5400

Метод проецирования

Контрольная

Математика и математический анализ

Метод проецирования 1.1. Центральное проецирование Центральное проецирование является наиболее общим случаем получения проекций геометрических фигур. В основу построения любого изображения положена операция проецирования, которая заключается в следу...

Русский

2012-12-09

216.5 KB

134 чел.

Метод проецирования

1.1. Центральное проецирование

Центральное проецирование является наиболее общим случаем получения проекций геометрических фигур.

В основу построения любого изображения положена операция проецирования, которая заключается в следующем: в пространстве выбирают произвольную точку S – центр проецирования, и плоскость, не проходящую через точку S – плоскость проецирования (рис.1).

Рис. 1.

А, АS, А, В – точки в пространствеS – центр проекцийSA), SB) – проецирующие лучи А11- проекции точек А и В

– плоскость проекций

SA) ∩= А1

SB) ∩В1

Чтобы спроецировать точку А пространства на плоскость , через центр проецирования S и точку А проводят прямую до ее  пересечения с плоскостью проекций (рис.1).

Рис. 2.

Проекцией фигуры называют множество проекций всех ее точек.

Проекция криволинейной фигуры представляет собой линию пересечения проецирующей поверхности  и плоскости проекций (рис.2).

Свойства центрального проецирования:

Так как через две различные точки можно провести одну и только одну прямую, то при заданном центре проецирования и плоскости проекций, каждая точка пространства будет иметь одну и только одну центральную проекцию.

Рис.3.

Обратное утверждение – каждой центральной проекции точки однозначно соответствует точка пространства, не имеет смысла. Поэтому одна центральная проекция точки не дает возможности судить о положении самой точки в пространстве. Для того, чтобы сделать возможным определение положения точки в пространстве по ее центральным проекциям, необходимо иметь две центральные проекции этой точки, полученные из двух различных центров (рис.3).

1.2.ПАРАЛЛЕЛЬНОЕ ПРОЕЦИРОВАНИЕ

Широкое применение в практике получил тот случай, когда центр проецирования удален в бесконечность. Проецирующие лучи при этом параллельны между собой, и проекции точек, фигур и тел получают названия параллельных проекций.

В свою очередь параллельные проекции подразделяются на прямоугольные и косоугольные.

В первом случае плоскость проекций с направлением проецирования образует угол 90о, а во втором не равный 90о (рис.4 и рис.5).

Рис. 4.

Рис.5.

Каждой точке пространства соответствует только одна параллельная проекция. Обратное утверждение не имеет смысла.

Для определения точки в пространстве необходимо иметь две ее параллельные проекции, полученные при различных направлениях проецирования (рис.6).

Рис. 6.

В дальнейшем мы будем пользоваться параллельными проекциями, ортогональными (прямоугольными) и аксонометрическими, причем первые будут прямоугольными, а вторые прямоугольными и косоугольными.

1. 3. Ортогональные проекции точки (Эпюр Монжа).

Сущность метода ортогонального проецирования заключается в том, что предмет проецируется на две взаимно перпендикулярные плоскости лучами, ортогональными (перпендикулярными) к этим двум плоскостям.

Одну из этих плоскостей проекций  располагают горизонтально, а вторую – вертикально. Плоскость  называется горизонтальной плоскостью проекций, – фронтальной. Плоскости  и  бесконечны и непрозрачны. Линия пересечения плоскостей проекций называется осью проекций (координат) и обозначается ОХ.

Плоскости проекций делят пространство на четыре двугранных угла (четверти) I, II, III, IV (рис.7).

Рис.7. Система взаимно перпендикулярных плоскостей проекций

При построении проекций необходимо помнить, что ортогональной проекцией точки на плоскость называется основание перпендикуляра, опущенного из данной точки на эту плоскость.

А1 – горизонтальная проекция точки А

А2 - фронтальная проекция точки А

Проецирующие лучи определяют плоскость

(АА2АА1) перпендикулярную плоскостям проекций и линии их пересечения – оси ОХ. Эта плоскость пересекает  и  по отрезкам прямых А1Ах и А2Ах, которые образуют с осью Х и друг с другом прямые углы с вершиной в точке Ах

АА1 = А2Ах – расстояние от точки А до

АА2 = А1Ах -  расстояние от точки А до

Ортогональные проекции точки на две взаимно перпендикулярные плоскости вполне определяют положение точки в пространстве.

Построение проекций точек в 4-х угловых пространствах показано на рис.8.

Рис.8.

Чтобы получить плоский чертеж, плоскость  совмещают вращением вокруг оси ОХ с плоскостью .

Проекционный чертеж, на котором плоскости проекций со всем тем, что на них изображено, совмещены определенным образом одна с другой, называется эпюром Монжа (рис.9).

             I

II

III

IV

N

M

Рис.9.

Проекции одной и той же точки на две взаимно перпендикулярные плоскости располагаются на прямой, перпендикулярной оси проекций х12.

Эта прямая называется направлением проецирования или линией проекционной связи.

1.4. ОРТОГОНАЛЬНАЯ СИСТЕМА ТРЕХ ПЛОСКОСТЕЙ ПРОЕКЦИЙ

Две проекции точки вполне определяют ее положение в пространстве. Так как каждая фигура или тело представляют собой совокупность точек, то можно утверждать, что две ортогональные проекции предмета вполне определяют его форму.

Однако на практике часто возникает необходимость создания дополнительных проекций. - профильная плоскость проекции [AA3 ] (рис.10).

Рис. 10

Проекции точек на профильную плоскость проекций называются профильными проекциями – А3.

Плоскости проекций попарно пересекаясь определяют три оси ОX; ОY и ОZ, которые можно рассматривать как систему прямоугольных декартовых координат в пространстве с началом в точке О.

А1Ау = Х – абсцисса (расстояние от точки до )

А1Ах= Y - ординат (расстояние от точки до )

А2Ах = - аппликата (расстояние от точки до )

Длины проецирующих перпендикуляров, определяющих расстояние точки до плоскостей проекций, являются координатами точки. Задание точки осуществляется в следующем виде: А (Х, Y, Z). Знаки координат Х, Y, Z в четырех угловых пространствах показаны в таблице1.

Таблица 1

X

Y

Z

I

+

+

+

II

+

-

+

III

+

-

-

IV

+

+

-

1.5. БИССЕКТОРНЫЕ ПЛОСКОСТИ (ПЛОСКОСТЬ СИММЕТРИИ И ПЛОСКОСТЬ ТОЖДЕСТВА)

Плоскость, которая проходит через I и III угловые пространства и делит их пополам, называется плоскостью симметрии и обозначается  (рис. 11).

Плоскость, которая проходит через II и IV угловые пространства и делит их пополам, называется плоскостью тождества и обозначается (рис.12).

Рис. 11

Рис. 12.

Рис.13..

На рис.13 изображен вид А пересекающихся плоскостей ; ; ; , на котором легко определяются координаты точек A, B, C, D, принадлежащих плоскостям  и .

Координаты Y и Z точек, лежащих на плоскости симметрии одинаковы по величине и по знаку: Уа = ZА ; -УС = ZС.

Координаты Y и Z точек, лежащих на плоскости тождества одинаковы по величине, но противоположны по знаку: -УВ = ZВ; УD = - ZD

1.6. ТОЧКИ, СИММЕТРИЧНЫЕ ОТНОСИТЕЛЬНО БИССЕКТОРНЫХ ПЛОСКОСТЕЙ.

Пусть точка L симметрична точке К относительно (рис.14). Тогда координата YК равна по величине и по знаку координате ZL  (YК = ZL), а координата ZК равна по величине и по знаку координате YL  (ZК = YL).

Координаты Y и Z точек, симметричных относительно плоскости симметрии, равны по величине и по знаку координатам Z и Y заданных точек.

Пусть точка М симметрична точке К относительно плоскости тождества (рис.15). Тогда координаты YК равны по величине, но противоположны по знаку координате –ZМ, а координата ZК равна по величине, но противоположна по знаку координате –YМ (YК = –ZМ; ZК = –YМ).

       

А

А

Рис.14

Рис. 15.

1.8.ТОЧКИ, СИММЕТРИЧНЫЕ ОТНОСИТЕЛЬНО ПЛОСКОСТЕЙ ПРОЕКЦИЙ

Пусть точка В симметрична точке А относительно плоскости (рис.16).

Рис.16

У точек симметричных  относительно горизонтальной плоскости проекций  координата Z меняет знак на противоположный ZА= -ZВ. А(Х,Y,Z); В(Х,Y,-Z).

Пусть точка С симметрична точке А относительно плоскости проекций . У точек, симметричных относительно фронтальной плоскости проекций  координата Y меняет знак на противоположный -YC= YA. А(Х,Y,Z); С(Х,-Y,Z).

Пусть точка D симметрична точке А относительно оси проекций ОХ. У точек, симметричных относительно оси проекций ОХ, координаты Y и Z меняют знак на противоположный YD= -YA; ZD= -ZA. А(Х,Y,Z); D(Х,-Y,-Z).


 

А также другие работы, которые могут Вас заинтересовать

42197. Вивчення будови, принципу дії амперметрів та вольтметрів. Визначення їх метрологічних характеристик 93 KB
  Якщо статична характеристика лінійна у=кх то коефіцієнт к називається чутливістю вимірювального приладу; ціна поділки ЗВ ; ціна одиниці найменшого розряду числа в показах цифрового приладу ; 2 похибки ЗВ: Абсолютна відносна приведена похибки ЗВ; Похибки поділяються на статичні які виникають при вимірюванні постійних величин динамічні які виникають при вимірюванні змінних величин. До числа характеристик похибок відноситься також варіація вихідного сигналу або варіація показів вимірювального приладу.8485]: метод порівняння з...
42198. Повiрка цифрових та аналогових омметрiв 144.5 KB
  Програма роботи У процесі підготовки до заняття студенту потрібно ознайомитись з методикою повірки омметрів згідно ГОСТ 9. Здійснити повірку цифрових універсальних омметрів типу В7 20 та В7 16А.1 Будова аналогових омметрів Омметрами називають прилади прямої дії які служать для безпосереднього вимірювання активних опорів. Перевага двохрамочних омметрів у тому що їх покази не залежать від напруги джерела живлення.
42199. Калібрування і повірка термометрів опору 286.5 KB
  Засвоїти методику отримання практичних навиків при проведенні досліджень динамічних характеристик термометрів опору при нагріванні і охолодженні повірці термометрів опору та калібруванні напівпровідникових термометрів опору термісторів.2 Програма роботи Під час заняття студент повинен ознайомитись з будовою та принципом дії термометрів опору. Визначити динамічну похибку термометрів опору типу ТСП і ТСМ.
42200. Систематичні похибки вимірювань та методи їх зменшення 71.5 KB
  У процесі заняття провести вимірювання різних електричних величин різними способами і засобами визначити систематичні похибки ввести поправки до результатів вимірювань обчислити дійсні значення вимірюваних величин і впевнитись у правильності отриманих значень.1 Систематичні похибки вимірювань та методи їх зменшення Процес пізнання матеріального світу відбувається через експериментальне визначення вимірювання кількісних оцінок фізичних величин що характеризують досліджувані процеси явища. Таким чином результат...
42201. Вивчення будови, принципу дії та застосування електронного осцилографа для електричних вимірювань 461 KB
  Практичне виконання вимiрювань напруги струму часових iнтервалiв частоти кута зсуву фаз складової комплексного опору та iнших електричних величин з допомогою осцилографа. При пiдготовцi до роботи студенти повиннi самостiйно продумати i завчасно пiдготувати програму виконання роботи для заданого їм варiанта вибрати або скласти самостiйно необхiднi для цього схеми вимiрювань запропонувати свої рiшення в здiйсненнi вимiрювань дiючих значень синусоїдальних струмiв i напруг з допомогою осцилографа. Пропонується продумати методику...
42202. Вивчення методів та засобів вимірювання електричної ємності та індуктивності 245 KB
  Ознайомлення з різними методами вимірювання електричної ємності і індуктивності та приладами що використовуються для цього. Ознайомлення з будовою мостів змінного струму і універсальних мостів з будовою і застосуванням резонансних вимірювачів індуктивності L і ємності С. Отримання навичок практичного виконання вимірювань ємності і індуктивності.
42203. Електронні автоматичні мости і їх повірка 109 KB
  За результатами повірки зробити висновки про придатність до експлуатації автоматичного моста.3 Основні теоретичні відомості Електронні автоматичні мости Як правило термометри опору працюють в комплекті зі зрівноваженими електронними автоматичними мостами постійного або змінного струму або з логометрами. В автоматичних мостах використовується вимірювальна система чотириплечового моста з реохордом що забезпечує високу точність вимірювання. Термометр опору який є чутливим елементом моста включається в одне з його плечей.
42204. МОДЕЛИРОВАНИЕ ЛИНЕЙНЫХ ДИНАМИЧЕСКИХ СИСТЕМ 751 KB
  Ознакомление с пакетом прикладных программ SIMULINK и основными приемами моделирования линейных динамических систем. К занятию допускаются студенты составившие схемы моделирования заданных динамических систем см.1 могут быть составлены схемы моделирования уравнений 1. Для составления схемы моделирования дифференциальных уравнений 1.
42205. КАНОНИЧЕСКИЕ ФОРМЫ ПРЕДСТАВЛЕНИЯ ДИНАМИЧЕСКИХ СИСТЕМ 181.26 KB
  Математическая модель одной и той же линейной динамической системы может быть представлена в различных формах: в форме скалярного дифференциального уравнения -го порядка (модель вход-выход) или в форме системы из дифференциальных уравнений 1-го порядка (модель вход-состояние-выход). Следовательно, между различными формами представления математических моделей существует определенная взаимосвязь, т.е. модель вход-состояние-выход может быть преобразована к модели вход-выход и наоборот.