53748

Теорема Виета

Конспект урока

Педагогика и дидактика

Предметные результаты: наблюдать и анализировать связь между корнями и коэффициентами квадратного уравнения. Формулировать и доказывать теорему Виета, а также обратную теорему, применять теоремы для решения уравнений и задач.

Русский

2014-03-02

95 KB

5 чел.

Конспект урока (8 класс п.23. Теорема Виета)

Тема урока "Терема Виета"

Цели урока

Предметные результаты: наблюдать и анализировать связь между корнями и коэффициентами квадратного уравнения. Формулировать и доказывать теорему Виета, а также обратную теорему, применять теоремы для  решения уравнений и задач.

Метапредметные результаты: использовать приемы умственной деятельности – анализ, классификация, обобщение и подведение под понятие; ставить цель исследования, выдвигать гипотезы представлять информацию в символической и табличной формах.

Личностные: формирование мотивации – интереса к изучению математики за счет включения примеров из биографии Виета, приема запоминания формулировки теоремы Виета, самостоятельного открытия знаний, выполнения заданий, раскрывающих все основные варианты соответствующей деятельности.

Ход урока

I. Самостоятельная работа

Решить уравнения:

1) х2 – 6х + 8 = 0;                                  3) 3x2  =  x + 2;  

2) х2 – 2х = 5;                                        4)  х2 + 4х – 7 = 5+3х–2х2.

II. Актуализация знаний

1. Что записано на доске? [Квадратные уравнения.]

2. Докажите, что данные уравнения квадратные.

3. Какие виды квадратных уравнений записаны? [Приведенные и неприведенные уравнения.]

Проводится взаимопроверка. Учитель называет правильные ответы. Ученики обмениваются тетрадями и делают проверку. Оценка 5 выставляется за все правильно решенные задания и т.д.

Уравнение

Корни

Сумма корней

Произведение корней

х2–6х+8=0

х2–2х–5=0

3x2x–2=0

3х2+х2=0

х2+рх+q=0

ax2+bx+c=0

Уравнение

Корни

Сумма

корней

Произведение корней

х2–6х+8=0

4 и 2

6

8

х2–2х–5=0

2

–5

3x2x–2=0

3х2+х2=0

–1 и

х2+рх+q=0

и

р

q

ax2+bx+c=0

и

III. Постановка проблемы и открытие нового знания

Найдите сумму и произведение корней. Какое предположение можно сделать? Сравните сумму и произведение корней с коэффициентами уравнения в первом столбце.

Какая существует зависимость между корнями приведенного квадратного уравнения и его коэффициентами? Сформулируйте утверждение.

[Сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, произведение корней равно свободному члену.]

IV. Исторический материал

Впервые зависимость между корнями и коэффициентами квадратного уравнения установил знаменитый французский ученый Франсуа Виет (1540-1603 гг).

Франсуа Виет был по профессии адвокатом и много лет работал советником короля. И хотя математика была его увлечением, хобби, благодаря упорному труду он добился больших результатов. Виет в 1591 г. ввел буквенные обозначения для неизвестных и коэффициентов уравнений, стало возможным свойства уравнений и корней записывать общими формулами.

Недостатком алгебры Виета было то, что он признавал только положительные числа. Чтобы избежать отрицательных решений, он заменял уравнения или искал искусственные приемы решения, что отнимало много времени, и усложняло решение.

Много разных открытий сделал Виет, но сам он больше всего дорожил установлением зависимости между корнями и коэффициентами квадратного уравнения, т.е. той зависимостью, которая называется «теоремой Виета».

V. Доказательство теоремы Виета

1. Дано: х2 + рх + q = 0. Доказать:

1) х1 + х2 = –р;               2) х1  х2 = q.

2. Сформулируйте обратную теорему Виета.

Если числа m и n таковы, что их сумма равна –р, а произведение равно q, то эти числа являются корнями уравнения х2+рх+q=0.

3. Сформулируйте теорему Виета для произвольного квадратного уравнения.

ах2 + bx + c = 0, а 0, х2 + .

1) х1 + х2=–;                  2) х1  х2 = .

4. Проверьте равенства для уравнений 3 и 4 из самостоятельной работы.

VI. Способ запоминания теоремы Виета

Чтобы лучше запомнить эти формулы можно выучить стихотворение

«Теорема Виета».

По праву  стихом быть достойным воспета

О свойствах корней теорема Виета.

Что лучше скажи постоянства такого

Умножишь ты корни и дробь уж готова:

В числителе С, в знаменателе А

И сумма корней тоже дроби равна,

Хоть с минусом дробь та, что за беда:

В числителе В, в знаменателе А.

VII. Первичное закрепление изученного материала

Показать примеры применения прямой и обратной теорем Виета

1. Проверьте, правильно ли найдены корни квадратного уравнения:

а) х2 + 3х – 40 = 0, х1 = –8, х2 = 5;

б) х2 + 2х – 3 = 0, х1 = –1, х2 = 3;

в) 2х2 – 5х – 3 = 0, х1 = –, х2 = 3.

2. Найдите корни квадратного уравнения, применяя теорему, обратную теореме Виета:

а) х2 – 6х + 5 = 0;       б) х2 – 7х + 12 = 0;          в) х2 х – 12 = 0.

3. Составьте приведенные квадратные уравнения, если его корни равны:

а) х1 = –3, х2 = 1;        б) х1 = –3, х2 = –4;            в) х1 = 5, х2 = 6.

4. Проверьте выполнимость теоремы Виета для уравнения:

1) х2 – 2х – 9 = 0, р = –2, q = –9.

х1 =1 – , х2 = 1 + , х1 + х2 = 2,  х1  х2 = –9.

2) 2х2 + 7х – 6 = 0, р = , q = –3.

х1=, х2=, х1 + х2=–,  х1  х2 = –3.

5. Найдите: х2, р, если известно х2 + рх – 35 = 0, х1 = 7.

Решение. х1х2 = –35, 7х2 = –35, х2 = –5; х1 + х2= –р, 7–5=–р, р= –2.    

Ответ: х2 = –5, р = –2.

VIII. Подведение итогов урока. Рефлексия.

Вопрос 1. Можно ли, не решая самого уравнения

x2–2x+3=0, сказать, чему равна сумма его корней?

Скорее всего, ученики скажут, что число 2. Однако этот ответ неверен, так как это уравнение вообще не имеет корней: x2–2x+3=x2–2x+1+2=(x–1)2+22>0.

Следовательно, прежде чем ответить на вопрос о сумме и произведении корней, необходимо проверить, существуют ли корни у заданного квадратного уравнения.

Вопрос 2. Каков по знаку дискриминант уравнения 

х2–2x–9=0?

Вопрос 3. Могут ли оба корня уравнения х2–2x–9=0 быть положительными?

[Нет, х1х2 = –9, значит, корни разных знаков.]

Вопрос 4.  Можно ли утверждать, что модуль положительного корня уравнения х2–2x–9=0 больше модуля отрицательного?

[Да, можно, потому что х1+х2=2>0.]

Домашнее задание. п.23, №329 (2), 330 (2), 332 (1,4), 333 (2,4).

Творческое задание для сильных учеников:

«Доказать, что если в квадратном уравнении ах2+bx+c=0:

1) а + b + c = 0, то х1 = 1, х2 = ;                  

2) а – b + c = 0, то х1 = –1, х2= –».


 

А также другие работы, которые могут Вас заинтересовать

17649. Двопроменева інтерференція інтерферометр Релея 23.48 KB
  Двопроменева інтерференція інтерферометр Релея Когерентні хвилі одержують поділом пучка хвиль. За допомогою двопроменевої інтерференції вимірюють : оптичну густину речовини дослідження зміни густини середовища в часі виміри лінійних зсувів тіл гравіметр
17650. Дисперсійна призма кутова дисперсія, роздільна здатність 69.56 KB
  Дисперсійна призма: кутова дисперсія роздільна здатність. Дисперсійна призма – призма з прозорого для досліджуваного випромінювання матеріалу використовується для отримання дисперсії електромагнітного випромінювання. Кутова дисперсія і роздільна здатність є важ
17651. Дифракція на краю екрана. Спіраль Корню 98.87 KB
  Дифракція на краю екрана. Спіраль Корню. В деяких задачах краще розбивати хвильовий фронт на смугові зони – зони Шустера. Припустимо хвильовий фронт плоский. Площина хвильового фронту AB перпенд. до площини. Проведемо коаксіальні циліндричні поверхні вісь яких – точка P...
17652. Дифракція рентгенівських променів на кристалічній гратці формули Лауе 58.53 KB
  Дифракція рентгенівських променів на кристалічній гратці: формули Лауе. Трехмерные пространственные решетки обладают периодичностью в трех различных направлениях. Кристаллическая решетка является трехмерной пространственной решеткой с малым периодом. На ней дифр
17653. Дифракція та отворі побудова Френеля. Зонна платівка Френеля 217.42 KB
  Дифракція та отворі: побудова Френеля. Зонна платівка Френеля. Поставимо між точковим джерелом S і точкою спостереження Р непрозорий екран з круглим отвором площина якого перпендикулярна до осі SP а центр О розміщений на тій же осі. Згідно із Френелем дія такої перешкоди...
17654. Дифракція Фраунгофера на двох щілинах 156.34 KB
  Дифракція Фраунгофера на двох щілинах У випадку 2 щілин на відміну від випадку 1 щілини буде спостерігатись ще й інтерференційна картина. Результуюча картина буде визначатися шляхом додавання хвиль що йдуть з обох щілин. Очевидно що min будуть на тих самих місцях бо т
17655. Дифракція Фраунгофера на щілині 37.03 KB
  Дифракція Фраунгофера на щілині. Тип дифракції при якому розглядається дифракційна картина утворена паралельними променями отримав назву дифракції Фраунгофера. Паралельні промені отримуємо за допомогою системи лінз. Розбиваємо площину щілини на ряд смужок. Вони є д
17656. Закон Брюстера. Зміна фази відбитої хвилі 42.86 KB
  Закон Брюстера. Зміна фази відбитої хвилі. Формули Френеля: 1 і 2 . 3 і 4 Із формули 1 для відбитої хвилі для pкомпоненти видно що коли то . Тобто pкомпонента для відбитої хвилі зникає. Використовуючи формулу Де називають кутом Брюстера.
17657. Закони відбиття та заломлення світла 35.1 KB
  Закони відбиття та заломлення світла. Коли промінь досягає плоскої границі розподілу двох середовищ він частково проходить в друге середовище заломлюється частково повертається назад відбивається. Закон відбиттся стверджує що падаючий і відбитий промені лежать в ...