53748

Теорема Виета

Конспект урока

Педагогика и дидактика

Предметные результаты: наблюдать и анализировать связь между корнями и коэффициентами квадратного уравнения. Формулировать и доказывать теорему Виета, а также обратную теорему, применять теоремы для решения уравнений и задач.

Русский

2014-03-02

95 KB

5 чел.

Конспект урока (8 класс п.23. Теорема Виета)

Тема урока "Терема Виета"

Цели урока

Предметные результаты: наблюдать и анализировать связь между корнями и коэффициентами квадратного уравнения. Формулировать и доказывать теорему Виета, а также обратную теорему, применять теоремы для  решения уравнений и задач.

Метапредметные результаты: использовать приемы умственной деятельности – анализ, классификация, обобщение и подведение под понятие; ставить цель исследования, выдвигать гипотезы представлять информацию в символической и табличной формах.

Личностные: формирование мотивации – интереса к изучению математики за счет включения примеров из биографии Виета, приема запоминания формулировки теоремы Виета, самостоятельного открытия знаний, выполнения заданий, раскрывающих все основные варианты соответствующей деятельности.

Ход урока

I. Самостоятельная работа

Решить уравнения:

1) х2 – 6х + 8 = 0;                                  3) 3x2  =  x + 2;  

2) х2 – 2х = 5;                                        4)  х2 + 4х – 7 = 5+3х–2х2.

II. Актуализация знаний

1. Что записано на доске? [Квадратные уравнения.]

2. Докажите, что данные уравнения квадратные.

3. Какие виды квадратных уравнений записаны? [Приведенные и неприведенные уравнения.]

Проводится взаимопроверка. Учитель называет правильные ответы. Ученики обмениваются тетрадями и делают проверку. Оценка 5 выставляется за все правильно решенные задания и т.д.

Уравнение

Корни

Сумма корней

Произведение корней

х2–6х+8=0

х2–2х–5=0

3x2x–2=0

3х2+х2=0

х2+рх+q=0

ax2+bx+c=0

Уравнение

Корни

Сумма

корней

Произведение корней

х2–6х+8=0

4 и 2

6

8

х2–2х–5=0

2

–5

3x2x–2=0

3х2+х2=0

–1 и

х2+рх+q=0

и

р

q

ax2+bx+c=0

и

III. Постановка проблемы и открытие нового знания

Найдите сумму и произведение корней. Какое предположение можно сделать? Сравните сумму и произведение корней с коэффициентами уравнения в первом столбце.

Какая существует зависимость между корнями приведенного квадратного уравнения и его коэффициентами? Сформулируйте утверждение.

[Сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, произведение корней равно свободному члену.]

IV. Исторический материал

Впервые зависимость между корнями и коэффициентами квадратного уравнения установил знаменитый французский ученый Франсуа Виет (1540-1603 гг).

Франсуа Виет был по профессии адвокатом и много лет работал советником короля. И хотя математика была его увлечением, хобби, благодаря упорному труду он добился больших результатов. Виет в 1591 г. ввел буквенные обозначения для неизвестных и коэффициентов уравнений, стало возможным свойства уравнений и корней записывать общими формулами.

Недостатком алгебры Виета было то, что он признавал только положительные числа. Чтобы избежать отрицательных решений, он заменял уравнения или искал искусственные приемы решения, что отнимало много времени, и усложняло решение.

Много разных открытий сделал Виет, но сам он больше всего дорожил установлением зависимости между корнями и коэффициентами квадратного уравнения, т.е. той зависимостью, которая называется «теоремой Виета».

V. Доказательство теоремы Виета

1. Дано: х2 + рх + q = 0. Доказать:

1) х1 + х2 = –р;               2) х1  х2 = q.

2. Сформулируйте обратную теорему Виета.

Если числа m и n таковы, что их сумма равна –р, а произведение равно q, то эти числа являются корнями уравнения х2+рх+q=0.

3. Сформулируйте теорему Виета для произвольного квадратного уравнения.

ах2 + bx + c = 0, а 0, х2 + .

1) х1 + х2=–;                  2) х1  х2 = .

4. Проверьте равенства для уравнений 3 и 4 из самостоятельной работы.

VI. Способ запоминания теоремы Виета

Чтобы лучше запомнить эти формулы можно выучить стихотворение

«Теорема Виета».

По праву  стихом быть достойным воспета

О свойствах корней теорема Виета.

Что лучше скажи постоянства такого

Умножишь ты корни и дробь уж готова:

В числителе С, в знаменателе А

И сумма корней тоже дроби равна,

Хоть с минусом дробь та, что за беда:

В числителе В, в знаменателе А.

VII. Первичное закрепление изученного материала

Показать примеры применения прямой и обратной теорем Виета

1. Проверьте, правильно ли найдены корни квадратного уравнения:

а) х2 + 3х – 40 = 0, х1 = –8, х2 = 5;

б) х2 + 2х – 3 = 0, х1 = –1, х2 = 3;

в) 2х2 – 5х – 3 = 0, х1 = –, х2 = 3.

2. Найдите корни квадратного уравнения, применяя теорему, обратную теореме Виета:

а) х2 – 6х + 5 = 0;       б) х2 – 7х + 12 = 0;          в) х2 х – 12 = 0.

3. Составьте приведенные квадратные уравнения, если его корни равны:

а) х1 = –3, х2 = 1;        б) х1 = –3, х2 = –4;            в) х1 = 5, х2 = 6.

4. Проверьте выполнимость теоремы Виета для уравнения:

1) х2 – 2х – 9 = 0, р = –2, q = –9.

х1 =1 – , х2 = 1 + , х1 + х2 = 2,  х1  х2 = –9.

2) 2х2 + 7х – 6 = 0, р = , q = –3.

х1=, х2=, х1 + х2=–,  х1  х2 = –3.

5. Найдите: х2, р, если известно х2 + рх – 35 = 0, х1 = 7.

Решение. х1х2 = –35, 7х2 = –35, х2 = –5; х1 + х2= –р, 7–5=–р, р= –2.    

Ответ: х2 = –5, р = –2.

VIII. Подведение итогов урока. Рефлексия.

Вопрос 1. Можно ли, не решая самого уравнения

x2–2x+3=0, сказать, чему равна сумма его корней?

Скорее всего, ученики скажут, что число 2. Однако этот ответ неверен, так как это уравнение вообще не имеет корней: x2–2x+3=x2–2x+1+2=(x–1)2+22>0.

Следовательно, прежде чем ответить на вопрос о сумме и произведении корней, необходимо проверить, существуют ли корни у заданного квадратного уравнения.

Вопрос 2. Каков по знаку дискриминант уравнения 

х2–2x–9=0?

Вопрос 3. Могут ли оба корня уравнения х2–2x–9=0 быть положительными?

[Нет, х1х2 = –9, значит, корни разных знаков.]

Вопрос 4.  Можно ли утверждать, что модуль положительного корня уравнения х2–2x–9=0 больше модуля отрицательного?

[Да, можно, потому что х1+х2=2>0.]

Домашнее задание. п.23, №329 (2), 330 (2), 332 (1,4), 333 (2,4).

Творческое задание для сильных учеников:

«Доказать, что если в квадратном уравнении ах2+bx+c=0:

1) а + b + c = 0, то х1 = 1, х2 = ;                  

2) а – b + c = 0, то х1 = –1, х2= –».


 

А также другие работы, которые могут Вас заинтересовать

46923. Балканская война (1912-1913) 37 KB
  Слабость Османской империи проявлявшаяся в аннексии АвстроВенгрией Боснии и Герцеговины захвате Италией Триполитании и Киренаики нацосв движения в Македонии Албании и на о. Балканский союз направлен и против АвстроВенгрии освободительные задачи. АвстроВенгрия и Германия заинтересованности в сохранении Османской империи которая все в большей степени подпадала под германское влияние негативно. Россия поддержала образование Балканского союза Англии и Франции двойственным боязнью усиления позиций России на Ближнем Востоке...
46924. События в Сараево 28 июня 1914 37 KB
  5 июля во время встречи германского и австрийского императоров в Потсдаме кайзер одобрил план расправы с Сербией т. Пуанкаре в Петербург 20 июля было принято окончательное решение о том что в случае чрезвычайных обстоятельств Россия поддержит Сербию и в свою очередь будет поддержана Францией. В день отъезда Пуанкаре из России 23 июля 1914 австрийский посол барон Гизль вручил сербскому премьеру Пашичу ноту носившую характер ультиматума Принятие австрийских требований означало бы отказ Сербии от политической самостоятельности. Однако 25...
46926. Языковая норма 37 KB
  Различают нормы письменные и устные. Письменные языковые нормы – это прежде всего орфографические и пунктуационные нормы. Устные нормы:грамматические лексические и орфоэпические. Грамматические нормы – это правила использования форм разных частей речи а также правила построения предложения.
46929. Инновационные проекты в управлении стоимостью предприятия 37.38 KB
  Жизненный цикл инновации определяется как промежуток времени от зарождения идеи до снятия с производства реализованного на ее основе инновационного продукта. Инновация в своем жизненном цикле проходит ряд стадий включающих: зарождение сопровождающееся выполнением необходимого объема научноисследовательских и опытноконструкторских работ разработкой и созданием опытной партии новшества; рост промышленное освоение с одновременным выходом продукта на рынок; зрелость стадия серийного или массового производства и увеличение объема...
46930. The simple sentence. The semantic classification of simple sentence 37.5 KB
  The simple sentence s ny sentence in generl is orgnised s system of functionexpressing positions the content of the functions being the reflection of situtionl event. The nomintive prts of the simple sentence ech occupying notionl position in it re subject predicte object dverbil ttribute prentheticl enclosure ddressing enclosure; specil seminotionl position is occupied by n interjectionl enclosure. The ultimte nd highest object of this integrl modifiction is the sentence s whole nd through the sentence the reflection of the...