5313

Атом водорода

Контрольная

Физика

Атом водорода В атоме водорода или водородоподобном ионе потенциальная энергия электрона равна где Ze заряд ядра, r расстояние между ядром и электроном. Уравнение Шредингера имеет в этом случае вид Поскольку п...

Русский

2012-12-07

198.5 KB

17 чел.

Атом водорода

В атоме водорода или водородоподобном ионе потенциальная энергия электрона равна  где Ze — заряд ядра, r — расстояние между ядром и электроном.

Уравнение Шредингера имеет в этом случае вид  (1)

Поскольку поле является центрально-симметричным, удобно воспользоваться сферической системой координат: r, , . Подставив в (1) выражение оператора Лапласа в сферических координатах, получим уравнение:

 (2)

Можно показать, что уравнение (2) имеет требуемые (т. е. однозначные, конечные и непрерывные) решения в следующих случаях: 1) при любых положительных значениях Е; 2) при дискретных отрицательных значениях энергии, равных  (n=1, 2, 3,…).  (3)

Случай Е > 0 соответствует электрону, пролетающему вблизи ядра и удаляющемуся вновь на бесконечность. Случай Е < 0 соответствует электрону, находящемуся в пределах атома. Сравнение (3) с (5) показывает, что квантовая механика приводит к таким же значениям энергии водородного атома, какие получались и в теории Бора. Однако в квантовой механике эти значения полу- чаются логическим путем из основного предположения о том, что движение микрочастиц описывается уравнением Шредингера. Бору же для получения такого результата пришлось вводить специальные дополнительные предположения.

Собственные функции уравнения (2) содержат три целочисленных параметра. Один из них совпадает с номером уровня энергии п, два других принято обозначать буквами l и т. Эти числа называются квантовыми:

п — главное квантовое число,

l — азимутальное квантовое число,

т — магнитное квантовое число.

При данном п числа l и т могут принимать следую» щие значения:

L = 0, 1, 2, …, п -1,

т. е. всего п различных значений;

т=-l, -l+1, .... -1, 0, +1, .... l-1, l,

т. е. всего 2l + 1 различных значений.

Таким образом, каждому Еп (кроме Е1) соответствует несколько волновых функций  отличающихся значениями квантовых чисел l и т. Это означает, что атом водорода может иметь одно и то же значение энергии, находясь в нескольких различных состояниях.

Состояния с одинаковой энергией называются вырожденными, а число различных состояний с каким-либо значением энергии называется кратностью вырождения соответствующего энергетического уровня.

Кратность вырождения уровней водорода легко вычислить, исходя из возможных значений для l и т. Каждому из п значений квантового числа l соответствует 2l + 1 значений квантового числа т. Следовательно, число   различных состоя-

ний, соответствующих данному п, равно

Таким образом, каждый уровень энергии водородного атома имеет вырождение кратности п2.

В табл. 3 приведены состояния, соответствующие первым трем энергетическим уровням.

Как мы выяснили, состояние электрона в водородном атоме зависит от трех квантовых чисел п, l и т, причем значение главного квантового числа п. определяет энергию состояния. Естественно предположить, что и два других квантовых числа определяют какие-то физические величины. Действительно, в квантовой механике доказывается, что азимутальное квантовое число l определяет величину момента импульса электрона в атоме, а магнитное квантовое число т — величину проекции этого момента на заданное направление в пространстве. Под заданным направлением (мы будем обозначать его буквой z) понимают направление, выделенное физически,путем создания, например магнитного или электрического поля.

Момент импульса М оказывается равным:  (4)

Проекция момента импульса на заданное направление равна: Мz = mh. (5)

Соотношения (4) и (5) показывают, что момент импульса электрона в атоме и проекция этого момента являются, как и энергия, квантованными величинами. Постоянную h можно рассматривать как естественную единицу момента импульса.

Итак, состояния с различными значениями азимутального квантового числа l отличаются величиной момента импульса. В атомной физике применяются заимствованные из спектроскопии условные обозначения состояний электрона с различными значениями момента импульса. Электрон, находящийся в состоянии с l = 0, называют s-электроном (соответствующее состояние — s-состояни-ем), с l = 1 — р-электроном, с l = 2 d-электроном, с l = 3 — f-электроном, затем идут g, h и т. д. уже по алфавиту. Значение главного квантового числа указывается перед условным обозначением квантового числа l. Таким образом, электрон в состоянии с п = 3 и l = 1 обозначается символом Зр и т. д.

Поскольку l всегда меньше п, возможны следующие состояния электрона:

1s

2s, 2p,

3s, 3p, 3d,

4s, 4p, 4d, 4f

и.т.д.

Схему уровней энергии можно изобразить пользуясь схемой, показанной на рис. 1. На этой схеме отражено (правда, частично) вырождение уровней; кроме того, она имеет еще ряд существенных преимуществ, которые вскоре станут очевидными.

Мы знаем, что испускание и поглощение света происходит при переходах электрона с одного уровня на другой. В квантовой механике доказывается, что возможны только такие переходы, при которых квантовое число / изменяется на единицу: . (6)

Условие, выраженное соотношением (6), называется правилом отбора. Существование правила (6) обусловлено тем, что фотон обладает собственным моментом импульса (спином), равным примерно h (в дальнейшем мы уточним его значение). При испускании фотон уносит из атома этот момент, а при поглощении привносит, так что правило отбора (6) есть просто следствие закона сохранения момента импульса.

На рис. 198 показаны переходы, разрешенные правилом (6). Пользуясь условными обозначениями состояний электрона, переходы, приводящие к возникновению серии Лаймана, можно записать в виде:

np1s    (n = 2, 3, ...); серии Бальмера соответствуют переходы:

ns2p и nd2p    (n = 3, 4, ...),

и т. д.

Состояние 1s является основным состоянием атома водорода. В этом состоянии атом обладает минимальной энергией. Чтобы перевести атом из основного состояния в возбужденное (т. е. в состояние с большей энергией), ему необходимо сообщить энергию. Это может быть осуществлено за счет теплового соударения атомов (по этой причине нагретые тела светятся — атомы излучают, возвращаясь из возбужденного в основное состояние), или оптического возбуждения. Кроме обозначенных квантовых чисел имеет место спиновое квантовое число, характеризующее собственный механический момент электрона в атоме.

Нормальный эффект Зеемана

Если атомы, излучающие свет, поместить в магнитное поле, то линии, испускаемые этими атомами, расщепляются на несколько компонент. Это явление было обнаружено голландским физиком Зееманом в 1896 г. при наблюдении свечения паров натрия и носит его имя. Расщепление весьма невелико — при Н = 20  30 тысяч эрстед оно достигает лишь несколько десятых долей ангстрема.

Напрашивается предположение, что расщепление линий обусловлено расщеплением под действием магнитного поля энергетических уровней атома. Причину такого расщепления легко понять, если учесть, что вращающийся по орбите электрон обладает, наряду с механическим  моментом М, также и магнитным моментом: (6)

Хотя представление об орбитах, как и вообще представление о траекториях микрочастиц, является неправильным, соотношение (6) остается, как показывает опыт, справедливым.

Известно, что магнитный момент обладает в магнитном поле энергией:

(7) где  — проекция магнитного момента на направление поля.

Вычислим величину орбитального магнитного момента электрона и величину проекции момента на направление поля. Подставим в соотношение (7) квантово-механическое выражение для механического момента:

Величина  эрг/гаусс (8) называется магнетоном Бора.

Проекция магнитного момента на направление поля равна: где  т — магнитное квантовое число.

Согласно (7) атом получает в магнитном поле добавочную энергию:

Следовательно, энергетический уровень Enl расщепляется на 2l + 1 равноотстоящих друг от друга подуровней (магнитное поле снимает вырождение по т), в связи с чем расщепляются и спектральные линии.

На рис. 1 показано рacщепление  уровней и спектральных линий для перехода между состояниями сl = 1 и l = 0 (для Р  S-перехода). В отсутствие поля наблюдается одна линия, частота которой обозначена . При включении поля, кроме линии o, появляются две

расположенные  симметрично  относительно  нее линии с частотами  и .

На рис. 202 дана аналогичная схема для более сложного случая — для перехода DP. На первый взгляд может показаться, что первоначальная линия должна в этом случае расщепиться на семь компонент. Однако на самом деле получается, как и в предыдущем случае, лишь три компоненты: линия с частотой ю0 и две симметрично расположенные относительно нее линии с частотами  и . Это объясняется тем, что для магнитного квантового числа т также имеется правило отбора, согласно которому возможны только такие переходы, при которых квантовое число т либо остается неизменным, либо изменяется на единицу:

(8)

Происхождение этого правила можно пояснить следующим образом. Если механический момент электрона

при излучении изменяется на единицу (фотон уносит с собой момент, равный единице), то изменение проекции момента не может быть больше единицы.

С учетом правила (9) возможны только переходы, указанные на рис. 3. В результате получаются три компоненты с частотами, указанными выше. Опыт показывает, что эти компоненты поляризованы. Характер поляризации зависит от направления наблюдения. При поперечном наблюдении (т. е. при наблюдении в направлении, перпендикулярном к вектору Н ) световой (электрический) вектор несмещенной компоненты (ее называют я-компонентой) колеблется в направлении, параллельном вектору Н, а в смещенных с-компонентах — в направлении, перпендикулярном к Н (рис. 3, а). При продольном наблюдении получаются только две смещенные компоненты. Обе поляризованы по кругу: смещенная в сторону меньших частот — против часовой стрелки, смещенная в сторону больших частот — по часовой стрелке (рис. 3, б).

Получающееся в рассмотренных случаях смещение компонент называется  нормальным или лоренцевым смещением. Величина нормального смещения, очевидно, равна:

 (9)

Оценим величину расщепления компонент ДХ для поля порядка 104 эрстед. Поскольку ,

Частота и для видимого света имеет порядок 3-1015 сек-1 .Следовательно,


за счет столкновения атома с достаточно быстрым электроном, или, наконец, за счет поглощения атомом фотона.

Фотон при поглощении его атомом исчезает, передавая атому всю свою энергию. Атом не может поглотить только часть фотона, ибо фотон, как и электрон, как и

другие элементарные частицы, является неделимым. Поэтому атом может поглощать только те фотоны, энергия которых в точности соответствует разности энергий двух его уровней. Поскольку поглощающий атом обычно находится в основном состоянии, спектр поглощения водородного атома должен состоять из линий, соответствующих переходам

1snp    (n = 2, 3, ...). Этот результат полностью согласуется с опытом.

Собственные функции s-состояний (т. е. состояний с l = 0) оказываются не зависящими от углов  и . Это можно записать следующим образом:

Вероятность найти электрон в тонком шаровом слое радиуса r и толщины dr согласно (66.1) равна .

Выражение  представляет собой плотность вероятности нахождения электрона на расстоянии r от ядра.

Волновые функции для l, отличных от нуля, распадаются на два множителя, один из которых зависит только от r, а другой — только от углов  и . Таким образом, и в этом случае можно ввести понятие плотности вероятности нахождения электрона на расстоянии r от ядра, подразумевая под R(r) ту часть функции , которая зависит только от r.

На рис. 5 приведены плотности вероятности для случаев: 1) п = 1, l = 0; 2) п = 2, l = 1 и 3) п = 3, l = 2. За единицу масштаба для оси r принят радиус первой боровской орбиты. На графиках отмечены радиусы соответствующих боровских орбит. Как видно из рисунка, эти радиусы совпадают с наиболее вероятными расстояниями электрона от ядра.


 

А также другие работы, которые могут Вас заинтересовать

78525. Базовые сетевые технологии: стандарты, механизмы, характеристики 27 KB
  Под топологией компьютерной сети обычно понимают физическое расположение компьютеров сети относительно Друг Друга и способ соединения их линиями. Топология определяет требования к оборудованию тип используемого кабеля методы управления обменом надежность работы возможность расширения сети. Звезда: все компьютеры сети соединяются с центральным компьютером активная звезда при отсутствии центрального компьютера псевдо звезда. По сети непрерывно циркулирует маркер который имеет длину 3 байта и не содержит обычных данных.
78526. Конструирование путевых машин капитального ремонта пути 1007.73 KB
  От его работы зависит бесперебойная работа всех его секторов. Железнодорожный транспорт многоотраслевое хозяйство представлявшее собой огромный по протяженности конвейер бесперебойная и безаварийная работа которого зависит от функционирования каждой из его составных частей. Железнодорожный путь работает в самых сложных атмосферноклиматических условиях при постоянном воздействии динамической нагрузки от проходящих поездов. Для обеспечения указанных требований постоянно ведутся работы по усилению несущей способности и...
78527. Технология производства рабочей лопатки турбины 4.23 MB
  Одной из самых нагруженных деталью, ограничивающей межремонтный ресурс, являются неохлаждаемые лопатки турбины, изготавливаемые из деформируемого никелевого сплава ЭИ893. Лопатки из этого сплава из-за ограничений по длительной прочности имеют ресурс 48000 часов.
78528. Построение системы управления поставками и маркетинга для крупного металлургического холдинга «КарМет» 19.86 MB
  Традиционные информационные системы изначально были функциональной основой для множества организаций или функциональных сфер, но не могли объединять их в случае их географической распределенности. Одну и ту де информацию собирали многократно и во многих местах, и она была недоступна в реальном времени.
78529. Расчет и проектирование объемной гидропередачи привода рабочего органа дорожно-строительной машины 1.02 MB
  В настоящее время гидропривод широко применяется в авиационной, станкостроительной, тракторостроительной, металлургической и многих других отраслях промышленности. Гидропривод широко применяется также в тяжелых грузоподъемных машинах и самоходных агрегатах.
78530. Расчет путевода улицы Ленинградская 590.91 KB
  Условия движения особенно в городах характеризуются все возрастающей сложностью. Высокая и все увеличивающаяся интенсивность движения результат диспропорции между ростом автомобильного парка и сетью автомобильных дорог. Высокий уровень аварийности связанный с человеческим фактором результат диспропорции между уровнями подготовки и транспортной культуры участников движения и массовости профессий водителя. Увеличение интенсивности изменение структуры и скоростных режимов транспортных потоков предъявляют все более жесткие требования к...
78532. Газоснабжение села Петровка Золочевского района 301.18 KB
  Тема дипломного проекта посвящена актуальным вопросам газоснабжения и эксплуатации объектов газоснабжения сельских населенных пунктов. Газификация жилищно-коммунальных и производственных объектов позволяет повысить уровень благоустройства жилого фонда...
78533. Совершенствование взаимодействия Федеральной службы по контролю за оборотом наркотиков с государственными и общественными структурами по профилактике наркомании на региональном уровне (на примере Управления ФСКН Самарской области) 276.3 KB
  Данной специализированной структуре, начиная с 2003 года после её создания, пришлось столкнуться с угрожающей по своим масштабам проблемой незаконного оборота и потребления наркотиков в России.