54049

Основні методи розвязування логарифмічних рівнянь

Конспект урока

Педагогика и дидактика

Мета уроку: освітня: продовжити роботу над пошуком шляхів розв’язування логарифмічних рівнянь формувати вміння аналізувати здобуті корені рівняння; розвиваюча: організувати діяльність з розвитку уваги математичного мовлення робити висновки узагальнювати факти відпрацювати вміння говорити коротко але по суті й переконливо; виховна: виховувати цілеспрямованість вміння працювати в колективі бути стійким перед труднощами створювати ситуацію успіху...

Украинкский

2014-03-06

154 KB

50 чел.

Тема: Основні методи розв’язування логарифмічних рівнянь.

Мета уроку:

освітня: продовжити роботу над пошуком шляхів розв’язування                                  логарифмічних рівнянь, формувати вміння аналізувати здобуті корені рівняння;

розвиваюча:  організувати діяльність з розвитку  уваги, математичного мовлення, робити висновки,  узагальнювати факти,  відпрацювати вміння говорити коротко, але по суті й переконливо;     

виховна:  виховувати цілеспрямованість,  вміння працювати в колективі, бути стійким перед  труднощами, створювати ситуацію успіху для формування позитивного ставлення до себе я можу, у мене все вийде.      

Тип уроку: узагальнення і систематизації знань.

Обладнання: мультимедійна дошка, проектор, слайди, конверт із завданнями.

Очікувані результати: учні повинні вміти знаходити методи та розв’язувати логарифмічні рівняння.

                                        Девіз уроку:  Не достатньо мати лише добрий  розум,

                                                                Головне-це раціонально застосовувати його

                                                                                                                      Рене Декарт

Хід  уроку

 I.Організаційний момент.

 II. Перевірка домашнього завдання.

Слова вчителя: “На попередньому уроці ми ознайомилися зі способами розв’язання логарифмічних рівнянь.”

Додому було завдання: підготувати рекламу про логарифмічні рівняння

1 групі: групі теоретиків.

2 група: це група практиків, завдання якої показати як розв’язуються  логарифмічні рівняння.

Зразки реклами про логарифмічні рівняння. Презентація.

Увага!!!

  1.  Якщо вас зацікавили логарифмічні рівняння, то поспішайте підняти руку й хутчіше до дошки, щоб відчути впевненість у математичних знаннях. Вам гарантована висока оцінка.

                    То ж поспішайте!

  1.  Якщо вам набридло сидіти без діла, якщо ви хочете перевірити свої знання,- розв’язуйте логарифмічні рівняння та нерівності.  Переходьте від однієї основи логарифма до іншої, і ви дізнаєтеся, на що  здатен ваш мозок.
  2.  Подивіться на екран.

  «Програма зовнішнього тестування з математики (2011)»

Назва розділу, теми

Знання

Предметні уміння та способи навчальної діяльності

 Логарифмічні, вирази та їх тотожні перетворення.

Логарифмічні рівняння.

• змінна, вираз зі змінною та його область визначення;

• означення і властивості логарифма; десятковий і натуральний логарифми, логарифмічні рівняння.

• виконувати тотожні  перетворення многочленів,

що містять  логарифмічні  функції та знаходити їх числове значення;

• спрощувати  логарифмічні вирази;

• доводити  
логарифмічні  тотожності;

• розв’язувати логарифмічні рівняння.

Слів не  треба. Логарифмічні рівняння треба розв’язувати. Це є запорукою успішного складання зовнішнього тестування,  шлях до вищих учбових закладів, у стінах яких ми будемо навчатися для того,  щоб стати кваліфікованими спеціалістами.

  1.  Я - не просто логарифмічне рівняння.  Я - тісно зв’язане з логарифмом та його властивостями. А логарифми проникають і в галузь психології. Досліди показали, що організм людини ніби логарифмує отримані ним подразнення, тобто величина відчуття приблизно пропорційна десятковому логарифму величини подразнення.

В астрономії гучність шуму й яскравість зірок оцінюється однаковим чином за  логарифмічною шкалою.  «Величина» зірки  являє собою  логарифм її фізичної яскравості. Гучність виражена в белах дорівнює десятковому логарифму відповідної фізичної величини. За логарифмічною спіраллю  закручено багато галактик, у тому числі Галактика, яка належить Сонячній системі.  

Раковини багатьох молюсків, равликів, а також роги таких ссавців як архари (гірські кози), закручені за логарифмічною спіраллю. Можна сказати, що ця спіраль є математичним символом відношення форм росту. Великий німецький поет Іоганн Вольфганг Гете вважав її математичним символом життя й духовного розвитку. У соняшника зернята розташовані також за дугами, близькими до логарифмічної спіралі. Один з найбільш поширених павуків, епейра, сплітаючи павутину, закручує нитки навколо центра за логарифмічною спіраллю. Хіба це не цікаво?

Були поети, які згадували логарифми  у своїх віршах. У  вірші «Фізики й лірики» Борис Слуцький  написав:

                                         Потому-то, словно пена,

                                         Опадают наши рифмы.

                                         И величие степенно

                                         Отступает в логарифмы.

Отже, як ми бачимо логарифми відіграють важливу роль у житті. Якщо ви хочете пов’язати  своє життя з наукою, вивчайте логарифми та логарифмічні рівняння.

Уявіть, що зараз ви презентуєте логарифмічні рівняння та нерівності перед слухачами аудиторії, яка про них мало, або навіть нічого не знає. Як ви це зробите?

(Група учнів або один учень виступає зі своєю презентацією).

III. Актуалізація опорних знань.

а) Для  розуміння наступного потрібно  розуміння попереднього. Застосуємо технологію «Асоціативний кущ» - повторимо  відомості про  властивості  логарифмів, оскільки вони дають змогу  розв’язувати  логарифмічні  рівняння  і нерівності. (З’являється на мультимедійній дошці таблиця, використовуючи яку, учні-теоретики  узагальнюють поняття  логарифма та його властивостей).


б) усно
: розв’язати рівняння  (використовуючи таблицю із коментуванням, що було використано) – група теоретиків

1

2

3

4

1

logx=2

3logx=4

logx=

logx=1

2

log(-x)=-2

log(x-1)=5

2=25

lgIxI=-1

3

log(x+5)=log3

lgx2=0

lgIxI=2

lg(lgx)=1

4

lg(x-3)=2

lg(x-5)=-1

lg(cos)=0

lg(x+2)=lg(x+2)

3.Обговорення запитань,  що виникли  в ході усного рахунку.

4.Показати графічно, що рівняння lgx=lg2x   не має розвязків

lg 2x=lg2+lgx.

В одній і тій самій системі координат будуємо графіки  функцій: y=lgx  та        y=lgx+lg2.  Графіки функції не перетинаються,   отже рівняння розвязку не має.

IV. Мотивація навчальної діяльності.

Інтерв’ю.

Слова вчителя. Я хочу, щоб кожний  з вас пояснив, які існують способи розв’язування логарифмічних рівнянь.

Повідомляємо тему і мету уроку.

(На екрані з’являється шпаргалка).

Основні методи  розв’язування логарифмічних рівнянь.

1. Метод потенціювання, тобто зведення рівняння до виду

logx =b; a>0; a≠1;  b є Rx=ab;

logf(x) = logg(x); a>0; a≠1  

2. Метод введення нової змінної.

3.Логарифмування обох частин рівняння

4.Застосування монотонності функції.

V. Звіт про роботу групи-практиків. Застосування знань учнів до розв’язування рівнянь.

Приклад 1.       

Розв'яжіть рівняння 1оg3 х+2log3 (х+8) = 4.

 Розв'язання

І спосіб. Рівняння розглядатимемо на множині D = (0;+).

 Використаємо властивості логарифма:

log3 х(х+8)2 =4 х3+16х2+64х=34 х3+16х2+64х-81 = 0.   

Цілі корені рівняння є дільниками вільного члена:

81: ±1;±3;±9;±27;±81.

Безпосередньою перевіркою встановлюємо, що х=1 є розв'язком рівняння. Поділимо многочлен х3 +16х2 +64х-81 на двочлен х-1: Ділення виконаємо за допомогою схеми Горнера:

1

16

64

-81

                   1

1

17             

81                         

0       

х3 +16х2 +64х-81 = (х-1)(х2 +17х+81).

Отже, рівняння (*) рівносильне сукупності двох рівнянь

На екрані з’являється  2 спосіб розв’язування рівняння, прокоментувати його. 

II спосіб. Легко перевірити, що х =1 є розв'язком даного рівняння. А  далі                        найзручніше скористатися тим, що логарифмічна функція log а х і з основою а>1 є зростаючою, тому і функція?(х) = log3 х+2log3 (х+8), Що є лівою частиною рівняння, такoж зростає. Це означає, що? (х)<4, якщо 0<х<1 і? (х)>4, якщо х>1. Цим самим доведено, що задане рівняння має єдиний розв'язок х =1.

Відповідь. {1}.

    Приклад 2. Розв'яжіть рівняння хlog x-5lg x= 0,0001.

Розв'язання. Прологарифмуємо дане рівняння за основою 10.

lg xlgx-5lgx= lg 0,0001    (lg3x-5 lgx )lg x = - 4.

Останнє рівняння розв'яжемо, використовуючи заміну lgx=t:

 

Відповідь{;;  10;100;}

Приклад 3. Розв’яжіть рівняння

lg2(4-x)+lg(4-x)∙lg(x+)=2lg2(x+).

Розв’язання. Рівняння є однорідними. Тому розв’яжемо йогo, розділивши обидві частини  рівності на lg2(x+)≠0 ( Оскільки    x=   не є коренем рівняння).

Увівши заміну , дістанемо

t2+t-2=0  

,

Відповідь{0,,}.

Приклад 4.log (x+3)=3-x 

Розв’язування

Встановимо монотонність функції в лівій і в правій частинах:

y=log (x+3)-зростаюча

              y=3-x - спадна

Підбором знайдемо корені x=2, 1=1 перевірка  log5=3-2;

Отже, x=2

Відповідь 2.

VI. «Аукціон» розв’язання логарифмічних рівнянь. ( Кожен учень обирає  й  розв’язує  по чотири рівняння, за що отримує відповідну кількість балів. Ця робота розпочинається в класі, а закінчується вдома).

     Увага на екран!

Група А (кожне рівняння по 2 бали)

  1.  lg(x2-2x)=lg(2x+12),
  2.  log2x+3logx-4=0,
  3.  x1+lgx=100,
  4.  log(-2)=1,
  5.  logx=log1,5+log8,
  6.  +=1,
  7.  lg(3x-2)=3-lg 25,
  8.  lg2x4-lgx4-2=0,
  9.  lg(x+6)-lg(2x-3)=2-lg25.

Група Б (кожне рівняння по 3 бали)

  1.  log3x=1+logx9,
  2.  25lgx=5+4xlg5,
  3.  xlog2x-2=8,
  4.  lg=lg4,
  5.  2lg(x+0,5)-lgx(x-1)=lg(x+2,5)+lg2,
  6.  logx(2x2-3x-4)=2,
  7.  3logx+xlog3x=162,
  8.  lg4x-10lg2x+9=0,
  9.  32-log3x=81x.

 

VII. Рефлексія. Підбиття підсумків, оцінювання результатів уроку.

      У  кожного учня є лист самоконтролю, який ви отримали на початку уроку  заповніть його. Для цього треба дати відповіді на запитання.


Лист самоконтролю
.

  1.  Чи досяг я мети уроку?

                   Так.                      Ні

  1.  Я працював на  % і заслуговую  оцінку_

Зявляються на екрані слова: Не махай на все рукою, не лінуйся, а учись, бо чого навчишся в школі знадобиться ще колись.

Отже,

  1.  Чи є універсальний спосіб розв’язування логарифмічних рівнянь (ні).
  2.  Який спосіб використовувався найчастіше(метод потенціювання).
  3.  Який спосіб ми розглядали сьогодні ще? (метод заміни)


a
>0; a ≠1; N1>0; N2>0;

loga x=b;  bє R.

oga= logN

log(N1N2)=logN1+logN2

loga=1

log1=0

loga Nm=mloga N

loga=logN-logN

logx = ∙ logx

  1.  

 

А также другие работы, которые могут Вас заинтересовать

15791. Понятие статистической сводки и группировки 16.36 KB
  Понятие статистической сводки и группировки. Виды группировок Группировка – метод позволяющий распределить совокупность на группы по признакам сходства или различия. Например группировка предприятий города по формам собственности. С помощью метода группировок реш...
15793. Правила построения статистических таблиц 25.5 KB
  Правила построения статистических таблиц. Статистические таблицы необходимо строить по определенным правилам. Таблица должна быть компактной и содержать только те исходные данные которые непосредственно отражают исследуемое социальноэкономическое явление и
15794. Правило сложений дисперсий 73.74 KB
  Правило сложений дисперсий. Показатели вариации могут быть использованы не только в анализе изменчивости изучаемого признака но и для оценки степени воздействия одного признака на вариацию другого признака т.е. в анализе взаимосвязей между показателями. При проведе...
15795. Предмет метод и теоретические основы статистики 14.61 KB
  Предмет метод и теоретические основы статистики Предметом статистики является количественная сторона массовых общественных явлений в неразрывной связи с их качественной стороной которая отображается посредством объективных статистических показателей то есть осо
15796. Свойства средней арифмитической 49.34 KB
  Наиболее распространенным видом средних величин является средняя арифметическая. Простая средняя арифметическая: где xi – значение варьирующего признака; n – число единиц совокупности. База для вычисления этой средней – первичные записи результатов наблю
15797. Сопоставимость уровней и смыкания рядов динамики 15.16 KB
  Сопоставимость уровней и смыкания рядов динамики Анализировать ряды динамики нельзя если приводятся несопоставимые данные. Несопоставимость статистических данных во времени может быть вызвана следующими причинами: инфляционным процессом; территориальные изменени...
15798. Способы установления величины интервала в количественной группировке 19.73 KB
  Группировочным называется признак по которому осуществляется разбиение единиц совокупности на отдельные группы. Его часто называют основанием группировки. В основание группировки могут быть положены как количественные так и качественные признаки. При построении гр
15799. Среднее квадратическое отклонение для альтернативного признака 69.32 KB
  Среднее квадратическое отклонение для альтернативного признака Среднее квадратичное отклонение определяется как обобщающая характеристика размеров вариации признака в совокупности. Оно равно квадратному корню из среднего квадрата отклонений отдельных значений пр