53284

Загальна характеристика дешифраторів

Контрольная

Коммуникация, связь, радиоэлектроника и цифровые приборы

У загальному випадку дешифратор має n однофазних входів іноді 2n парафазних і m=2ⁿ виходів де n розрядність довжина коду який дешифрується. Індекс функції Fi визначає номер обраного виходу і відповідає десятковому еквіваленту вхідного коду. Тому дешифратор є перетворювачем вхідного позиційного коду в унітарний вихідний код.

Украинкский

2014-04-01

136.5 KB

6 чел.

1 Загальна характеристика дешифраторів:

а) основні поняття та визначення

 Дешифратором називається функціональний вузол комп’ютера, призначений для перетворення кожної комбінації вхідного двійкового коду в керуючий сигнал лише на одному із своїх виходів. У загальному випадку дешифратор має n однофазних входів (іноді 2n парафазних) і m=2ⁿ виходів, де n – розрядність (довжина) коду, який дешифрується. Дешифратор з максимально можливим числом виходів m=2ⁿ називається повним. Функціонування повного дешифратора описується системою логічних виразів вигляду:

де X1,..., Xn – вхідні двійкові змінні; F0, F1,..., Fm-1 – вихідні логічні функції, що являють собою мінтерми (конституєнти 1) n змінних. Індекс функції Fi визначає номер обраного виходу і відповідає десятковому еквіваленту вхідного коду. Вихід, на якому з’являється керуючий сигнал, називається активним. Якщо значення сигналу на активному виході відображається лог.1, то на решті пасивних виходів встановлюється лог.0. Двійковий код, який вміщує завжди тільки одну одиницю, а інші – нулі, називається унітарним. Тому дешифратор є перетворювачем вхідного позиційного коду в унітарний вихідний код. У дешифраторах в інтегральному виконанні стан активного виходу часто відображається значенням лог.0, а на інших пасивних виходах установлюється лог.1. Функціонування повного дешифратора з інверсними виходами представляється системою виду: ………….………………………………. де L0, L1, ... , Lm-1 – вихідні логічні функції, що є макстермами (конституєнти 0) n змінних. Індекс функції Li визначає номер вибраного виходу і відповідає десятковому еквіваленту вхідного коду. Між двома видами вихідних функцій існує простий зв’язок:

б) класифікація дешифраторів Дешифратори класифікують за такими ознаками: - способом структурної організації – одноступеневі (лінійні) і багатоступеневі, в тому числі пірамідальні та прямокутні (матричні); - форматом вхідного коду – двійкові, двійково-десяткові; - розрядністю коду, який дешифрується – 2, 3, ..., n; - формою подачі вхідного коду – з однофазними і парафазними входами; - кількістю виходів – повні й неповні дешифратори; - видом вхідних стробуючих сигналів – в прямому або інверсному значеннях; - типом використовуваних логічних елементів – І, НЕ, ЧИ, НЕ І, НЕ ЧИ і т.д.

 в) основні характеристики дешифраторів 

До основних характеристик дешифратора відносять: число ступенів (каскадів) дешифрації, кількість використаних логічних елементів або мікросхем, загальне число входів логічних елементів, час дешифрації і споживану потужність.

г) умовні графічні позначення дешифратора Умовні графічні позначення дешифраторів на електричних схемах показані на рис.1. а  б  в Рисунок 1- Умовні графічні позначення дешифратора: а – на функціональних схемах; б, в – на принципіальних схемах

Логічна функція дешифратора позначається буквами DC (decoder). Мітки лівого додаткового поля в умовному позначенні відображають десяткові ваги вхідних змінних, а мітки правого додаткового поля відповідають десятковим еквівалентам вхідних комбінацій двійкових змінних. У схему дешифраторів вбудовуються один або два стробуючих (дозволяючих) входи, наприклад, W (рис.1, б). За допомогою сигналу на вході W визначається момент спрацювання дешифратора; крім того, вхід W використовується для нарощування розрядності вхідного коду. На практиці повний дешифратор на n входів і m виходів для стислості називають дешифратором "з n в m" або "n −› m". Наприклад, дешифратор "з 3 у 8" – активізується одна з восьми вихідних ліній.

д) застосування дешифраторів

В комп’ютерах дешифратори використовують для виконання таких операцій: - дешифрації коду операції, записаного в регістр команд процесора, що забезпечує вибір потрібної мікропрограми; - перетворення коду адреси операнда в команді в керуючі сигнали вибору заданої комірки пам’яті в процесі записування або читання інформації; - забезпечення візуалізації на зовнішніх пристроях; - реалізації логічних операцій та побудови мультиплексорів і демультиплексорів.

Використання дешифраторів для дешифрації коду операції і адреси операнда, розташованих в регістрі команд процесора, показано на рис.2. Дешифрація коду операції в пристрої керування (ПК) визначає тип машинної команди. Дешифрація адреси операнда в оперативній пам’яті (ОП) забезпечує доступ до вказаної комірки пам’яті для записування або зчитування даних. Рисунок 2- Ілюстрація використання дешифраторів

2 Лінійні дешифратори на два входи і чотири виходи

 У лінійному дешифраторі "з n в m" кожна вихідна функція Fi реалізується повністю окремим n-вхідним логічним елементом при використанні парафазного вхідного коду. Логіка роботи повних дешифраторів на два входи X1, X2 і чотири прямих виходи F0, F1, F2, F3 і чотири інверсних виходи L0, L1, L2, L3 наведена в табл.1 і 2 відповідно.

а) лінійні дешифратори на елементах І

За даними табл.1 отримують систему логічних функцій в ДДНФ:

Для лінійного дешифратора зі стробуючим входом W система рівнянь (1) набуває вигляду:

Схеми лінійних дешифраторів на основі рівнянь (1) и (2) показані на рис.3. а  б 

Рисунок 3- Схеми лінійних дешифраторів на елементах І: а – з парафазними входами; б – з однофазними входами і стропуванням.

У схемі, зображеній на рис. 3, б використовується однофазний вхідний код, оскільки інверсії змінних утворюються елементами НЕ. Якщо сигнал на стробуючому вході W=0, то робота дешифратора блокується – на всіх виходах установлюються логічні нулі незалежно від значень вхідних змінних. При W=1 дешифратор функціонує згідно з табл.1.

б) лінійні дешифратори на елементах ЧИ

 За даними табл.2 записується система логічних функцій в ДКНФ:

 (3) Схема лінійного дешифратора з парафазним вхідним кодом та інверсними виходами, побудована згідно з рівнянням (3) на елементах ЧИ, показана на рис. 4, а. Для лінійного дешифратора із стробуючим W входом система керування (3) набуває вигляду: (4) Схема лінійного дешифратора на основі рівнянь (4) показана на рис.4, б. а  б Рисунок 4- Схема лінійних дешифраторів на елементах ЧИ: а – з парафазними входами; б – з однофазними входами і стробуванням

Тут використовується однофазний вхідний код, оскільки інверсії змінних утворюються елементами НЕ. Якщо сигнал на стробуючому вході W=1, то робота дешифратора блокується – на всіх виходах встановлюються лог. 1 незалежно від значень вхідних змінних. При W=0 дешифратор функціонує згідно з табл.2. 3 Пірамідальні дешифратори

 У пірамідальному дешифраторі число ступенів на одиницю менше розрядності вхідного коду, тобто K=n–1. В усіх ступенях використовуються тільки двовходові логічні елементи. На першому ступені використовуються лінійні дешифратори на два входи і чотири виходи. Число логічних елементів у кожному ступені дорівнює  , де i=1, 2, ..., k. Це означає, що кожен подальший ступінь має в два рази більше елементів, ніж попередній. Вихід елемента i-го ступеня підключається до входів тільки двох елементів (i+1)-го ступеня. Пірамідальна структура для реалізації повного дешифратора "з 3 в 8" описується системою мінтермів виду: Схема пірамідального дешифратора з парафазним вхідним кодом на три входи і вісім виходів показана на рис.5. На першому ступені дешифруються змінні X2 і X1, на другому ступені добавляється розряд X3. При більшому числі розрядів дешифрованого коду, наприклад, n>10, дешифратор в n/4 економічніше лінійного. Рисунок 5 - Схема пірамідального дешифратора на три входи і вісім виходів

Основним недоліком пірамідального дешифратора є велике число ступенів, що суттєво збільшує час дешифрації коду.

Прямокутні дешифратори

Прямокутний дешифратор будується за двоступеневою схемою. При цьому вхідний код розбивається на дві групи по n/2 розрядів при парному n; при непарній розрядності групи вміщують нерівне число змінних. Дві групи змінних декодуються на першому ступені двома повними лінійними (можливо і пірамідальними) дешифраторами, а на другому ступені формуються вихідні функції. Умовно вважають, що один з дешифраторів першого ступеня формує адреси рядків матриці, а другий – адреси стовпчиків матриці. На перетині ліній рядків і стовпчиків підключається m=2ⁿ двовходових схем збігу, які утворюють другий, вихідний ступінь дешифратора. При парному n матриця вентилів квадратна, при непарному n – прямокутна. Тому такі дешифратори називаються матричними або прямокутними. Запишемо систему вихідних функцій повного дешифратора "з 4 в 16" у вигляді таких скорочених значень: (5) де введені дворозрядні функції і які реалізуються дешифраторами рядків і стовпчиків відповідно: (6) Схема прямокутного дешифратора на основі рівнянь (5) і (6) показана на рис.6. Рисунок 6 - Схема прямокутного дешифратора При великому числі розрядів прямокутний дешифратор майже у n/2 рази економічніший лінійного і у два рази – пірамідального.

 

Багатоступеневі дешифратори. Каскадування дешифраторів Принцип побудови багатоступеневих дешифраторів полягає у послідовному розбитті вхідного багаторозрядного коду до отримання у кожній групі двох - трьох розрядів. Як приклад на рис. 7 показано розбиття коду, який дешифрується для n=10 і n=13. Після цього багатоступенева схема дешифратора зображується у вигляді з’єднання ряду лінійних схем. Рисунок 7- Розбиття вхідного коду, який дешифрується на групи: а – при n=10; б – при n=13

Під каскадуванням (нарощуванням) розуміють спосіб з’єднання дешифраторів у вигляді мікросхем середнього ступеня інтеграції для одержання більшої розрядності вхідного коду. З’єднання двох трирозрядних дешифраторів типу K555ИД3 для декодування чотирирозрядного коду показано на рис. 8. Вхідні змінні X1, X2 і X3 подаються паралельно на входи обох дешифраторів: змінна X4 подається безпосередньо на вхід стробування першого дешифратора, через інвертор – на вхід стробування другого дешифратора. Ця каскадна схема працює так. Якщо значення старшого розряду вхідного коду X4 = 0, то в роботу включається перший дешифратор з інверсними вісьмома виходами L0,..., L7, при цьому другий дешифратор блокований (вимкнений) і на його виходах L8,..., L15 встановлюються високі рівні. При X4=1 блокується перший дешифратор і включається в роботу друга мікросхема. Таким чином, через наявність стробуючого входу два трирозрядних дешифратори утворюють схему дешифрації чотирирозрядного коду.


 

А также другие работы, которые могут Вас заинтересовать

30969. Закрытое акционерное общество «ПОЛИСОРБ» г.Челябинск 645 KB
  Создаваемое Предприятие должно обеспечить выпуск нового лекарственного препарата – сорбента широкого спектра действия для удовлетворения потребностей всех групп населения в эффективной профилактике и лечении отравлений, аллергии, кишечных инфекций, кожных заболеваний, дисбактериоза, интоксикации различного происхождения
30970. ЗАО «Консорциум – Транспортно-модульные системы» 809 KB
  Рисунок 1 Комплекс по переработке бобов сои 8 Рисунок 2 Производство текстурированного соевого белка 26 Рисунок 3 График окупаемости NPV 73 Рисунок 4 Анализ чувствительности проекта 75 Перечень информационных и расчетных таблиц Таблица 1 Уровень среднедушевого потребления основных продуктов питания в России 16 Таблица 2 Динамика среднедушевого потребления белков за счет основных продуктов питания в РФ 17 Таблица 3 Выход основных продуктов переработки сырых соевых бобов 23 Таблица 4 Состав соевой муки 23 Таблица 5 Содержание в...
30971. Бизнес-план “Internet-провайдера ООО “Lucky Net” 493 KB
  Эти условия определяются положительным ответом на два вопроса: Что я получу от успешной реализации бизнесплана и Какова опасность риска потери вложенных в дело денег Резюме Фирма Lucky Net создаваемая в виде общества с ограниченной ответственностью планирует работать в сфере Internetпровайдинговых услуг которые будут заключаться в предоставлении неограниченного 24 часа в сутки доступа в Internet по телефонным линиям частным лицам Чернигова. Размер этой суммы планируется в будущем снижать чтобы сделать Internet еще более...
30972. Бизнес-план “Фаст-фото” 365.5 KB
  Настоящий проект представляет собой создание нового предприятия “Фаст-Уссури”, путем учреждения общества с ограниченной ответственностью с тремя учредителями и участием заемного капитала в форме лизинга на покупку оборудования в сфере предоставления услуг фотопечати
30973. Бизнес-план модернизации технологической линии по производству асбестоцементных листов на ОАО «БелАЦИ» 700 KB
  В данной работе предстоит проанализировать структуру и жизнедеятельность ОАО «БелАЦИ», его положение на рынке, сильные и слабые стороны; разработать план маркетинга, включающего маркетинговую стратегию, каналы распространения и эффективные рыночные коммуникации, позволяющего занимать стабильное положение на рынке
30974. ИММУНОГЕНЕТИКА 16.11 KB
  Начало иммуногенетики животных связывают с работами по исследованию крови коз 1900 г. Еще больший интерес вызвали так называемые иммунные антитела которые образуются в сыворотке крови при попадании в нее эритроцитов других животных причем к тем антигенным факторам эритроцитов которых нет в собственных клетках. По этому признаку кровяные факторы распределяются по системам групп крови которые не изменяются в течение жизни т.
30976. Информационное обеспечение товароведения и экспертизы товаров 294.5 KB
  1 Понятие информации 4 1.2 Классификация видов и форм товарной информации 4 1.3 Требования предъявляемые к товарной информации 6 1.4 Классификация средств товарной информации 7 1.