Добрий день! Сідайте. Я рада сьогодні бачити ваші допитливі очі, чути ваші відповіді та часом непрості питання, разом розгадувати таємниці математики. Сьогодні на 45 хвилин ми поринемо у чудовий, незвичайний світ науки, яка зачаровує, дивує, манить. Науки, яка оточена містикою, магією. Звісно, це -  математика.

Першим поштовхом до пізнання видатний грецький філософ Арістотель вважав здивування. Для первісної людини здивувань було надто багато, але минав час, проходили епохи, набувався досвід, здивувань меншало, з’являлись люди, які на дозвіллі могли цілеспрямовано займатися спогляданням. Це були жерці при культових храмах. Вони першими помічали закономірності, пов’язані зі зміною дня і ночі, фаз Місяця, положення сузір’їв на  небі. Фіксація цих закономірностей потребувала відповідної цифрової символіки. Їм зазвичай давались міфічні пояснення. Так з’явилась числова містика.

І ось сьогодні ми спробуємо стати тими першопроходцями, шукачами закономірностей, які серед звичайного знаходять справді дивовижне, поринають у світ цифр, переконуючись у його магічності і логічності.

Отож, тема сьогоднішнього уроку: “Формули скороченого множення та узагальнення на основі квадрата двочлена”.

Мета уроку:1. Повторити формули скороченого множення.

2. Повторити їх застосування для спрощення і перетворення виразів.

 3. Навчити виводити формули:  (a+b+c)2;

       (a+b)3;

       (a+b)4;

       (a+b)5;

4. Розглянути застосування вказаних формул.

Ваше завдання не запам’ятовувати ці формули, а як казав видатний фізик і математик Ейнштейн, зрозуміти і осмислити процес їх одержання.

(Записати число, класна робота)

ІІ. Перевірка домашнього завдання

Звірте за дошкою правильність розв’язання домашнього завдання та оцініть його.

(Бевз С.р. В.1,2, ст. 55-56.)

І. 1) (х+3)22+6х+9;   ІІ. 1) (m-5)2=m2-10m+25;

 (a2-c)2=a4-2a2c+c2;    (x2-z)2=x4-2x2z+z2;

   2) (ax+b2)2=a2x2+2axb2+b4;       2) (cx+2b)2=c2x2+4cxb+4b2;

(-1+2c3)2=4c6-4c3+1;    (-2+3c)2=9c2-12c+4;

   3) 12ab-(2a+3b)2=12ab-4a2-       3) 30xc-(3x+5c)2=30xc-9x2-

 -12ab-9b2= -4a2-9b2;    -30xc-25c2= -9x2-25c2;

   4)  (х-3)2 =(х-5)(х+4);                           4)  (х-2)2=(х+3)(х-4);

    х2-6х+9=х2+4х-5х-20;                         х2-4х+4=х2-4х+3х-12;

    -6х-4х+5х= -20-9;                                -4х+4х-3х= -12-4;

     -5х= -29;                                              -3х= -16;

      х= 5,8.                                                   х= 5 .  

Додаткове завдання.

Довести, що сума   ділиться на 11.

=10a+b;     =10b+a.

+ = 10a+b+10b+a=11a+11b

 (11a+11b):11, бо 11а: 11, 11b: 11

Отже, (+ ) : 11.

За результатами перевірки учням роздаються кольорові жетони:

+ жовтий колір   без помилок;

зелений колір   недолік або 1 помилка;

 червоний колір  2-3 грубих помилки;

  •    білий колір  неправильно виконане завдання.

ІІІ. Актуалізація опорних знань

1) Що записано на дошці? (х-2)(х+2);   (5-ав)2;

    (у+7)(7-у);   (4х-3у)2;

   (х+9)2;    (а2-в3)2.

2) Сформулюйте відповідні правила.

3) Подайте вирази у вигляді многочлена.

4) Прочитайте дані вирази: 2аm;

     3a2b;

     (x+y)3;

     x3+y3.

5) Математичний диктант. Запишіть у вигляді виразів:

1.Суму чисел  2а і 3в.      2а+3в;

2. Добуток чисел а і в.      ав;

3. Подвоєний добуток чисел c i d.    2cd;

4. Різницю квадратів чисел a i b.    a2-b2;

5. Квадрат суми чисел m i n.     (m+n)2;

6. Квадрат різниці чисел 2x i 5y.    (2x-5y)2;

7. Різницю кубів чисел a i b.          a3-b3;

8. Куб різниці чисел m i n.     (m-n)3;

9. Квадрат суми чисел 5х і 4у (розкласти).  (5x+4y)2=

         25x2+40xy+16y2;

 10. Добуток різниці чисел 7х і 5у на їхню суму (7x-5y)(7x+5y)=

(розкласти).        =49x-25y.

(Взаємоперевірка, виставлення оцінок, роздача жетонів.)

ІV.Основна частина

1. Раціональні обчислення

Як піднести до квадрату число 99?

(Записи після обговорення : (100-1)2=10000-200+1=9801.)

Подумайте і скажіть, як найраціональніше піднести до квадрату числа 61, 21, 49?

Отже, формули скороченого множення застосовуються для раціональних обчислень. Ще коли? (при спрощенні виразів, при розв’язуванні рівнянь).

Давайте переконаємось у цьому.

2. Застосування формул для спрощення і перетворення виразів

(До дошки визиваю 5 учнів для розв’язування рівнянь.)

Отримавши відповідь, ви повинні записати її у відповідному рядку кросворда. У виділених клітинках ми прочитаємо прізвище відомого математика, фізика, про якого поговоримо на уроці.

  1.  (x-8)2 = x2-16,   2)  (x+7)(x-3)-x2 = 3979,

    x2-16x+64 = x2-16,     x2-3x+7x-21-x2 = 3979,

              -16x = -16-64,             -3x+7x = 3979+21,

              -16x = -80,            4x = 4000,

                   х = 5.              x =1000.

3) 4y2-(2y+5)2=-385,   4) (a+5)(a-1)-a2+4a=315,

4y2-4y2-20y-25=-385,   a2-a+5a-5-a2+4a=315,

-20y= -385+25,    8a=315+5,

-20y= -360,    8a=320,

y=18.     a=40.

5) (x-9)(x+9)-(x-3)2=30,   6) Як називається сума кількох

x2-81-x2+6x-9=30,       одночленів?   (Многочлен)

6x=30+81+9,

6x=120,     7) Рівність, правильна при

x=20.        будь-яких значеннях змінних

   називається...   (Тотожність)

 

п

’я

т

ь

т

и

с

я

ч

а

в

і

с

і

м

н

а

д

ц

я

т

ь

с

о

р

о

к

д

в

а

д

ц

а

т

ь

м

н

о

г

о

ч

л

е

н

т

о

т

о

ж

н

і

с

т

ь

Решта учнів отримує завдання на картках. Після розв’язання вони повинні звірити відповіді.

Картка 1. Знайти три послідовних натуральних числа, якщо добуток першого і другого чисел на 31 менший за квадрат третього.

І – n;  II – (n+1);  III – (n+2).

 n(n+1)+31=(n+2)2,

 n2+n+31=n2+4n+4,   n+1=9+1=10;

 n-4n=4-31,    n+2=9+2=11.

 -3n=-27,

 n=9.    Відповідь: 9;10;11.

Картка 2. Знайти три послідовних парних натуральних числа, якщо квадрат третього числа на 52 більший за добуток першого і другого.

І – 2n; ІІ –(2n+2);  ІІІ – (2n+4).

 (2n+4)2-52=2n(2n+2),

 4n2+16n+16-52=4n2+4n,   2n=6;

16n-4n=52-16,     2n+2=8;

12n=36,      2n+4=12.

n=3.     Відповідь: 6;8;10.

Картка 3. Знайти значення виразу   (5a-10)2-(8-5a)2+4a, якщо а=6.

Якщо а=6, то (5a-10)2-(8-5a)2+4a=25a2-100a-64+80a-25a2+4a=100-16a=100-16 6=100-96=4.

 

Давайте підведемо підсумки. Так де застосовуються формули скороченого множення?

- При розв’язуванні рівнянь.

- При спрощенні виразів.

- При розв’язуванні задач, які приводять до рівнянь.

- Для швидкого та раціонального обчислення.

3. Геометрична інтерпретація

Ще Евклід знав прийом піднесення до квадрату суми двох доданків, який і ми сьогодні з вами вивчаємо. Правда трактував він це з геометричної точки зору.

 a        b

     a    (a+b)2=a2+2ab+b2.

      b

Але чому тільки квадрат двох чисел? І чому тільки до квадрату? А чи не можна знайти метод піднесення до третього , четвертого і більш високих степенів суми трьох, чотирьох і більше доданків? Давайте спробуємо. В зошитах накресліть квадрат і спробуйте записати формулу квадрата суми трьох чисел.

     а     b           c

а

  b     (a+b+c)2=a2+b2+c2+2ab+2ac+2bc.

 

  c

 А давайте виведемо цю формулу з точки зору алгебри, кажуть, аналітично:  (a+b+c)2=(a+b+c)(a+b+c)=a2+ab+ac+ab+b2+bc+ac+bc+c2=    =a2+b2+c2+2ab+2ac+2cb.

 Отже, квадрат тричлена дорівнює сумі квадратів всіх виразів і подвоєних добутків всіх можливих пар цих виразів.

 

4. Піднесення двочлена до степеня

Перейдемо ще до одного узагальнення, початок якому поклали стародавні вавілоняни.

Ви знаєте тотожність (a+b)2=a2+2ab+b2.

Запропонуйте спосіб піднесення двочлена до кубу.  (a+b)3=(a+b)2(a+b)=(a2+2ab+b2)(a+b)=a3+a2b+2a2b+ab2+b3=

  =a3+3a2b+3ab2+b3.  

Що ви можете сказати за показники числа а? (спадають); числа b? (зростають).

А якщо піднесемо двочлен до четвертого степеня, які будуть показники степенів? (Розписати без коефіцієнтів:

(a+b)4=   a4+  a3b+   a2b2+   ab3+   b4.)

Чого не вистачає в цій формулі? (Коефіцієнтів.) Спробуємо знайти їх.

Давайте запишемо ще два степені суми двох чисел – нульову і першу: (a+b)0=1;

 (a+b)1=a+b.

 Випишіть тільки коефіцієнти, причому розташуйте їх у вигляді трикутника:    1

  1.  1

1  2  1

  1  3  3  1

Можна побачити, що “сторони” цього трикутника складені із одиниць, а числам, які стоять всередині  трикутника, притаманна властивість. Яка? (Кожне число можна подати у вигляді суми чисел, які стоять над ним у попередньому ряду праворуч і ліворуч:

 3=1+2;  2=1+1.)

Спробуйте дописати наступні рядки і  виправити формулу четвертого степеня двочлена:

(a+b)4 =a4+4a3b+6a2b2+4ab3+b4.

Піднесіть двочлен до п’ятого степеня, використовуючи вказані властивості:  

(a+b)5 =a5+5a4b+10a3b2+10a2b3+5ab4+b5.

 Трикутник, складений за вказаним правилом, називають трикутником Паскаля, ім’ям відомого математика, фізика, філософа, письменника Блеза Паскаля (1623 - 1662), сучасника Декарта і Ферма.

Де ви чули це прізвище?

  •  На уроках фізики: тиск вимірюється в паскалях.
  •  На уроках інформатики: існує мова програмування  Паскаль.

Це була дивовижна людина. 12-річним хлопчиком він доводить неймовірний факт: у будь-якому трикутнику сума всіх трьох кутів разом складає два прямі кути (зараз ми сказали б 180о). У 16 років він здійснив справжнє наукове дослідження: відкрив нові властивості конічних перерізів. У 23 роки він завершив виснажливу роботу над першою в світі арифметичною машиною, за допомогою якої можна було виконувати дію додавання та віднімання. Саме завдяки цьому в інформатиці одна з мов програмування названа його іменем. А крім цього роботи з фізики, комбінаторики, філософські роздуми та багато іншого.

Отже, яким чином ми узагальнили формулу квадрата двочлена?

( 1. Навчились виводити формулу квадрата многочлена.

  1.  Навчились підносити двочлен до будь-якого натурального степеня. )

Як піднести двочлен до 3го, 4го, 5го  степенів?

( Знайти коефіцієнти з трикутника Паскаля і використати властивості показників степенів кожного доданка. )

5. Застосування формул

Знайдіть значення виразу c4+4c3d+6c2d2+4cd3+d4, якщо с= 1,8; d=0,2.

Якщо c=1,8; d=0,2, то c4+4c3d+6c2d2+4cd3+d4= (c+d)4= =(1,8+0,2)4=24=16.

V. Домашнє завдання та підсумки уроку

Діти в зошитах записують завдання. Я в цей час виставляю оцінки, враховуючи жетони зароблені дітьми.

Домашнє завдання на переносній дошці :

Піднести до степеня:  1)  (х+2)3;

    2) (а-b)4;

Вивести формулу:  (a+b+c+d)2.

Середній рівень –  тільки написати формулу;

Достатній рівень –  Одним способом;

Високий рівень –  Двома способами.

(a+b)4=(a+b)2(a+b)2=(a2+2ab+b2)(a2+2ab+b2)=a4+2a3b+a2b2+2a3b+4a2b2+2ab3+a2b2+2ab3+b4=a4+4a3b+6a2b2+4ab3+b4.

Картка 1

 Знайти три послідовних натуральних числа, якщо добуток першого і другого чисел на 31 менший за квадрат третього.

Картка 2

 Знайти три послідовних парних натуральних числа, якщо квадрат третього числа на 52 більший за добуток першого і другого.

Картка 3

 Знайти значення виразу   (5a-10)2-(8-5a)2+4a, якщо а=6.

 

Картка 2

 Знайти три послідовних парних натуральних числа, якщо квадрат третього числа на 52 більший за добуток першого і другого.

Картка 1

 Знайти три послідовних натуральних числа, якщо добуток першого і другого чисел на 31 менший за квадрат третього.

Картка 1

 Знайти три послідовних натуральних числа, якщо добуток першого і другого чисел на 31 менший за квадрат третього.

Картка 2

 Знайти три послідовних парних натуральних числа, якщо квадрат третього числа на 52 більший за добуток першого і другого.

Картка 3

 Знайти значення виразу   (5a-10)2-(8-5a)2+4a, якщо а=6.

 

Картка 3

 Знайти значення виразу   (5a-10)2-(8-5a)2+4a, якщо а=6.

 


 

А также другие работы, которые могут Вас заинтересовать

84069. Сердечнососудистая (циркуляторная) система (типы сосудов, круги кровообращения) 29.83 KB
  Кровь в них движется от сердца. Через тонкие стенки капилляров происходит обмен между кровью и тканями транскапиллярный обмен. Кровь в них движется от органов и тканей к сердцу. В капиллярах кровь отдает кислород и питательные вещества а от них получает продукты метаболизма в том числе и углекислый газ.
84070. Сердце, особенности строения сердца, обеспечивающие выполнение его функций 29.57 KB
  Левая и правая части сердца разделены сплошной перегородкой. В левой части сердца клапан двустворчатый в правой трехстворчатый. Клапаны сердца обеспечивают движение крови только в одном направлении: из предсердий в желудочки и из желудочков в артерии.
84071. Регуляция работы сердца 28.54 KB
  Работа сердца регулируется нервной системой в зависимости от воздействия внутренней и внешней среды: концентрации ионов калия и кальция гормона щитовидной железы состояния покоя или физической работы эмоционального напряжения. Нервная и гуморальная регуляция деятельности сердца согласует его работу с потребностями организма в каждый данный момент независимо от нашей воли. Гуморальная регуляция деятельности сердца осуществляется с помощью имеющихся в крупных сосудах специальных хеморецепторов которые возбуждаются под влиянием изменений...
84072. Особенности сердечнососудистой системы у детей младшего возраста 31.68 KB
  Сердце и сосуды у детей значительно отличаются от сердечнососудистой системы взрослых. Рост сердца у детей идет во всех направлениях но неравномерно т. У новорожденных и детей первых 05 2 лет жизни сердце расположено поперечно и более высоко.
84073. Репродуктивная система человека 30.41 KB
  Репродуктивная система комплекс органов и систем которые обеспечивают процесс оплодотворения способствуют воспроизводству человека. Мужская репродуктивная система система органов расположенных снаружи тела около таза которые принимают участие в процессе репродукции. Репродуктивная система женщины состоит из органов расположенных преимущественно внутри тела в тазовой области.
84074. Половое созревание, регуляция полового созревания 33.51 KB
  Еще до появления первой менструации отмечается усиление функции гипофиза и яичников. В последние годы раскрыты новые механизмы становления и регуляции репродуктивной функции. Важная роль в регуляции репродуктивной функции принадлежит эндогенным опиатам энкефалины и их производные пре и проэнкефалины лейморфин неоэндорфины динорфин которые оказывают морфиноподобное действие и были выделены в центральных и периферических структурах нервной системы в середине 1970х годов. Данные о роли нейротрансмиттеров и влиянии через них эндогенных...
84075. Терморегуляция, виды терморегуляции 31.19 KB
  Различают несколько механизмов отдачи тепла в окружающую среду. Излучение отдача тепла в виде электромагнитных волн инфракрасного диапазона. Количество тепла рассеиваемого организмом в окружающую среду излучением пропорционально площади поверхности излучения площади поверхности тела не покрытой одеждой и градиенту температуры. При температуре окружающей среды 20с и относительной влажности воздуха 4060 организм взрослого человека рассеивает путём излучения около 4050 всего отдаваемого тепла.
84076. Терморегуляция у детей младшего возраста 31.18 KB
  Температура тела ребенка в первые месяцы жизни не вполне постоянна. Она может изменяться под влиянием различных факторов: охлаждения или перегревания тела приема пищи крика и так далее. Так у новорожденных на 1 кг массы тела приходится 700 см2 кожи у десятилетних детей 425 см2 а у взрослых 220 см2. Накопление тепла в организме способствует повышению температуры тела.
84077. Предмет и задачи анатомии и физиологии, предмет и задачи возрастной анатомии и физиологии 29.86 KB
  Физиология наука о функциях живого организма как единого целого о процессах протекающих в нём и механизмах его деятельности. В настоящее время физиология и анатомия накопили огромный фактический материал. Это привело к тому что от физиологии и от анатомии отпочковываются две самостоятельные науки это возрастная анатомия и возрастная физиология. Возрастная физиология это наука которая изучает особенности процесса жизнедеятельности организма на разных этапах онтогенеза.