53786

Обобщение и систематизация знаний и умений по теме Квадратное уравнение и его корни

Конспект урока

Педагогика и дидактика

Учащиеся должны знать: определение квадратного уравнения; формулы дискриминанта корней квадратного уравнения; зависимость между значением дискриминанта и количеством корней квадратного уравнения. Учащиеся должны уметь: распознавать квадратные уравнения среди других уравнений; решать неполные квадратные уравнения по формуле корней квадратного уравнения; находить сумму и произведение корней приведенного квадратного...

Русский

2014-03-03

97 KB

3 чел.

Тема. Обобщение и систематизация знаний и умений по теме "Квадратное уравнение и

          его корни ".

Цели. Повторить и свести в систему материал предыдущих уроков, подготовить учащихся

          к контрольной работе.

Тип урока: систематизация знаний, умений, навыков.

                                                    ХОД УРОКА

I. Организационный  этап.

ІІ. Проверка домашнего задания.

    1.Устно.

    2. Собрать все тетради с домашним заданием на проверку.

 

ІІІ. Формулирование темы урока, цели и заданий урока.

      Мотивация учебной деятельности учеников.

      Мотивация обусловлена тем, что этот урок последний перед контрольной работой по

      теме  "Квадратное уравнение и его корни".

       Учащиеся должны знать:

       - определение квадратного уравнения;

       - формулы дискриминанта, корней квадратного уравнения;

       - зависимость между значением дискриминанта и количеством корней квадратного уравнения.

       Учащиеся должны уметь:

       - распознавать квадратные уравнения среди других уравнений;

       - решать неполные квадратные уравнения по формуле корней квадратного уравнения;

       - находить сумму и произведение корней приведенного квадратного уравнения по

         теореме Виета.

IV. Повторение и систематизация знаний учащихся.

     Устные упражнения

      1. Дайте определение квадратного уравнения.

      2. Приведите примеры приведенного квадратного уравнения.

      3. Какие уравнения называются неполными квадратными уравнениями?

      4. Каков план решения неполного квадратного уравнения вида:

          - ax2 = 0

          - ax2 + bx = 0

          - ax2 + c = 0

       5. Какое выражение называют дискриминантом квадратного уравнения?

       6. Сколько корней имеет квадратное уравнение, если значение дискриминанта:

            D>0; D<0; D=0?

        7. Как формулируется теорема Виета?

        8. Как формулируется теорема, обратная теореме Виета?

На электронной доске демонстрируются опорные конспекты.

Опорный конспект № 1

    1.   Определение квадратного уравнения.

         

         Уравнение вида  ах2+bх+с=0, где а,b,с – числа, причем а≠0,  называется квадратным уравнением;  а – 1-й коэффициент, b2-й коэффициент, с – свободный член этого уравнения.

   2.   Виды квадратных уравнений (в зависимости от значения коэффициентов).

 

   

Опорный конспект № 2

     

   

        1)      Если ах² + bx = 0, то следует разложить на множители левую

                  часть этого уравнения и воспользоваться условием равенства

                  произведения нулю:

    

  

    

        2)     Если  ах² + с = 0,  то следует привести это уравнение к виду

  

     ах² = - с

     х² = - с / а

             х² = А:                                       

   ах² + с = 0

                                                                   

 

 

если   - с / а  > 0 – два корня,    если  - с / а < 0  -  нет корней.

    

        3)     Если ах² = 0, то  х² = 0,  х = 0:

   ах² = 0

                х = 0   ( один корень)

                         

   

   Опорный конспект № 3

           В уравнении  ах² + bx + c = 0         D = b² - 4acдискриминант,

    который показывает количество (наличие) корней:

           1)     если   D < 0,  корней нет;

           2)     если    D = 0,  то один корень (два разных);

           3)     если    D > 0,  то два разных корня,  то есть

 

                                       Опорный конспект № 4

   Опорный конспект № 5

         1.         Теорема Виета для приведенного квадратного уравнения.

                      Если   х1  и  х2корни уравнения  х² + px + q = 0,

                      то   х1 + х2 = - р;   х1 * х2 = q.

         2.          Теорема Виета для неприведенного уравнения.

                       Если   х1   и   х2 -  корни уравнения   ах² + bx + c = 0   (a≠0),

                       то  х1 + х2 = - b / a;    x1 * х2 = с / а.

         3.          Теорема, обратная теореме Виета.

                       Если  m  и  n  такие, что  m + n = - p, а   m *  n = q,  тогда

                      m  и    nкорни уравнения х² +  px + q = 0.  

    

                                                

Решить устно:

№ 1

                                             Неполные квадратные уравнения

              х² - 36 = 0

            2х² = 18  

              х² + 2х = 0

              5х² - х = 0

            3х² = 0

              х² + 16 = 0

                1 - х² = 0

            2х – 8х² = 0

              х² = 4х

        0,5х² - 3х = 0

            1/2х² = 0,5х

              1/3х² = 3

 Обратить внимание учащихся, что установить вид уравнения можно лишь после того, как оно записано в виде Р(х) = 0, где Р(х) – многочлен стандартного вида.

Степенью уравнения называется степень этого многочлена: ах + b = 0, а ≠ 0 – уравне-

ние первой степени; ах² + bx + c = 0, a ≠ 0 – уравнение второй степени.

№ 2

                                                         Теорема  Виета

   

          1.     Являются ли числа  х1 и х2 корнями квадратного уравнения

                        

                                        

                                        1)   х² - 9х = 0 ;        х1 = 2;  х2 = 7

                                        

                                        2)   х² + 2х – 3 = 0;  х1 = -1;  х2 = 3

          2.      Решить уравнения:

                                         1)   х² - х - 20 = 0

                                         2)   х² - 2х + 3 = 0

                                         3)   х² - 3х -28 = 0

                         

V.     Повторение и систематизация умений учащихся.

        Типовыми для этой темы являются задания:

1)   решить неполное квадратное уравнение;

2)   решить квадратное уравнение общего вида;

3)   решить квадратное уравнение с четным вторым коэффициентом;

4)   решить приведенное квадратное уравнение, используя теорему, обратную теореме   

     Виета;

5)   используя теорему Виета, найти неизвестный коэффициент и корень квадратного

     уравнения.

№ 1       Найдите корни уравнения

 1)   5х² = 25х

 2)   100х² - 16 = 0

 3)   3х² - 11х – 4 = 0

 4)   х² - 3х + 1 = 0

 5)   2х² +5х + 9 = х + 2

 6)   3х² - 2х – 1 = 0

№ 2     Решить уравнение

 1)   ( х – 4 ) ( 4х + 6 ) = ( х – 5 )²

 2)   ( 3х² + 6х ) / 2 = 4 – 2х

№ 3     В уравнении  х² + рх – 18 = 0  один из корней равен  -9.  

           

           Найдите второй корень и коэффициент  р.

 

Класс делится на группы.  Каждая группа получает задание.

   І  -  средний уровень

           ІІ  -  достаточный уровень

          ІІІ  -  высокий  уровень

 Группы, которые работали с заданиями высокого и достаточного уровня

делегируют представителя для защиты своих решений возле доски.

 Задания среднего уровня учащиеся показывают учителю и комментируют

на месте.

 I  2х² - 18 = 0

  х² - 5х + 6 = 0

  3а² + а – 7 = 0

 II  2х² = 3х

  х² + 7х – 44 = 0

  х + 3х² = -11

 

  III  ( 2х – 1)² = 1 – 4х

  х² + х -72 = 0

  -15 = 3х ( 2 – х )

VI   ИТОГИ  УРОКА

  Вопросы классу:

1)     Достигнута ли цель урока?

2)     На какие моменты теории и практики нужно обратить внимание,

         готовясь к контрольной работе?

3)     Группы сдают свои работы для оценивания.

4)     Выставление оценок за урок.

VII    Домашнее  задание

 

Повторить определение, классификацию и способы решения квадратных

уравнений разного вида.

1.     Решите квадратное уравнение:

 1)   х² - 7х + 6 = 0;  2)   х² -6х = 0;

 3)   6х² + х – 7 = 0;  4)   5х² - 125 = 0.

2.     При каких значениях  х  выполняется равенство

 ( х² + 10х ) / 10 – ( 2х + 5 ) / 2 = 20?

3.     Один из корней уравнения  х² + bх – 8 = 0 равен 4. Найдите второй

                 корень и число b.

4.     Составьте квадратное уравнение, корни которого равны  -1/5 и 2.

5.     Не решая уравнение 2х² +3х – 13 = 0, найдите значение выражения

        1/х1² + 1/х2².

 

          Место квадратных уравнений среди других алгебраических уравнений

                                              У Р А В Н Е Н И Я                

 

 

 

 

Соотношения между разными видами квадратных уравнений

                      К В А Д Р А Т Н Ы Е           У Р А В Н Е Н И Я                

 


              
а = 1

     х² + рх + q = 0 ─

приведенное квадратное

           уравнение

        ах² +bx + c = 0,  а ≠ 0 –

          квадратное уравнение 

          b = 0

      ах² + с = 0

                  b или с,

     или и b, и  с  равны  0 –

        неполное квадратное

                 уравнение

            с = 0

     ах² + bx = 0

        b = c = 0

         ах² = 0

ах² + bx = 0 

ax² + bx = 0

  x = 0  или   ax + b = 0  (два корня)

    ax² + bx + c = 0;  a ≠ 10, b ≠ 0, c ≠ 0.     D = b² - 4ac

    корней

       нет

   корней

       нет

 D < 0

 х1,2 = - b / 2a

   два равных

       корня

D = 0

       - b ± √ D

х1,2= ------------

              2a

два разных корня

D > 0

Неполные

       квадратные

             уравнения

Приведенные

         квадратные

                  уравнения

       Линейные

       уравнения

    Квадратные

     уравнения

       D1 > 0

х1,2= -k ± √D1 / а

два разных корня        

                

      D1 = 0

   х1,2 = -k / а

два равных корня

   (один корень)

   D1 < 0

корней нет

      Если в уравнении  ax² + bx + c = 0     (a ≠ 0)   b = 2m  (четное число),

                                        то D1 = D/4 = m² - ac


 

А также другие работы, которые могут Вас заинтересовать

13666. Дарендорф. Кто умеет справиться с конфликтами путем их признания, берет под свой контроль ритм истории 14.32 KB
  Кто умеет справиться с конфликтами путем их признания берет под свой контроль ритм истории. Р.Дарендорф. Зададимся вопросом: А что значит конфликт Ученые дают такие варианты определений Конфликты представляют собой особый тип социального взаимодействия субъе...
13667. Личность – это человек как носитель сознания 13.9 KB
  Личность это человек как носитель сознания К.К. ПлатоновЧеловек вечная проблема. Наши предки считали что человек предназначен для жизни бесконечной. И что свою суть он должен познавать в течение всей свой земной жизни а может быть и за пределами ее. И сейчас немало ...
13668. Личность человека, ни в каком смысле не является предсуществующей по отношению к его деятельности, как и его сознание, она ею порождается 13.85 KB
  Личность человека ни в каком смысле не является предсуществующей по отношению к его деятельности как и его сознание она ею порождается А.Н. ЛеонтьевЛеонтьев Алексей Николаевич советский психолог занимавшийся проблемами сознания и деятельности.Личность это конкр
13669. Люди рождаются только с чистой природой, лишь потом отцы делают их иудеями, христианами или огнепоклонниками 14.77 KB
  Люди рождаются только с чистой природой лишь потом отцы делают их иудеями христианами или огнепоклонниками. Саади Сложно не согласиться с данным высказыванием. Человек существо биосоциальное. От рождения мы обладаем по словам поэта Саади чистой природой. Мале...
13670. Люди существуют друг для друга 16.04 KB
  Люди существуют друг для друга Марк АврелийЧеловек по своей природе существо социальное. Такими нас сделала природа: с самых древних времен люди живут социумом т.е. коллективом. И даже когда не было создано речи люди общались с помощью жестов и звуков. Человек не мож
13671. Национализм малых народов есть проявление изоляции и самодовольства. Национализм больших народов есть империалистическая экспансия 14.14 KB
  Национализм малых народов есть проявление изоляции и самодовольства. Национализм больших народов есть империалистическая экспансия. Н. Бердяев На протяжении развития общества существовало много различных мнений по поводу того какой этнос считать нацией. Так н...
13672. Нация - это общество людей, которые через единую судьбу обретают единый характер 14.71 KB
  Нация это общество людей которые через единую судьбу обретают единый характер.О. ПауэрПомимо классов и других социальных групп социальную структуру общества составляют исторически сложившиеся общности людей: племена народности нации. Постараемся ответить на вопр...
13673. Неравенство - такой же хороший закон природы, как и всякий другой 14.56 KB
  Неравенство такой же хороший закон природы как и всякий другой. И.Шерр Все формы общности людей можно разделить на естественноисторические этноисторические и социально исторические. Естественно исторические формы общности людей это раса поколение пол и т.д...
13674. Неравенство – такой же хороший закон природы, как и всякий другой. И. Шерр 16.69 KB
  Неравенство такой же хороший закон природы как и всякий другой И. Шерр. Как следует понимать слова известного немецкого публициста и общественного деятеля 18 в. Иоганна Шерра Шерр говорит что неравенство является таким же хорошим законом природы как и всякий дру