53565

Практичне заняття щодо використання Законів Кеплера

Конспект урока

Педагогика и дидактика

На уроках астрономії в школі обмежується як правило вивченням формулювань і використанням законів для розрахунку параметрів руху планет сонячної системи відповідно до третього закону. Кеплера і практично використати їх для розрахунку часу мандрівки до планет сонячної системи. Всі планети обертаються навколо Сонця по еліптичним орбітам в одному з фокусів яких знаходиться Сонце; 2.Радіусвектор планети за рівні проміжки часу замітає однакові площі; 3.

Украинкский

2014-02-28

1.73 MB

1 чел.

PAGE   \* MERGEFORMAT 4

Урок №5   астрономії в 11 класі.

Розробив: учитель 1 категорії КЗОСЗОШ № 19 м. Дніпропетровська          Сидоренков Є.Є.

Консультант: доцент каф. фізики ДНУЗТ ім. академіка В.Лазаряна, к.т.н.        Гришечкін С.А.

Редактор: учитель – методист Пономаренко В.В.

Передмова.

Вивчення законів Й. Кеплера ( 1571р.-1630 р.) на уроках астрономії в школі  обмежується, як правило, вивченням формулювань і використанням законів для  розрахунку параметрів руху планет сонячної системи  відповідно до третього закону. Мета цієї розробки: розширити межі уявлення учнями про практичну цінність законів Й.Кеплера.

Тема: Практичне заняття щодо використання Законів Кеплера.  

Мета:Ознайомитись із  законами Й. Кеплера і практично використати їх для розрахунку часу  мандрівки до планет сонячної системи.

Теоретичні відомості.

Йохан Кеплер відкривав свої закони, спираючись на роботи датського вченого Тихо Браге (1546р.-1601р. ) і свої багатолітні спостереження. Результатом його праці стали три основних закони небесної механіки:

1. Всі планети обертаються навколо Сонця по еліптичним орбітам, в одному з фокусів яких знаходиться Сонце;

2.Радіус-вектор планети за рівні проміжки часу «замітає» однакові площі;

3.Відношення квадратів періодів обертання планет дорівнює відношенню кубів великих на- півосей:      =         (1).

Важливою гіпотезою великого І.Н’ютона була та, що і інші тіла обертаються по еліптичним орбітам навколо центрів тяжіння, наприклад, супутники навколо планет, а вільне падіння тіла  і  його обертання по еліптичній траєкторії за своєю природою однакові. Гіпотеза привела до відкриття закону всесвітнього тяжіння:

F=G·          (1),

де М – маса планети,m- маса супутника, R- відстань між взаємодіючими тілами.  Цей закон  не міг бути відкритим  без спадщини Й.Кеплера.

Для подальшої роботи на уроці знадобиться використання відомого   кінематичного рівняння рівномірного обертального руху: φ(t) = φ0+Wt, де φ- кути в радіанах,W- кутова швидкість обертання.

Постановка задачі.

Міжпланетні подорожі - давня мрія людства. Основні питання, що ставляться для її здійснення: яким способом  здійснити переліт і скільки для цього знадобиться часу?  Для вирішення цих задач учені спираються на закони Й.Кеплера і І.Нютона.

Німецький учений  В. Гоман запропонував використовувати еліптичні траєкторії (гомановські траєкторії) для таких подорожей, оскільки сама природа підказала їх вигляд з точки зору мінімізації енергетичних  витрат. Український учений Ю.В. Кондратюк (О.Г.Шаргей)(1897р.- 1941р.)  у січні

1929 р. опублікував свою книгу «Завоювання міжпланетних просторів», в якій детально описав спосіб здійснення міжпланетної подорожі так званою «трасою Кондратюка».

Основні ідеї використання таких траєкторій полягають у тому, щоб з мінімальними витратами енергії довести літальний апарат по еліптичній траєкторії до точки простору, де він зустрінеться з іншою планетою, яка опиниться там завдяки своєму  природному руху.

На малюнку 1 наведена схема міжпланетного перельоту. Планети 1  і 2 мають свої траєкторії руху навколо  Сонця С.   Літальний апарат має еліптичну траєкторію, яка перетинає  траєкторії планет. Цілком зрозуміло, з малюнку, що еліпс, який  є траєкторією руху літального апарату, має свою велику напіввісь:

а = (R1+R2)/2           (2),

де R1і R2- відповідні напівосі обертання планет навколо  Сонця. Залишається тільки стартувати в потрібний час з планети 1.

Рішення задачі.

 

На малюнку 2  наведено положення планет 1 і 2, літального апарату ЛА і траєкторії руху. В точку А рухаються планета 2 і ЛА. Від точки старту на планеті 1  до точки А літальний апарат пройде шлях, що дорівнює половині одного повного оберту. За третім  законом Й.Кеплера:

      

                                               (3),

де Т1- період  обертання планети1, Тла – період обертання ЛА, R1, а - великі напівосі обертання планети 1 і літального апарату відповідно. Якщо припустити, що планетою 1 буде Земля, то R1= 1 а.о., Т1= 1рік. В такому випадку:

Тла =                                   (4).

Половина шляху повного оберту ЛА займе половину часу Тла:

t= 0,5 Тла= 0,5=0,5         (5).

Згідно цієї формули розраховується час на подолання ЛА відстані від Землі, до точки  А зустрічі з планетою 2.  

Для розв’язання задачі скористаємося довідниковими значеннями Rі Т для планет сонячної системи.

Таблиця №1. Параметри руху планет.

Планета

Меркурій

Венера

Земля

Марс

Юпітер

Сатурн

Уран

Нептун

Т,рік

0,24

0,62

1

1,88

11,86

29,46

84,1

164,79

R,а.о.

0,39

0,72

1

1,52

5,2

9,54

19,18

30,06

Розрахуємо параметри перельоту на прикладі подорожі до Марсу.

Проведемо розрахунок  половини періоду обертання ЛА   (час вимірюємо в роках, а відстані - в астрономічних одиницях):

   tла = 0,5 =0,707 року =258 діб.

Аналогічні розрахунки маємо можливість  провести для інших планет.

Розглянемо  початкові умови старту ЛА. Для того, щоб Марс і літальний апарат досягли одночасно точки А ( дивись мал. 2), потрібно,щоб старт ЛА відбувався в той час, коли Марсу залишається рухатися до точки А відрізок часу, що дорівнює  tла. Відношення періодів руху Землі і Марса складає:1,88 на користь Марса, таким же є і обернене відношення кутових швидкостей:

= 1,88. Таким чином, запуск літального апарату з поверхні Землі повинен відбуватися в той момент, коли  кут між напрямом на Землю( планета1) і на Марс (планета2) сягне:

φ0=    tла (                                (6),

де , - кутові швидкості летального апарату і Марсу відповідно.

Розрахуємо кут φ0:

φ0= tла ·2π ·(  -  ) = 0,707р· 2π( - ) = 0,248 π рад = 44,60.

До моменту зустрічі планети і літального апарату Земля пройде кутову відстань, яка дорівнюватиме куту між напрямами С1 і СВ (див. мал. 2).

Оскільки мандрівка ЛА продовжується tла років, то Земля випередить Марс на кут між напрямами СВ і СА: ∆φ = tла ( - φ0             (7).

Розрахуємо кутове випередження:

∆φ = tла ·2π ·(  -  ) - φ0 = 0,707 р ·2π·(  - )- 0,248π= 0,41π=

1,3 рад=74,50.

Таким чином, Земля випереджає Марс на 74,5 градуса в кінці мандрівки ЛА на Марс (див.мал.2).

Щоб повернутися назад на Землю з Марса треба виконати початкові умови: стартувати в потрібний момент часу. Стартувати від  Марса потрібно в момент кутового відставання Землі від Марса на кут ∆φ. Тільки в такому випадку ЛА і Земля витрачають однаковий час для переміщення в точку зустрічі. Після посадки на  Марс  такі умови настануть через час ∆t, який можна вирахувати з кінематичного рівняння обертального руху планет в системі обертання Марса:

2π -2∆φ =  ∆W∆ t         (8),

де ∆W- різниця кутових швидкостей планет.

 ∆t =  =  років = 1,26 років=460 діб.

Після відриву від Марса  витрачається ще час tла для мандрівки з Марса на Землю. Загальний час мандрівки на Марс складе τ= 976 діб.

Для розрахунку параметрів мандрівки на внутрішні планети сонячної системи (Меркурій і Венеру ) потрібно враховувати , що кутова швидкість цих планет більша, ніж у Землі. Рівняння 6,7,8 будуть мати наступний вигляд відповідно:

φ0=    tла (;  ∆φ = tла ( - φ0;  

2π -2∆φ =  ∆W∆ t , де  tла- час мандрівки ЛА на внутрішню планету, який дорівнює половині періоду обертання ЛА по гоманівській траєкторії,    - відповідні кутові швидкості планети, Землі і літального апарату.

При розрахунках кутів обертання  для великих зовнішніх планет треба враховувати додаткові   оберти Землі навколо Сонця, додаючи в рівняння фазу 2π для кожного оберту. Наприклад, для Юпітера  рівняння  (8) має вигляд:  4π -2∆φ = ∆W∆ t.

Треба зауважити на те, що швидкість руху ЛА пов’язана лише з рухом планет і не залежить від технічних характеристик літального апарату. Його технічні можливості повинні повністю відповідати вимогам законів небесної механіки, які відкрив Й.Кеплер.

Аналогічними розрахунками ми маємо можливість визначити час і умови космічних подорожей до інших планет сонячної системи.

Ці розрахунки учні повинні зробити самостійно з використанням таблиці №1, і рівнянь 5,6,7,8. Результати розрахунків занесемо  в таблицю № 2.

Таблиця 2. Результати розрахунків для подорожей до планет сонячної системи.

Планета

Меркурій

Венера

Юпітер

Тп, роки

0,24

0,62

11,86

R, а.о.

0,39

0,72

5,2

t ла, роки

0,29

0,4

2,73

φ0,град

255,5

52,2

277(88)

∆φ, град

75

36

262,5(97,5)

∆t, доба

67

486

219

τ, доба

278,7

778

2212

Всі розрахункові формули наведені нижче.

 tла= 0,5 Тла= 0,5=0,5;   φ0= tла ·2π ·(  -  );

∆φ = tла ·2π ·(  -  ) - φ0; 2π -2∆φ = ∆W∆ t; τ = ∆t + 2 tла.

Висновки:

1. Закони Й.Кеплера стали початком   космічної ери людства.

2.Подорожі  людини до інших планет  сонячної системи цілком реальні.

3. Учні школи мають можливість на уроках астрономії отримати уяву про значення і використання фундаментальних законів фізики в нашому житті.


Перелік використаної літератури і джерела інформації.

1. Воронцов-Велямінов Б.А.,Страут Є.К., Астрономія  11 клас, ПОВ «Дрофа», Москва,2002р.

2.Пришляк М.П., Астрономія 11 клас, «Ранок», Харків,2005р.

3.Климшин І.А.,Крячко І.П., Астрономія 11 клас, «Знання України»,2003р.

4.А.Костюк, Уроки астрономії, «Підручники і посібники», Тернопіль 2003р.

5.Л.А.Кірик, К.П.Бондаренко, Астрономія,Самостійні роботи, «Гімназія»,Харков 2002р.

6.ММЦ м. Дніпропетровська, Електронні посібники БУФ 2011р.,2012р.


Й. Кеплер

R1

R2

C

1

2

Мал. 1. Схема міжпланетної подорожі летального апарату по гоманівській траєкторії.

2

А

ЛА

С

Мал.2. Схема розташування  обєктів

φ0

в

∆φ


 

А также другие работы, которые могут Вас заинтересовать

66969. Spring. Easter 51.5 KB
  Teaching goals: engagement into intercultural communication acquiring knowledge about cultural traditions of other peoples mastering basic skills in listening, speaking Developing goals: development of speaking, intellectual and cognitive abilities...
66970. Осень – лету конец, всей работе венец 44 KB
  Цель: познакомить учащихся с результатами работы на учебно-опытном участке, с явлениями, происходящими в природе осенью, с народными обычаями и традициями, связанными с этим временем года. Показать необходимость проведения опытнической и исследовательской работы в природе и на участке.
66971. Кто же все-таки человек: раб природы или ее господин? 42.5 KB
  На эту дилемму по-разному отвечали мыслители прошлого нет единого мнения и у современников. На ваших рабочих листках написаны названия объектов природы: Воздух Земля Вода Растения Животные Человек. По окончании работы заслушиваются ответы учащихся...
66972. Екологічна агітбригада «Юні екологи» 51 KB
  Хід заходу Учень: Сьогодні іскристо вирує наснага І щедрість природа дарує всякчас Тому всі сприймайте нас дуже серйозно Ми просимо слухайте слухайте нас Учень: Доброго дня друзі Вас вітає команда Юні екологи Учень: Ми знову тут бо іржа байдужості Вже роз'їдає день...
66974. Гроші. Історія українських грошей 209.5 KB
  Мета: Формувати уявлення про гроші для чого і як вони виникли які є їх форми дізнатися про призначення грошей. Познайомити учнів коли з якою метою запроваджені гроші в Україні Продовжувати розкривати основи економічної психології для молодших школярів.
66975. «Пані Економіка» Інтелектуально-ігрова програма 105.5 KB
  Економічна культура формується здебільшого через освіту і виховання. Економічна освіта полягає у формуванні економічних знань, вмінь та навичок господарювання, засвоєння попереднього досвіду у соціально-економічній діяльності. Економічна освіта спрямована на зміну економічної поведінки людей.
66976. Поняття економіки як сфери життя і діяльності людини 175 KB
  Мета: ознайомити учнів з поняттям нової учбової дисципліни, а також про те, для чого потрібно знати, вивчати «Цікаву економіку», показати залежність життя людей від рівня розвитку економіки; розвивати мислення, пам’ять; виховувати інтерес до суспільного життя в рідній державі.
66977. Реклама – двигун торгівлі 101 KB
  Познайомити учнів з поняттям – реклама показати що реклама це форма звернення до споживачів з метою залучити їхню увагу до товарів чи послуг; розвивати логічне мислення учнів навичку спілкування колективної та самостійної роботи; виховувати відповідальність самостійність здібності майбутніх рекламодавців.