54180

Метод розмірностей

Научная статья

Педагогика и дидактика

Однак виявляється що метод розмірностей може бути використаний не тільки і не скільки для перевірки правильності розв’язку поставленої задачі але й для виведення з точністю до константи невідомих співвідношень між фізичними величинами. 1 Основним фундаментальним підходом методу розмірностей є те що будьяку таку функцію ми можемо представити у вигляді наступного виразу y = C x1α x2β x3γ xnω 2 де C – безрозмірна константа;...

Украинкский

2014-03-10

342 KB

2 чел.

Метод  розмірностей

Більшість  величин  з  якими  ми  стикаємось  в  повсякденному  житті  вимірюється  в  певних  одиницях  (маса – кг,  час – сек,  і  т.д.).  Здійснюючи  певні  математичні  дії  з  такими  величинами  ми  оперуємо  не  тільки  ними,  але  і  їхніми  розмінностями,  тобто  величинами  і  одиницями  в  яких  вони  вимірюються:  тобто  2 кг + 3 кг = 5 кг,  але  нонсенсом  буде  2 кг + 3 м.  Таким  чином,  перевіряючи  розмірності  наших  величин  в  правій  і   лівій  частині  рівнянь  ми  контролюємо  правильність  розв’язку.  Однак,  виявляється,  що  метод  розмірностей  може  бути  використаний  не  тільки  і  не  скільки  для  перевірки  правильності  розв’язку  поставленої  задачі,  але  й  для  виведення  з  точністю  до  константи  невідомих  співвідношень  між  фізичними  величинами.

Дії  з  розмінностями  зводяться  до  пошуку  математичних  операцій,  що  пов’язують  різні  розмірності  між  собою.  В  загальному  випадку  якщо  величина  y  є  функцією  інших  величин,  то  ми  можемо  записати

y = f (x1, x2, …, xn).  (1)

Основним  фундаментальним  підходом  методу  розмірностей  є  те,  що  будь-яку  таку  функцію  ми  можемо  представити  у  вигляді  наступного  виразу

y = C x1α x2β x3γ ··· xnω,  (2)

де  C – безрозмірна  константа;

α, β, γ, …, ω – невідомі  константи  (чи  степеневі  показники),  які  потрібно  знайти,  склавши  систему  відповідних  рівнянь.

Очевидно,  що  для  коректної  постановки  задачі  і  її  розв’язання  кількість  рівнянь  повинна  співпадати  з  кількістю  невідомих  показників.  Так  з  допомогою  піднесення  до  степеня  можна  перетворювати  метри  лінійні  (відстані)  в  метри  квадратні  (площа),  та  в  метри  кубічні  (об’єм).

Існують  різні  способи  вимірювання  фізичних  величин,  а  саме:

а) прямі  (наприклад,  відстань – лінійкою,  час – секундоміром).

б) непрямі,  або  опосередковані  (наприклад,  напруга,  швидкість,  вимірювання  температури).

Величини,  вибір  одиниць  вимірювання  яких  не  залежить  від  інших  величин  називаються  основними,  а  ті,  вимірювання  яких  залежить  від  вимірювання  інших – похідними  (доцентрове  прискорення:  a = υ2/r;  сила:       F = m · a;  прискорення:  a = υ/t).

Введемо  для  зручності  такі  позначення:

 (3)

Тут  слід  зазначити,  що  вигляд  будь-якої  величини  взятої  в  квадратні  дужки  означає  її  розмірність,  а  означення    характеризує  ситуацію,  коли  певні  буквенні  позначення  вводяться  за  означенням.

Суть  методу  розмірностей  полягає  в  тому,  що  якщо  деяка  величина  y  є  функцією  незалежних  змінних  інших  x1, x2, …, xn  і  ця  функція  має  вигляд

y = f (x1, x2, …, xn)

то  ця  залежність  вірна  тоді  і  тільки  тоді,  коли  виконується  співвідношення

.  (4)

Нехай  ми  маємо  три  функції:  y,  f,  φ.  Математичні  дії  з  цими  функціями  зводяться  до  того,  що  аналогічні  дії  ми  можемо  здійснювати  із  їхніми  розмінностями.  Існують  основні  чотири  правила  дій  з  розмінностями:

а)    (5)

б)    (5)

в)    (5)

г)    (5)

Так  в  загальному  випадку,  якщо  ми  маємо  представлення  невідомої  функції  y = f (x1, x2, …, xn)  у  вигляді  y = C x1α x2β x3γ ··· xnω  то  при  цьому  можливі  дві  ситуації:

а) C = const  (що  буває  дуже  часто)  і  при  цьому  автоматично  розмірність  C:

.

б) C = C (x1, x2, …, xn),  але  ці  xi  перебувають  в  таких  комбінаціях,  що  дають  безрозмірну  величину,  і  знову  ж  розмірність  C:

.

Коли  спостерігається  випадок,  що  розмірність  константи  не дорівнює  одиниці  ()  як  наприклад,  у  випадку  сили  гравітаційної  взаємодії

,

то  для  знаходження  шуканої  функції  y  потрібно  експериментально  знайти  розмірність  невідомої  константи  і  застосувати  співвідношення  (5) б):

тільки  замість  функції  φ  буде  розмірність  [C],  і  тому

.

В  цьому  випадку  константи  C  (коли  вони  мають  розмірність)  називають  фундаментальними  фізичними  сталими.

Приклад  1.

З  допомогою  методу  розмірностей  знайти  прискорення  точки,  що  рівномірно  рухається  по  колу  з  постійною  лінійною  швидкістю  υ.

 Алгоритм  розв’язку

1. Від  чого  може  залежати  а  при  русі  по  колу?

2. Припускаємо,  що  прискорення  може  залежати  від:

 а)  радіуса  R

 б)  маси  m

 в)  лінійної  швидкості  υ.

3. Представимо  нашу  шукану  залежність  у  вигляді

а = f ( R, m, υ ).

4. Використовуючи  основний  фундаментальний  підхід  методу  розмірностей  (2)  запишемо  нашу  шукану  функцію  у  вигляді

а = C · Rα · mβ · υγ.  (6)

5. Запишемо  окремо  розмірності  кожної  з  величин  використовуючи  співвідношення  (3):

6. Вигляд  цих  розмірностей  підставимо  у  співвідношення  (6),  та  застосуємо  основну  фундаментальну  тотожність  методу  розмірностей  (4).

В  нашому  випадку  вона  матиме  вигляд:

[а] = [C · Rα · mβ · υγ],

або  ж  використовуючи  правило  (5) б):

[а] = [C] · [Rα] · [mβ] · [υγ].

7. У  це  співвідношення  підставляємо  значення  розмірностей:

.

8. Прирівнюючи  показники  степенів  для  різних  фізичних  величин  в  правій  та  лівій  частині  відповідно,  отримуємо  наступну  систему  рівнянь:

 

Враховуючи,  те  що  при  рівності  степеневих  функцій,  при  однакових  їх  основах,  автоматично  випливає  тотожна  рівність  їх  показників,  отримуємо  наступну  систему  рівнянь:

                        

        Згадаємо  наше  співвідношення

а = C · Rα · mβ · υγ

і  підставимо  в  нього  розв’язки  нашої  системи  рівнянь:

.

Ми  знаємо,  що  C = 1.

      Володимир Григорчук

      вчитель фізики Річківської ЗШ

PAGE   \* MERGEFORMAT 4


 

А также другие работы, которые могут Вас заинтересовать

69008. Електронні структури з p-n одним переходом 297 KB
  Для отримання великої площі р n переходу використовують сплавну дифузійну і планарну технологію для малої площі точкову. Ємності р n переходу. Варікапи Поняття ємності переходу пов’язане з нагромадженням об’ємних зарядів. S площа переходу Рис.
69009. Відомості про електронні прилади апаратури телекомунікацій. Класифікація електронних приладів 113 KB
  До елементів РЕА які найчастіше зустрічаються відносять радіодеталі. Розглянемо основні показники якості електронних елементів. Параметри це величини які характеризують електричні властивості елементів та їх здатність протистояти дії середовища.
69010. Біполярні напівпровідникові структури з одним п/н переходом 211.5 KB
  Сили притягання протонів ядра атома та електронів орбіти урівноважуються силами їх відштовхування. Отже для існування ковалентного зв’язку необхідна пара валентних електронів спільних для двох сусідніх атомів. Однак енергетичні зовнішні впливи на н п призводять до відриву деяких валентних...
69011. Организация строительства жилого дома со встроенными помещениями на Московском проспекте 1.54 MB
  Разработка технологических карт на сложные виды работ, а именно монолитные работы и работы по устройству вентилируемого фасада здания; разработка календарного плана строительства дома на основе расчета нескольких вариантов организации строительства, их сравнения и выбора наилучшего; проектирование строительного генерального плана объекта; разработка комплекса мероприятий по безопасному производству работ...
69014. Високочастотні властивості p-n структур 188.5 KB
  Таким чином при прямій напрузі електрони переходять із однієї області у іншу без витрат енергії утворюючи струм. В цьому випадку навпроти заповнених рівнів pобласті знаходяться заповнені рівні nобласті і електрони здійснюють тунельні переходи з ВЗ pн п в ЗП nн п в обох напрямках і сумарний...
69015. Р-п структури різного призначення. Випрямні властивості р-n переходу 267 KB
  Їх виготовляють за сплавною або дифузійною технологією. Конструкції малопотужних сплавних і дифузійних діодів однакові. До кристалу з р-n переходом припаюють виводи і розміщують у корпусі на кристалодержаку. Вивід емітера ізольований від корпусу, вивід бази зв’язують з корпусом...
69016. МОДЕЛІ НАПІВПРОВІДНИКОВИХ СТРУКТУР 160 KB
  Бар’єрна ємність визначається нерухомими іонами атомів домішок дифузійна рухомими носіями заряду. Бар’єрна ємність існує при зворотній напрузі дифузійна при прямій. Бар’єрна ємність Бар’єрну ємність СБАР утворює об’ємний заряд нерухомих позитивних іонів атомів домішок Q який розміщується...