5319

Фотоны и фотоэффект. Эффект Комптона

Контрольная

Физика

Фотоны. В теории равновесного излучения абсолютно черного тела Планка вводится понятие фотона - кванта света или порции излучения, которая может поглощаться или излучаться только целиком. С другой стороны, по средствам фотонов осуществляется...

Русский

2012-12-07

100 KB

22 чел.

Фотоны.

В теории равновесного излучения абсолютно черного тела Планка вводится понятие фотона – кванта света или порции излучения, которая может  поглощаться или излучаться только целиком. С другой стороны, по средствам фотонов осуществляется электромагнитное взаимодействие. Энергия фотона , импульс . Масса покоя фотона равна нулю. Докажем это утверждение.

Рассмотрим фотон в покоящейся и движущейся системах отсчета. Энергия в покоящейся системе , в движущейся . Частоты в движущейся и покоящейся системах отсчета связаны соотношением , тогда энергия в движущейся и покоящейся системах  . Энергия связана с импульсом . Энергия фотона в движущейся и покоящейся в системах отсчета должны быть равны, поэтому, , из связи энергии и импульса .

Фотоэффект

Фотоэффект наблюдается при передаче энергии фотона электрону, находящемуся вещества, то есть связанному электрону. Поглощение фотона электроном может привести либо к перераспределению электронной плотности в веществе, либо к вырыванию электрона с поверхности вещества. В связи с этим, для различных материалов имеют место два вида фотоэффекта: для металлов – внешний, для диэлектриков и полупроводников – внутренний (в частности, в полупроводниках наблюдается один из видов внутреннего фотоэффекта – вентильный).  При внутреннем фотоэффекте валентные электроны либо становятся электронами проводимости, что наблюдается в полупроводниках, либо переходят на более высокий энергетический уровень, оставаясь в связанном состоянии.

Внешним фотоэффектом называется явление вырывания электронов с поверхности металлов. Энергия фотона, падающего на поверхность металла, переходит валентному электрону

Экспериментально фотоэффект описывается законами Столетова:

  1.  Фототок насыщения не зависит от частоты падающего света, а определяется только его интенсивностью
  2.  Задерживающее напряжение не зависит от интенсивности, а определяется только частотой падающего света
  3.  Для любого металла существует минимальная частота, называемая красной границей, при которой только начинается фотоэффект

Теоретически закон внешнего фотоэффекта описывается выражением, представляющим собой закон сохранения энергии:  (1) – формула Эйнштейна, где Ав – работа выхода электрона из металла, - частота света, освещающего фотокатод, - максимальная скорость фотоэлектрона.

С учетом законов Столетова   (2), и условие красной границы  (3), тогда уравнение (1) можно переписать в виде

Световое давление

Квант света, попадая на поверхность, передает ей импульс. При отражении от поверхности переданный импульс равен удвоенному импульсу фотона , а при поглощении – импульсу фотона . Вводя коэффициент отражения – относительное число фотонов, отраженных поверхностью, полный импульс, переданный N падающими фотонами перпендикулярной единичной поверхности . Импульс, переданный за единицу времени единице поверхности, равен нормальной силе, действующей на единицу поверхности, а это величина называется давлением. Таким образом, давление света на перпендикулярную поверхность равно  (4), где Nts – число фотонов ежесекундно падающих на единицу площади поверхности.

Эффект Комптона

При отражении высокоэнергичных рентгеновских лучей от металлических поверхностей наблюдается изменение их длины волны. Такое явление имеет место только при отражении от металлов, следовательно необходимо рассмотреть взаимодействие фотона с электроном проводимости металла. Как известно, валентные электроны в металле обобществляются и их можно считать свободными, то есть способными перемещаться под действием внешних полей.

Рассмотрим взаимодействие падающего фотона с импульсом  и покоящегося валентного электрона. В результате возникает отраженный фотон с импульсом  и электрон отдачи с импульсом . По закону сохранения импульса  (рис.3) или по теореме косинусов  (4).

По закону сохранения энергии   (5), здесь учтено, что электрон является релятивистской частицей и до взаимодействия обладает только энергией покоя. Зная связь релятивистской энергии и импульса , тогда, . Возведем в квадрат обе части уравнения и, учитывая , получим  или, приводя подобные,   разделим обе части на kk и учтем, что , , где комптоновская длина волны .

Спектр водорода. Формула Бальмера. Постулаты Бора.

В конце 19 начале 20 веков бурно развивалась спектроскопия. Самым простым для изучения материалом является водород, поэтому наибольшее число работ было посвящено изучению спектров атома водорода. Исследуемые спектры были линейчатыми. Особенность водородных спектров заключалась в том, что линии излучения и поглощения располагались группам, которые были названы сериями. Одна из спектральных серий лежит в видимой области, одна – в ультрафиолетовой, остальные – в инфракрасной. Частоты спектральных линий хорошо описывались обобщенной формулой Бальмера.

 (1)

Где R = 3,291015 с-1 – константа Ридберга, а n и m – целые числа. Аналогичная формула имеет место для длин волн, где R = 1,10107 м-1:

 (2)

Целое число m определяет спектральную серию: n = 1 серия Лаймана

          n = 2 серия Бальмера

          n = 3 серия Пашена

          n = 4 серия Бреккета

          n = 5 серия Пфунда

          n = 6 серия Хэмфри

          n = 7 серия Пиккеринга

Для объяснения полученных формул, а именно физического смысла чисел n и m были разработаны атомные модели.

  1.  Модель Томпсона.

Атом представляет собой массивный положительный заряд, занимающий практически весь объем атома, а точечные электроны равномерно распределены по его поверхности. Предполагалось, что электроны колеблются около положения равновесия и частота их колебания совпадает с частотой излучения света. Проблема заключалась в том, что согласно законам  классической электродинамики, ускоренно движущаяся частица должна излучать. Если колеблющиеся электроны излучают – теряется энергия, следовательно, должна равномерно уменьшаться частота их колебания, и спектр излучения должен быть сплошным. Таким образом, модель объясняет сам факт излучения, но не объясняет физический смысл чисел n и m.

  1.  Модель атома Резерфорда.

На основании проведенного эксперимента Резерфорд заключил, что размер атома, в основном, определяется электронной оболочкой, масса атома определяется ядром, размер которого значительно меньше размеров оболочки. Электроны вращаются вокруг ядра по круговым орбитам, как планеты вокруг Солнца, поэтому, модель атома Резерфорда была названа планетарной. Предполагалось, что при переходе электронов между орбитами атом излучает или поглощает свет, в результате этих переходов формируется спектр атома. Целые числа в формуле Бальмера соответствуют номерам орбит, между которыми происходит переход: m – уровень, на который осуществляется переход, n – уровень, с которого осуществляется переход.

Проблема объяснения формирования спектров осталась прежней – ускоренно движущиеся по орбитам электроны должны излучать, следовательно, терять энергию, что должно приводить к уменьшению радиусов их орбит. В результате электроны должны были опуститься на ядро. Однако, последняя модель не только описывала факт излучения атома, но и объясняла сериальные закономерности, поэтому, для правомерности ее применения Бор сформулировал три постулата:

а) Существуют такие стационарные состояния, в которых атом не поглощает и не излучает энергию

б) При переходе между двумя стационарными состояниями атом излучает или поглощает квант света, энергия которого равна разности энергий состояний

(3)

в) Момент импульса электрона в атоме является квантованной величиной

 (4)

Где n – скорость электрона на n-ной боровской орбите, rn – радиус соответствующей боровской орбиты, n – номер орбиты, m – масса электрона.

Применяя постулаты Бора к модели атома водорода (рис.1) легко получить обобщенную формулу Бальмера:

Рассмотрим электрон, движущийся по n-ной боровской орбите. Кулоновская сила взаимодействия электрона с ядром сообщает электрону нормальное ускорение и по второму закону Ньютона

Согласно третьему постулату Бора , отсюда радиус n-ной боровской орбиты  (5); скорость на этой орбите  (6)

Полная энергия электрона на n-ной боровской орбите складывается из кинетической энергии электрона и его потенциальной энергии кулоновского взаимодействия с ядром: . Подставляя (5) и (6) получим: , для атома водорода заряд ядра Z = 1. Таким образом, электрон в атоме водорода способен принимать строго дискретный набор энергий, определенный целым числом nглавным квантовым числом.

Применяя второй постулат Бора, получим обобщенную формулу Бальмера , тогда  значение постоянной Ридберга   (7). Расчет последней дает хорошее согласование с экспериментальным значением.


I

Iн

U

з

Рис.1. Экспериментальная вольтамперная характеристика

А

V

Рис.2. Экспериментальная установка для наблюдения фотоэффекта

Рис.3. Закон сохранения импульса при эффекте Комптона

Ze

Рис.1 Модель атома Резерфорда


 

А также другие работы, которые могут Вас заинтересовать

23047. Регістри та лічильники 1.83 MB
  Виведіть графік залежності вхідних Reset Shift Info та вихідних Q0Q2 цифрових сигналів регістра від часу та поясніть ці залежності. Виведіть відповідні графіки для вхідних та вихідних сигналів та поясніть ці залежності. Джерела пробних сигналів підберіть таким чином щоб регістр послідовно виконав операції: а паралельного запису числа 0101; б перетворення цього числа на послідовний код; в послідовного запису числа 1010; Проведіть моделювання для цієї схеми. Виведіть відповідні графіки для вхідних та вихідних сигналів та поясніть ці...
23048. Імпульсні цифрові схеми 2.62 MB
  Формувачі імпульсів. 1 зображено схему формувача імпульсів на логічних елементах ІНЕ. 1 Недоліком цієї схеми є те що для формування імпульсів досить великої тривалості потрібно використати велику кількість логічних елементв. 2 Для формування імпульсів з синусоїдальної напруги часто застосовується тригер Шмітта рис.
23049. Схеми на операційних підсилювачах. Інвертуюче увімкнення ОП 2.04 MB
  Завдяки своєму високим коефіцієнту підсилення та вхідному опору а також низькому опору вихідному операційні підсилювачі ОП дуже широко застосовуються у схемотехніці особливо в мішаних аналоговоцифрових схемах. Додавши до ОП коло зворотнього звязку можна отримати підсилювач практично з будьяким коефіцієнтом підсилення. Коефіцієнт підсилення такої схеми у межах лінійності ОП рівний Rc Rin. Параметри ОП дозволяють добирати Rc та Rin у широкому діапазоні опорів отримуючи різні коефіцієнти підсилення.
23050. Цифро-аналогові перетворювачі 1.33 MB
  1 зображено схему 4розрядного ЦАП. 1 Лічильник U3A та пробні джерела складають тестову схему яка послідовно подає на вхід ЦАП цифрові коди від 0 0000 до 15 1111. Зростаючий код на виході ЦАП буде перетворюватися на лінійно зростаючу напругу. 2 зображено схему дослідження 8розрядного інтегрального ЦАП.
23051. Ознайомлення з основними можливостями пакета програм автоматизованого проектування електронних схем MicroSim PSPICE 8.0 1.35 MB
  Система автоматизованого проектування MicroSim PSPICE використовує один з найбільш вдалих кодів схемотехнічного моделювання SPICE Simulation Program with Integrated Circuit Emphasis який був розроблений на початку 70х років фахівцями Каліфорнійського університету США. Фактично зазначений код став стандартним для моделювання електронних схем і застосовується також у інших відомих системах моделювання схем зокрема MicroCap а вхідний формат мови завдань SPICE підтримується практично усіма пакетами автоматизованого проектування електронних...
23052. Електронний ключ на біполярному транзисторі 482 KB
  Каскад виконує логічну операцію заперечення оскільки високий рівень напруги на вході забезпечує введення транзистора у режим насичення коли напруга на навантаженні буде низькою. При введенні наведеної вище схеми дослідження ключового каскаду застосовуються джерела сталої напруги живлення VCC та імпульсної вхідної напруги VIN. Перелічимо основні параметри даних джерел: Як джерело сталої напруги живлення застосовується стандартна модель VSRC що міститься у бібліотеці source. Основними є такі її параметри: DC стала напруга що її виробляє...
23053. Електронні ключі на МДН-транзисторах 1.07 MB
  Вважайте що напруга живлення дорівнює 10 В амплітуда вхідного імпульсу 10 В тривалість цього імпульсу 500 нс його період 1000 нс. Тривалості фронту і спаду імпульсу задайте дуже малими наприклад по 0. Поясніть зміни у тривалості спаду вихідного імпульсу та рівні напруги логічного нуля на виході. Параметри джерел вважайте такими: напруга живлення 20 В амплітуда вхідного імпульсу 20 В тривалість цього імпульсу 500 нс його період 1000 нс.
23054. Базовий елемент транзисторно-транзисторної логіки (ТТЛ) 1016 KB
  Насправді опором навантаження для виходу ТТЛсхеми звичайно є вхідний опір наступної ТТЛсхеми. Оскільки у реальних ситуаціях на один вихід треба під’єднувати досить багато входів важливим є такий параметр схеми як навантажувальна здатність тобто максимальна кількість входів яку можна навантажити на вихід без втрати працездатності схеми. Оскільки транзистори в даній схемі працюють у режимах насичення та відсікання має місце досит значна інерційність схеми потрібен певний час для переведення транзисторів з одного граничного стану в...
23055. Моделювання цифрових логічних схем 178.5 KB
  Перелічимо деякі логічні ІМС 74ї серії: 74x00 базовий елемент 2ІНЕ 74x10 логічний елемент 3ІНЕ 74x20 логічний елемент 4ІНЕ 74x30 логічний елемент 8ІНЕ 74x02 логічний елемент 2АБОНЕ 74x27 логічний елемент 3АБОНЕ 74x08 логічний елемент 2І 74x32 логічний елемент 2АБО 74x04 інвертор логічний елемент НЕ 74x51 логічний елемент 2І2АБОНЕ 74x86 логічний елемент Виключне АБО на 2 входи Пакет OrCAD дозволяє провести суто цифрове моделювання для даного вузла схеми якщо до цього вузла під’єднані лише входи та виходи...