53067

Применение производной функции

Конспект урока

Педагогика и дидактика

Итоговый урок по теме Применение производной функции. Цель урока: систематизировать и обобщить знания учащихся по теме Применение производной функции; развивать логическое мышление культуру математической речи стимулировать познавательную деятельность способствовать формированию знаний; воспитывать интерес к предмету умение работать в коллективе. Оборудование: мультимедийная доска диск с презентацией Применение производной функции раздаточный материал карточки контроля знаний....

Русский

2014-02-21

97.5 KB

6 чел.

Урок алгебры в 11 классе

Тема урока. Итоговый  урок  по  теме  «Применение  производной

                  функции».

Цель урока: систематизировать и обобщить знания учащихся по теме «Применение производной функции»; развивать логическое мышление, культуру математической речи, стимулировать познавательную деятельность, способствовать формированию знаний; воспитывать интерес к предмету, умение работать в коллективе.

Тип урока: урок обобщения и систематизации знаний, умений и навыков.

Оборудование:  мультимедийная доска, диск с презентацией  «Применение производной функции», раздаточный материал, карточки контроля знаний.

Ход урока

I. Организационный момент.

Учитель сообщает учащимся тему урока и говорит, что сегодняшний урок будет приходить в виде игры «Аттестация на кафедре математического анализа», представляет членов аттестационной комиссии.

Этапы игры:

  1.  Проверка теоретических знаний.
  2.  Умение применять полученные знания на практике.
  3.  Защита научной работы.

II. Актуализация опорных знаний.

Работа в парах

Учащиеся в парах работают над кроссвордом. После окончания работы проверяется правильность заполнения кроссворда с помощью мультимедийной доски. Каждый правильный ответ оценивается в 1 балл. Результаты записываются в карточку контроля знаний.

Кроссворд

По вертикали

1. Значение функции в точке экстремума.

По горизонтали

2. Если производная функции в каждой точке некоторого промежутка положительная, то это промежуток … функции.

3. Внутренняя точка области определения функции, в которой ее производная равна нулю или не существует.

4. Точка кривой, которая отделяет ее выпуклую часть от вогнутой называется точкой … .

5. Точка, при переходе через которую производная меняет знак с «плюса» на «минус», является точкой … .

6. Точка, при переходе через которую производная меняет знак с «минуса» на «плюс», является точкой … .

7. Прямая, расстояние до которой от точки кривой стремится к нулю при удалении точки в бесконечность.

III. Применение полученных знаний, умений и навыков.

Учащиеся работают над тестовыми заданиями. После окончания работы проводится взаимопроверка результатов (ответы записаны на мультимедийной доске). Результаты записываются в карточку контроля знаний. Каждый правильный ответ оценивается в 1 балл.

Тесты

     Вариант 1

1. Если  на заданном промежутке, то функция на этом промежутке:

   А) возрастает;           Б) убывает;           В) постоянна;

   Г) нельзя ответить.

2. Если х0 – критическая точка функции, то она обязательно является точкой экстремума.

А) да;              Б) нет;              В) нельзя ответить.

3. Найдите критические точки функции .

   А) 0;– 2;        Б) – 2; 2;        В) 0; 4;        Г) 2; 0.

4. Найдите точку экстремума функции .

   А) – 2;            Б) 0;               В) 2;            Г) 4.

5. Найдите угловой коэффициент касательной к графику функции    в точке с абсциссой  .

   А) 1;              Б) 9;                В) 3;            Г) 6.

6. Найдите тангенс угла наклона к оси абсцисс касательной  к графику функции    в точке с абсциссой  .

   А) 2;              Б) 4;                В) 3;            Г) 1.

7. Найдите уравнение касательной к графику функции    в точке с абсциссой  .

  А) ;      Б) ;     В) ;     Г) .

8. Тело движется по закону   (s – в метрах, t – в секундах). Найдите скорость тела в момент  с.

  А) 12 м/с;            Б) 9 м/с;            В) 18 м/с;            Г) 6 м/с.

    Вариант 2

1. Если  на заданном промежутке, то функция на этом промежутке:

   А) возрастает;           Б) убывает;           В) постоянна;

   Г) нельзя ответить.

2. Если х0 – точка экстремума, то она обязательно является критической точкой функции.

А) да;              Б) нет;              В) нельзя ответить.

3. Найдите критические точки функции .

   А) – 3; 0;        Б) 0; 3;        В) 0; 9;        Г) 3; – 3.

4. Найдите точку экстремума функции .

   А) – 2;            Б) 0;               В) 2;            Г) 4.

5. Найдите угловой коэффициент касательной к графику функции    в точке с абсциссой  .

   А) 16;              Б) 8;                В) 4;            Г) 1.

6. Найдите тангенс угла наклона к оси абсцисс касательной  к графику функции    в точке с абсциссой  .

   А) 2;              Б) 4;                В) 3;            Г) 1.

7. Найдите уравнение касательной к графику функции    в точке с абсциссой  .

   А) ;     Б) ;     В) ;     Г) .

8. Тело движется по закону   (s – в метрах, t – в секундах). Найдите скорость тела в момент  с.

  А) 12 м/с;            Б) 10 м/с;            В) 6 м/с;            Г) 8 м/с.

Ответы к тестам

Вариант 1.  1.А;   2.Б;   3.Б;   4.В;   5.Г;   6.В;   7.В;   8.Г.

Вариант 2.  1.Б;   2.А;   3.Г;   4.А;   5.Б;   6.Г;   7.Б;   8.А.

IV. Усовершенствование умений и навыков.

Работа в группах

Учащиеся объединяются в группы и выполняют задание с последующим объяснением у доски. Ответ оценивается 1–3 балла, в зависимости от полноты и правильности ответа. За дополнения к ответам тоже начисляются баллы.

Задание  Дана функция  . Найдите:

  1.  Область определения функции.
  2.  Четность, точки пересечения с осями координат.
  3.  Критические точки функции.
  4.  Промежутки возрастания и убывания функции.
  5.  Точки экстремума и экстремумы функции.
  6.  Критические точки второго рода.
  7.  Интервалы выпуклости и вогнутости, точки перегиба функции.
  8.  Асимптоты графика функции.
  9.  Постройте график функции.

V. Сообщение исторических сведений.

   К понятию производной пришли почти одновременно, но различными путями Ньютон и Лейбниц.

   Ньютон пришел к понятию производной, исходя из потребностей физики. Рассматривая физический смысл производной, Ньютон применил ее для решения задачи определения скорости прямолинейного неравномерного движения.

   Лейбниц рассматривал геометрический смысл производной: находил угловой коэффициент касательной к графику функции. Значительно полнее своих предшественников решил задачу о построении касательной к кривой в некоторой точке.

   Термин «производная» впервые был введен Лагранжем в 1791 году, ему же мы обязаны и современным обозначением производной (с помощью штриха). Термин «вторая производная» и обозначение (два штриха) также ввёл Лагранж.

VI. Подведение итогов урока.

Аттестационная комиссия подсчитывает количество баллов и вручает каждому учащемуся удостоверение о присвоении звания профессора, доцента, старшего научного сотрудника или младшего научного сотрудника кафедры математического анализа.

VII. Домашнее задание. Решить №№ 2, 3, 4 (стр. 214).


 

А также другие работы, которые могут Вас заинтересовать

6685. Геном. Генотип. Фенотип 24.18 KB
  Геном. Генотип. Фенотип. Фенотип как результат реализации генотипа в определенной среде. Количественная и качественная специфика проявления генов в признаках. Взаимодействие неаллельных генов. Геном - совокупность генов, харак...
6686. Изменчивость. Мутационная изменчивость и система браков 25.23 KB
  Изменчивость. Модификационная изменчивость. Комбинативная изменчивость. Система браков. Мутационная изменчивость. Одним из признаков жизни является изменчивость. Любой живой организм отличается от других представителей вида...
6687. Элементы антропогенеза 27.81 KB
  Элементы антропогенеза. Человек как объект генетики. Частные разделы генетики человека. Методы генетики человека. Существует специальность - клиническая генетика (МГМА, ТМУ, КГМА). Клиническая генетика - дисциплина, которая пр...
6688. Гомеостаз. Роль нервной, эндокринной и иммунной систем в поддержании гомеостаза 29.21 KB
  Гомеостаз. Общие закономерности. Адаптации Роль нервной, эндокринной и иммунной систем в поддержании гомеостаза. Трансплантология. Термин гомеостаз был предложен для понимания постоянства состава лимфы, крови и тканевой жид...
6689. Биология индивидуального развития 25.48 KB
  Биология индивидуального развития. Онтогенез как процесс формирования фенотипа. Периоды онтогенеза. Общая характеристика дефинитивного фенотипа. Онтогенез - онтос - существо, генес - развитие. При половом размножении онтог...
6690. Молекулярно-генетические механизмы онтогенеза 25.64 KB
  Молекулярно-генетические механизмы онтогенеза. Реализация наследственной информации в становлении дефинитивного фенотипа. Избирательная активность генов в развитии. Механизмы онтогенеза на клеточном и организменном уровнях. Главный...
6691. Постнатальный онтогенез. Пострепродуктивный онтогенез 27.68 KB
  Постнатальный онтогенез. Дорепродуктивный онтогенез. Репродуктивный онтогенез Пострепродуктивный онтогенез. Рост организма может быть определенным и неопределенным. Определенный рост - рост прекращается к определенному времени: пти...
6692. Регенерация. Проявление регенерации в онтогенезе и филогенезе 26.12 KB
  Регенерация. Уровни регенерационной реакции. Физиологическая репарация. Репаративная регенерация. Проявление регенерации в онтогенезе и филогенезе. Важнейшая проблема медицины - восстановление поврежденных тканей и орган...
6693. Эволюция органического мира. Биологический вид, его популяционная структура 28.11 KB
  Эволюция органического мира. Определение эволюции. Теории эволюции. Биологический вид, его популяционная структура. Действие элементарных факторов на популяцию. В основе биологической эволюции лежат процессы самовоспроизведен...