53123

Розв’язування трикутників

Конспект урока

Педагогика и дидактика

Мета: формувати вміння і навички розвязування трикутника за трьома його основними елементами; повторити теореми синусів косинусів та наслідки з них; повторити основні типи задач на обчислення елементів довільних трикутників; розвивати пошукову пізнавальну активність учнів логічне мислення уяву звязне мовлення; виховувати самостійність наполегливість впевненість у собі інтерес до предмету. Сторону трикутника пропорційні до синусів протилежних кутів теорема синусів. Квадрат сторони трикутника дорівнює сумі...

Украинкский

2014-02-22

214.5 KB

6 чел.

Розв’язування трикутників.

Мета:

-   формувати вміння і навички розв’язування трикутника за трьома його основними елементами;

-   повторити теореми синусів , косинусів та наслідки з них;

-  повторити основні типи задач на обчислення елементів довільних трикутників;

- розвивати пошукову пізнавальну активність учнів, логічне мислення, уяву, зв’язне мовлення;

- виховувати самостійність, наполегливість, впевненість у собі, інтерес до предмету.

Тип уроку: урок закріплення.

Обладнання: інструктивна картка для учнів ( 1. Пам’ятка для учнів.

2. Історична довідка. 3. Умови задач рівнів А,В,С.)

                                                 

                                                        Математика цікава тоді,

                                                        коли живить нашу винахідливість

                                                       і здатність міркувати.

                                                                                            Д. Пойа

                                                                                                 

І.  Повідомлення теми і мети уроку.   Мотивація навчальної діяльності.

На попередніх уроках ви розглянули  теореми синусів, косинусів та наслідки з них, ввели поняття розв’язування трикутників, розглянули основні типи задач на обчислення елементів довільних трикутників.

Сьогодні  перед нами стоїть задача:

  •  повторити все, що вивчили;
  •  пригадати те, що забули;
  •  вміло застосовувати отримані знання до розв’язування геометричних задач.

Незважаючи на те, що попереду у нас велика пізнавальна робота, я сподіваюсь, що ми зможемо зберегти гарний настрій до кінця уроку, а якщо вдасться, то ще його й покращимо.

Але перш, ніж ми почнемо я прошу звернути вашу увагу на «Пам’ятку для учнів». Ознайомтесь, будь-ласка, із запропонованими вам рекомендаціями. Якщо ви будете слідувати їм, то я впевнена, що сьогодні на уроці ви обов’язково виконаєте всі завдання тільки на високому рівні.

                                              

                                                    Справжній скарб для людини – вміння трудитися.

                                                                                                                           Езоп

                                            Пам’ятка для учнів.

  1.  Будь уважним.
  2.  Міркуй, шукай, порівнюй, роби висновки, працюй.
  3.  Шукай нові способи розв’язування проблеми.
  4.  Самостійно встановлюй зв’язки відомого з невідомим.
  5.  Будь наполегливим і не бійся помилитися.
  6.  Експериментуй та виправляй невдалі спроби.
  7.  Будь упевнений у своїх здібностях.

Для початку зробимо не великий екскурс в історію.

Ознайомитись з історичною довідкою і дати відповіді на запитання:

  1.  В якому столітті видатним астрологом ал-Беруні була доведена теорема синусів? XI)
  2.  Коли нею почали користуватися європейські математики? (у XVI столітті)
  3.  Яка теорема була доведена геометрично в «Началах» Евкліда? (теорема косинусів)
  4.  Ким і коли вона була сформульована словесно? (французьким математиком Франсуа Вієтом,  XVI століття)
  5.  Хто і коли надав їй сучасного вигляду? (французький математик Лазар Карно, у 1801 році)

Історична довідка.

Вчені Індії, зводили розв’язування будь-яких трикутників до розв’язування прямокутних трикутників  і не потребували теорему синусів і не знали її. Ця теорема була доведена лише в одинадцятому столітті видатним астрологом ал-Беруні. Теоремою синусів користувалися, починаючи з ХVI століття і європейські математики.

   Теорема косинусів була доведена, звичайно, геометрично ще в «Началах» Евкліда.

    Словесно теорема косинусів була вперше сформульована французьким  математиком Француа Вієтом в ХVI столітті.

Сучасний вид теорема косинусів приймає в 1801 році у французького математика Лазара Карно.

ІІ. Актуалізація опорних знань.

1. Вказати назви сформульованих теорем.

Теорема 1.

Сторону трикутника пропорційні до синусів протилежних кутів ( теорема синусів).

Теорема 2.

Квадрат сторони трикутника дорівнює сумі квадратів двох інших його сторін без подвоєного добутку цих сторін на косинус кута між ними

 ( теорема косинусів).

Запишіть їх за допомогою формул.

( 1)       =   =  = 2R ;     2)     a2   = b2    + c2  - 2bc cos α.)

       2. Замість … вставити пропущені слова:

  1.  У будь-якому трикутнику відношення сторони до …дорівнює діаметру кола, описаного навколо цього трикутника (синуса протилежного кута).
  2.  У трикутнику проти … лежить більший кут, проти більшого кута лежить … ( більшої сторони; більша сторона).
  3.  Квадрат сторони трикутника дорівнює сумі квадратів двох інших сторін «±» подвоєний добуток однієї з них на проекцію другої. Знак «+» беремо тоді, коли протилежний кут …, а знак «-», коли …( тупий; гострий).
  4.  Теорему косинусів називають іноді узагальненою теоремою …(Піфагора).
  5.   … і … трикутника називаються основними його елементами ( сторони; кути).
  6.  Розв’язати трикутник означає: за даними … основними елементами трикутника … . При цьому серед заданих основних елементів хоча б один повинен бути … (трьома; знайти три інші його основні елементи; стороною трикутника).

3. Використовуючи малюнок заповнити пропуски у таблиці:

Основні задачі на обчислення елементів довільних трикутників

№.

Тип задачі

Дано

Знайти

1.

За стороною і прилеглими до неї  кутами

AB, A, B.

2.

За двома сторонами і кутом між ними

AB, A, B.

3.

AB, BC, AC

 A, B, C.

4.

За двома сторонами і кутом, протилежним одній із них

AC, BC, A

                         За трьома кутами задача розв’язків не має !

ІІІ. Розв’язування задач.

Учні, які мають середній і достатній рівні навчальних досягнень виконують задачі рівня А і рівня B, а ті,  які мають високий рівень – рівня В і рівня С.

Рівень А.

Задача 1.

Дві сторони трикутника дорівнюють 5 см і 7 см, а кут між ними 60°. Знайдіть третю сторону трикутника.

 Розв’язання.

Нехай АС=5см, АВ=7см, .

Використовуючи теорему косинусів маємо:

ВС² = АВ ² + АС ² – 2 АВ ·АС cos.

ВС ²  = 25 + 49 - 2·5·7· = 39.

ВС  =.

Відповідь: .

Задача 2.

Сторона трикутника дорівнює 10 см , а прилеглі до неї кути -  45° і 75°. Знайти сторону протилежну до кута 45°.

   Розв’язання.                                                   

 Нехай АС=10 см,  

ВС – сторона яка лежить проти кута 45°.

Використовуючи теорему синусів маємо:

= ;

                                                                          

   =

          

 Відповідь: 

Задача 3.

Сторони трикутника дорівнюють 6 см, 9 см, 8 см. Знайти косинус кута, який лежить проти більшої сторони.

Розв’язання.

Нехай АС=6 см, СВ=8 см, АВ=9 см.

Використовуючи теорему косинусів маємо:

АВ² = АС ² + ВС ² – 2АС ·ВС· cosС;

81 = 36 + 64 - 2 cos;

96 cos=19;

cos=.

Відповідь: .

Задача 4.

Сторони трикутника 6 см і 3 см, а кут протилежний до більшої з цих сторін, дорівнює 60°. Знайти синус кута, що лежить проти меншої сторони.

Розв’язання.

Нехай АС=6 см, АВ=3 см ,

Використовуючи теорему синусів маємо: = ;      

 sin

Відповідь: 

Рівень Б.

Задача 1.

Вивести формулу для площі трикутника S = ,  де a, b, c сторони трикутника, R- радіус описаного кола.

Розв’язання.

= 2R ;    sinα = ;         S = bc sinα = bc  =  .

Що і треба було довести.

Задача 2.

Довести , що бісектриса внутрішнього кута трикутника ділить протилежну сторону на відрізки, пропорційні до прилеглих сторін.

Розв’язання.                              

Нехай AD  - бісектриса внутрішнього  А. Тоді

Що і треба було довести.

Задача 3.

Довести, що сума квадратів діагоналей паралелограма дорівнює сумі квадратів його сторін.

Розв’язання.                                   

Нехай   Застосувавши теорему косинусів для трикутників АВD і ACD маємо:

Додаючи почленно рівності (1) і (2) отримаємо:

Що і треба було довести.

Задача 4.

Вивести формулу Герона для площі трикутника.

Розв’язання.

Як відомо:   a2   = b2    + c2 - 2bc cos α;     S=

Отже:                            

Підставимо знайдені вирази в формулу sin2α + cos²α = 1

Оскільки:

Маємо:   

Що і треба було довести.

Рівень В.

Задача 1.

Доведіть, що для довільного трикутника виконується рівність

r = , де rрадіус вписаного кола,  α, β, γ – кути трикутника, а – сторона , яка лежить проти кута α.

Розв’язання.

Нехай точка О – центр кола вписаного в трикутник АВС, ОК – його радіус, ОК=r. Так як центр вписаного кола це точка перетину бісектрис, то

Із  трикутника ВОС:

Використовуючи теорему синусів маємо:

Із трикутника ОКС :

  Що і треба було довести.

Задача 2.( теорема Стюарта)

Якщо а, в, с – сторони трикутника АВС і точка D  ділить сторону ВС на відрізки ,   то  

Розв’язання.

Нехай

Застосувавши теорему косинусів для трикутників АDС і ADВ маємо:

Помноживши (1)рівність на , а другу на  і почленно додавши маємо:

Отже: .

Що і треба було довести.

IV. Домашнє завдання.

Повторити теореми синусів, косинусів та наслідки з них.

Довести теорему Птолемея.

Якщо чотирикутник вписаний в коло, то добуток діагоналей чотирикутника дорівнює сумі добутків його протилежних сторін.

V. Підсумок уроку.

1. Закінчити речення:

1. Сьогодні на уроці я повторив …

2. Сьогодні на уроці я навчився …

3. Необхідно додатково попрацювати над …

4. Найважчим для мене було…

2. Порівняй свої знання на початку і в кінці уроку і дай відповіді на запитання:

Чи отримав ти задоволення від власної праці?

Який етап діяльності був найцікавіщим?

Які загальнонавчальні вміння допомагали у складних ситуаціях?

PAGE  1


С                       
D            B

А

EMBED Equation.3  

      B                          С

А                         D

A

А

В В

             

вввввввввввввв

ВВВВВВВ

   A

C                 D              B

С              

вввввввввввввв

В

5смм

7см

В

вввввввввввввв

С              

А

А

С              

вввввввввввввв

8см

В

6смм

9см

3см

6смм

В

вввввввввввввв

С              

А

B                K                          C

A

O


 

А также другие работы, которые могут Вас заинтересовать

45887. Настроечные элементы 64.88 KB
  3 выше к ним относятся кондукторные втулки направляющие втулки. Кондукторные втулки прим. Кондукторные втулки бывают : постоянные быстросменные и сменные. Сменые втулки применяются при обработке одним инструментом но с учётом замены вследствии износа.
45888. Способы установки приспособлении на месте эксплуатации 87.32 KB
  Приспособления устанавливаются на столах элементах шпинделей и др. Чтобы быстро и точно установить на место эксплуатации на корпусе приспособления выполняются посадочные поверхности которые согласовываются с посадочным местом станка или другого места эксплуатации. Сравнительно легко обеспечивается точность расположения приспособления относительно оси шпинделя но при замене обработанной заготовки новой надо снимать приспособление со станка. 2Для установки в отверстие шпинделя на корпусе приспособления выполняется посадочная поверхность...
45889. Самоцентрирующие устройства 66.2 KB
  Самоцентрирующие устройства применяются для базирования отверстий и нар. В самоцентрирующих устройствах опорные поверхности подвижны и связаны между собой так что могут одновременно и с равным перемещением сближаться к оси устройства или удаляться от нее. По конструкции различают следующие самоцентрирующие зажимные устройства: призматические; плунжерные; цанговые; гидропластмассовые; мембранные; с тарельчатыми пружинами; 2х и 3х кулачковые патроны; рычажные.
45891. Базирование заготовки 20.76 KB
  Базирование заготовки основывается на правиле 6 точек: чтобы предать заготовке вполне определенное положение в приспособлении надо и достаточно иметь 6 опорных точек лишающих заготовку всех 6 степеней свободы. Больше 6 точек использовать не допустимо изза лишних опрных точек заготовку не удаётся установить в приспособлении или после закрепления положение при базировании нарушится. Количество опорных точек определяется условием выполнения операции и в первую очередь числом выдерживаемых на ней исходных параметров и схемой их расположения по...
45892. Приспособления для агрегатных станков и автоматических линий 28 KB
  Приспособления для агрегатных станков и автоматических линий В связи с широким внедрением в промышленность прогрессивного металлорежущего оборудования станков с ЧПУ а также агрегатных станков и автоматических линий значительно возросли требования к технологической оснастке. Правильное решение вопросов оснащения станков с ЧПУ прогрессивными приспособлениями и другой оснасткой позволяет получить максимальный эффект от внедрения этих станков.
45893. Особенности конструкций приспособлений для сверлильных станков 27.63 KB
  Для устранения этого недостатка применяют многошпиндельные сверлильные головки. Головки могут быть специальными и универсальными. В крупносерийном и массовом производстве в основном применяются специальные многошпиндельные головки т. головки с неизменным расположением шпинделей.
45894. Система допусков и посадок для подшипников качения 14.37 KB
  Выбор посадок подшипников качения Весьма важным в обеспечении высокой работоспособности подшипников является выбор посадок колец подшипника с присоединяемыми поверхностями деталей изделия. Основными факторами определяющими выбор посадок являются: вид нагружения колец подшипника; величина нагрузки интенсивность нагружения; частота вращения; условия монтажа. Главным фактором при выборе посадок является вид нагружения наружного и внутреннего колец подшипника. Если Fr Fc то нагружение колец может быть местным или циркуляционным в...
45895. Допуски и посадки шлицевых соединений 47.67 KB
  Шлицевые соединения предназначены для передачи крутящих моментов в соединениях шкивов муфт зубчатых колес и других деталей с валами.Шлицевые соединения кроме передачи крутящих моментов осуществляют еще и центрирование сопрягаемых деталей. Шлицевые соединения могут передавать большие крутящие моменты чем шпоночные и имеют меньшие перекосы и смещения пазов и зубьев.В зависимости от профиля зубьев шлицевые соединения делят на соединения с прямобочным эвольвентным и треугольным профилем зубьев.