53067

Применение производной функции

Конспект урока

Педагогика и дидактика

Итоговый урок по теме Применение производной функции. Цель урока: систематизировать и обобщить знания учащихся по теме Применение производной функции; развивать логическое мышление культуру математической речи стимулировать познавательную деятельность способствовать формированию знаний; воспитывать интерес к предмету умение работать в коллективе. Оборудование: мультимедийная доска диск с презентацией Применение производной функции раздаточный материал карточки контроля знаний....

Русский

2014-02-21

97.5 KB

6 чел.

Урок алгебры в 11 классе

Тема урока. Итоговый  урок  по  теме  «Применение  производной

                  функции».

Цель урока: систематизировать и обобщить знания учащихся по теме «Применение производной функции»; развивать логическое мышление, культуру математической речи, стимулировать познавательную деятельность, способствовать формированию знаний; воспитывать интерес к предмету, умение работать в коллективе.

Тип урока: урок обобщения и систематизации знаний, умений и навыков.

Оборудование:  мультимедийная доска, диск с презентацией  «Применение производной функции», раздаточный материал, карточки контроля знаний.

Ход урока

I. Организационный момент.

Учитель сообщает учащимся тему урока и говорит, что сегодняшний урок будет приходить в виде игры «Аттестация на кафедре математического анализа», представляет членов аттестационной комиссии.

Этапы игры:

  1.  Проверка теоретических знаний.
  2.  Умение применять полученные знания на практике.
  3.  Защита научной работы.

II. Актуализация опорных знаний.

Работа в парах

Учащиеся в парах работают над кроссвордом. После окончания работы проверяется правильность заполнения кроссворда с помощью мультимедийной доски. Каждый правильный ответ оценивается в 1 балл. Результаты записываются в карточку контроля знаний.

Кроссворд

По вертикали

1. Значение функции в точке экстремума.

По горизонтали

2. Если производная функции в каждой точке некоторого промежутка положительная, то это промежуток … функции.

3. Внутренняя точка области определения функции, в которой ее производная равна нулю или не существует.

4. Точка кривой, которая отделяет ее выпуклую часть от вогнутой называется точкой … .

5. Точка, при переходе через которую производная меняет знак с «плюса» на «минус», является точкой … .

6. Точка, при переходе через которую производная меняет знак с «минуса» на «плюс», является точкой … .

7. Прямая, расстояние до которой от точки кривой стремится к нулю при удалении точки в бесконечность.

III. Применение полученных знаний, умений и навыков.

Учащиеся работают над тестовыми заданиями. После окончания работы проводится взаимопроверка результатов (ответы записаны на мультимедийной доске). Результаты записываются в карточку контроля знаний. Каждый правильный ответ оценивается в 1 балл.

Тесты

     Вариант 1

1. Если  на заданном промежутке, то функция на этом промежутке:

   А) возрастает;           Б) убывает;           В) постоянна;

   Г) нельзя ответить.

2. Если х0 – критическая точка функции, то она обязательно является точкой экстремума.

А) да;              Б) нет;              В) нельзя ответить.

3. Найдите критические точки функции .

   А) 0;– 2;        Б) – 2; 2;        В) 0; 4;        Г) 2; 0.

4. Найдите точку экстремума функции .

   А) – 2;            Б) 0;               В) 2;            Г) 4.

5. Найдите угловой коэффициент касательной к графику функции    в точке с абсциссой  .

   А) 1;              Б) 9;                В) 3;            Г) 6.

6. Найдите тангенс угла наклона к оси абсцисс касательной  к графику функции    в точке с абсциссой  .

   А) 2;              Б) 4;                В) 3;            Г) 1.

7. Найдите уравнение касательной к графику функции    в точке с абсциссой  .

  А) ;      Б) ;     В) ;     Г) .

8. Тело движется по закону   (s – в метрах, t – в секундах). Найдите скорость тела в момент  с.

  А) 12 м/с;            Б) 9 м/с;            В) 18 м/с;            Г) 6 м/с.

    Вариант 2

1. Если  на заданном промежутке, то функция на этом промежутке:

   А) возрастает;           Б) убывает;           В) постоянна;

   Г) нельзя ответить.

2. Если х0 – точка экстремума, то она обязательно является критической точкой функции.

А) да;              Б) нет;              В) нельзя ответить.

3. Найдите критические точки функции .

   А) – 3; 0;        Б) 0; 3;        В) 0; 9;        Г) 3; – 3.

4. Найдите точку экстремума функции .

   А) – 2;            Б) 0;               В) 2;            Г) 4.

5. Найдите угловой коэффициент касательной к графику функции    в точке с абсциссой  .

   А) 16;              Б) 8;                В) 4;            Г) 1.

6. Найдите тангенс угла наклона к оси абсцисс касательной  к графику функции    в точке с абсциссой  .

   А) 2;              Б) 4;                В) 3;            Г) 1.

7. Найдите уравнение касательной к графику функции    в точке с абсциссой  .

   А) ;     Б) ;     В) ;     Г) .

8. Тело движется по закону   (s – в метрах, t – в секундах). Найдите скорость тела в момент  с.

  А) 12 м/с;            Б) 10 м/с;            В) 6 м/с;            Г) 8 м/с.

Ответы к тестам

Вариант 1.  1.А;   2.Б;   3.Б;   4.В;   5.Г;   6.В;   7.В;   8.Г.

Вариант 2.  1.Б;   2.А;   3.Г;   4.А;   5.Б;   6.Г;   7.Б;   8.А.

IV. Усовершенствование умений и навыков.

Работа в группах

Учащиеся объединяются в группы и выполняют задание с последующим объяснением у доски. Ответ оценивается 1–3 балла, в зависимости от полноты и правильности ответа. За дополнения к ответам тоже начисляются баллы.

Задание  Дана функция  . Найдите:

  1.  Область определения функции.
  2.  Четность, точки пересечения с осями координат.
  3.  Критические точки функции.
  4.  Промежутки возрастания и убывания функции.
  5.  Точки экстремума и экстремумы функции.
  6.  Критические точки второго рода.
  7.  Интервалы выпуклости и вогнутости, точки перегиба функции.
  8.  Асимптоты графика функции.
  9.  Постройте график функции.

V. Сообщение исторических сведений.

   К понятию производной пришли почти одновременно, но различными путями Ньютон и Лейбниц.

   Ньютон пришел к понятию производной, исходя из потребностей физики. Рассматривая физический смысл производной, Ньютон применил ее для решения задачи определения скорости прямолинейного неравномерного движения.

   Лейбниц рассматривал геометрический смысл производной: находил угловой коэффициент касательной к графику функции. Значительно полнее своих предшественников решил задачу о построении касательной к кривой в некоторой точке.

   Термин «производная» впервые был введен Лагранжем в 1791 году, ему же мы обязаны и современным обозначением производной (с помощью штриха). Термин «вторая производная» и обозначение (два штриха) также ввёл Лагранж.

VI. Подведение итогов урока.

Аттестационная комиссия подсчитывает количество баллов и вручает каждому учащемуся удостоверение о присвоении звания профессора, доцента, старшего научного сотрудника или младшего научного сотрудника кафедры математического анализа.

VII. Домашнее задание. Решить №№ 2, 3, 4 (стр. 214).


 

А также другие работы, которые могут Вас заинтересовать

57859. Різноманітність грибів, їх роль у природі, житті та господарській діяльності людини 183.5 KB
  Мета уроку: познайомити учнів з різноманітністю грибів показати їх роль в природі житті та господарській діяльності людини; вчити дітей розпізнавати різні гриби розвивати навички роботи з додатковою літературою...
57860. Характеристика класу Однодольні. Рослини родини Злакові 161 KB
  Мета. Охарактеризувати рослини класу Однодольні продовжити формування в учнів навичок складання порівняльної характеристики спрямувати пізнавальну активність учнів на вивчення рослин родини Злакові з’ясувати їх практичне використання людиною.
57861. Відкриття європейців 44.5 KB
  Кого з Великих мореплавців ви пам’ятаєте ІІІ. Мотивація навчальної діяльності Сьогодні на уроці ми починаємо вивчати нову тему Слайд 1 Великі географічні відкриття дізнаємося про основний перебіг Великих географічних відкриттів і подорожей ХV – ХVІ століття.
57862. Революція у Франції. Бонопартистський переворот 1851р. і Встановлення імперії 85 KB
  Задачі уроку: Сприяти тому, щоб учні могли грамотно характеризувати причини, хід та рушійні сили революції у Франції, виділяти головні революційні події та оцінювати зміст Конституційних процесів, усвідомили поняття «республіка», «бонапартизм», «монархія».
57863. Географічне середовище як сфера взаємодії суспільства і природи. Природокористування. Ресурсозабезпеченість 37.5 KB
  Мета: розглянути географічне середовище як сферу взаємодії суспільства і природи сформувати поняття ресурсозабезпеченість природокористування; розвивати економічне мислення уміння аналізувати ступені впливу людини на природу...
57864. Енергетика України і проблеми енергозбереження 104.5 KB
  Мета уроку: узагальнити й систематизувати знання учнів про виробництво електроенергії на електростанціях різних типів; показати учням зв’язок енергетики та екологiї їхню взаємодiю шляхи полiпшенню стану енергетики на глобальному та мiсцевому рівнях...
57865. Трудові ресурси і зайнятість населення України 228.5 KB
  Мета: вивчити поняття трудові ресурси економічно активне населення зайнятість населення безробіття; визначити географію трудових ресурсів України; зясувати в чому полягає проблема зайнятості населення...
57866. Механічний рух населення України. Сальдо міграції 233.5 KB
  Мета уроку: розкрити поняття міграція сальдо міграції сформувати знання про види значення та наслідки механічного переміщення українців окреслити основні тенденції та напрямки міграцій населення України...
57867. Таємниці повітряного океану Землі 104.5 KB
  Мета та завдання уроку: освітні: сформувати знання у учнів про атмосферу її будову та склад повітря; розкрити значення атмосфери для життя на Землі і необхідність її вивчення; ознайомити зі змістом поняття погода†та її основними показниками. Виховні: продовжувати формувати географічну культуру особистості як необхідну складову освіченості школяра; сприяти формуванню свідомого розуміння значення атмосфери та важливості її вивчення виховувати бажання вивчати досліджувати та берегти повітряну...