54180

Метод розмірностей

Научная статья

Педагогика и дидактика

Однак виявляється що метод розмірностей може бути використаний не тільки і не скільки для перевірки правильності розвязку поставленої задачі але й для виведення з точністю до константи невідомих співвідношень між фізичними величинами. 1 Основним фундаментальним підходом методу розмірностей є те що будьяку таку функцію ми можемо представити у вигляді наступного виразу y = C x1α x2β x3γ xnω 2 де C безрозмірна константа;...

Украинкский

2014-03-10

342 KB

2 чел.

Метод  розмірностей

Більшість  величин  з  якими  ми  стикаємось  в  повсякденному  житті  вимірюється  в  певних  одиницях  (маса – кг,  час – сек,  і  т.д.).  Здійснюючи  певні  математичні  дії  з  такими  величинами  ми  оперуємо  не  тільки  ними,  але  і  їхніми  розмінностями,  тобто  величинами  і  одиницями  в  яких  вони  вимірюються:  тобто  2 кг + 3 кг = 5 кг,  але  нонсенсом  буде  2 кг + 3 м.  Таким  чином,  перевіряючи  розмірності  наших  величин  в  правій  і   лівій  частині  рівнянь  ми  контролюємо  правильність  розв’язку.  Однак,  виявляється,  що  метод  розмірностей  може  бути  використаний  не  тільки  і  не  скільки  для  перевірки  правильності  розв’язку  поставленої  задачі,  але  й  для  виведення  з  точністю  до  константи  невідомих  співвідношень  між  фізичними  величинами.

Дії  з  розмінностями  зводяться  до  пошуку  математичних  операцій,  що  пов’язують  різні  розмірності  між  собою.  В  загальному  випадку  якщо  величина  y  є  функцією  інших  величин,  то  ми  можемо  записати

y = f (x1, x2, …, xn).  (1)

Основним  фундаментальним  підходом  методу  розмірностей  є  те,  що  будь-яку  таку  функцію  ми  можемо  представити  у  вигляді  наступного  виразу

y = C x1α x2β x3γ ··· xnω,  (2)

де  C – безрозмірна  константа;

α, β, γ, …, ω – невідомі  константи  (чи  степеневі  показники),  які  потрібно  знайти,  склавши  систему  відповідних  рівнянь.

Очевидно,  що  для  коректної  постановки  задачі  і  її  розв’язання  кількість  рівнянь  повинна  співпадати  з  кількістю  невідомих  показників.  Так  з  допомогою  піднесення  до  степеня  можна  перетворювати  метри  лінійні  (відстані)  в  метри  квадратні  (площа),  та  в  метри  кубічні  (об’єм).

Існують  різні  способи  вимірювання  фізичних  величин,  а  саме:

а) прямі  (наприклад,  відстань – лінійкою,  час – секундоміром).

б) непрямі,  або  опосередковані  (наприклад,  напруга,  швидкість,  вимірювання  температури).

Величини,  вибір  одиниць  вимірювання  яких  не  залежить  від  інших  величин  називаються  основними,  а  ті,  вимірювання  яких  залежить  від  вимірювання  інших – похідними  (доцентрове  прискорення:  a = υ2/r;  сила:       F = m · a;  прискорення:  a = υ/t).

Введемо  для  зручності  такі  позначення:

 (3)

Тут  слід  зазначити,  що  вигляд  будь-якої  величини  взятої  в  квадратні  дужки  означає  її  розмірність,  а  означення    характеризує  ситуацію,  коли  певні  буквенні  позначення  вводяться  за  означенням.

Суть  методу  розмірностей  полягає  в  тому,  що  якщо  деяка  величина  y  є  функцією  незалежних  змінних  інших  x1, x2, …, xn  і  ця  функція  має  вигляд

y = f (x1, x2, …, xn)

то  ця  залежність  вірна  тоді  і  тільки  тоді,  коли  виконується  співвідношення

.  (4)

Нехай  ми  маємо  три  функції:  y,  f,  φ.  Математичні  дії  з  цими  функціями  зводяться  до  того,  що  аналогічні  дії  ми  можемо  здійснювати  із  їхніми  розмінностями.  Існують  основні  чотири  правила  дій  з  розмінностями:

а)    (5)

б)    (5)

в)    (5)

г)    (5)

Так  в  загальному  випадку,  якщо  ми  маємо  представлення  невідомої  функції  y = f (x1, x2, …, xn)  у  вигляді  y = C x1α x2β x3γ ··· xnω  то  при  цьому  можливі  дві  ситуації:

а) C = const  (що  буває  дуже  часто)  і  при  цьому  автоматично  розмірність  C:

.

б) C = C (x1, x2, …, xn),  але  ці  xi  перебувають  в  таких  комбінаціях,  що  дають  безрозмірну  величину,  і  знову  ж  розмірність  C:

.

Коли  спостерігається  випадок,  що  розмірність  константи  не дорівнює  одиниці  ()  як  наприклад,  у  випадку  сили  гравітаційної  взаємодії

,

то  для  знаходження  шуканої  функції  y  потрібно  експериментально  знайти  розмірність  невідомої  константи  і  застосувати  співвідношення  (5) б):

тільки  замість  функції  φ  буде  розмірність  [C],  і  тому

.

В  цьому  випадку  константи  C  (коли  вони  мають  розмірність)  називають  фундаментальними  фізичними  сталими.

Приклад  1.

З  допомогою  методу  розмірностей  знайти  прискорення  точки,  що  рівномірно  рухається  по  колу  з  постійною  лінійною  швидкістю  υ.

 Алгоритм  розв’язку

1. Від  чого  може  залежати  а  при  русі  по  колу?

2. Припускаємо,  що  прискорення  може  залежати  від:

 а)  радіуса  R

 б)  маси  m

 в)  лінійної  швидкості  υ.

3. Представимо  нашу  шукану  залежність  у  вигляді

а = f ( R, m, υ ).

4. Використовуючи  основний  фундаментальний  підхід  методу  розмірностей  (2)  запишемо  нашу  шукану  функцію  у  вигляді

а = C · Rα · mβ · υγ.  (6)

5. Запишемо  окремо  розмірності  кожної  з  величин  використовуючи  співвідношення  (3):

6. Вигляд  цих  розмірностей  підставимо  у  співвідношення  (6),  та  застосуємо  основну  фундаментальну  тотожність  методу  розмірностей  (4).

В  нашому  випадку  вона  матиме  вигляд:

[а] = [C · Rα · mβ · υγ],

або  ж  використовуючи  правило  (5) б):

[а] = [C] · [Rα] · [mβ] · [υγ].

7. У  це  співвідношення  підставляємо  значення  розмірностей:

.

8. Прирівнюючи  показники  степенів  для  різних  фізичних  величин  в  правій  та  лівій  частині  відповідно,  отримуємо  наступну  систему  рівнянь:

 

Враховуючи,  те  що  при  рівності  степеневих  функцій,  при  однакових  їх  основах,  автоматично  випливає  тотожна  рівність  їх  показників,  отримуємо  наступну  систему  рівнянь:

                        

        Згадаємо  наше  співвідношення

а = C · Rα · mβ · υγ

і  підставимо  в  нього  розв’язки  нашої  системи  рівнянь:

.

Ми  знаємо,  що  C = 1.

      Володимир Григорчук

      вчитель фізики Річківської ЗШ

PAGE   \* MERGEFORMAT 4


 

А также другие работы, которые могут Вас заинтересовать

74796. Внутренняя энергия реального газа. Эффект Джоуля-Томсона. Точка инверсии 66 KB
  Рассмотрим эффект Джоуля — Томсона. На рис. 93 представлена схема их опыта. В теплоизолированной трубке с пористой перегородкой находятся два поршня, которые могут перемешаться без трения.
74797. Фазовые переходы. Параметры критического состояния 48.5 KB
  Фазой называется термодинамически равновесное состояние вещества отличающееся по физическим свойствам от других возможных равновесных состояний того же вещества. Переход вещества из одной фазы в другую фазовый переход всегда связан с качественными изменениями свойств вещества.
74798. Реальные газы. Уравнение Ван-дер-Ваальса. Критические параметры 51.5 KB
  Учитывая собственный объем молекул и силы межмолекулярного взаимодействия голландский физик И. Учет собственного объема молекул. Наличие сил отталкивания которые противодействуют проникновению в занятый молекулой объем других молекул сводится к тому что фактический свободный...
74799. Диаграмма фазовых состояний. Тройная точка 60 KB
  Если система является однокомпонентной, т. е. состоящей из химически однородного вещества или его соединения, то понятие фазы совпадает с понятием агрегатного состояния. одно и то же вещество в зависимости от соотношения между удвоенной средней энергией, приходящейся на одну степень...
74800. Адиабатическое дросселирование. Эффект Джоуля-Томсона 57.5 KB
  Подобный процесс но с реальным газом адиабатическое расширение реального газа с совершением внешними силами положительной работы осуществили английские физики Дж. После прохождения газа через пористую перегородку в правой части газ характеризуется параметрами...
74801. Физика как наука. Основные разделы, этапы развития. Связь с философией и техникой 32 KB
  Физика – наука о наиболее простых и общих формах движения материи и их взаимных превращениях. Физика и ее законы лежат в основе всего естествознания. Она относится к точным наукам и изучает количественные закономерности явлений и процессов в окружающем нас мире.
74803. Механика и ее разделы. Кинематика вращательного движения материальной точки. Связь между векторами линейных и угловых скоростей и ускорений 74 KB
  Вращательным движением абсолютно твердого тела называют такое движение при котором все точки тела движутся в плоскостях перпендикулярных к неподвижной прямой называемой осью вращения и описывают окружности центры которых лежат на этой оси роторы турбин генераторов и двигателей.
74804. Первый закон Ньютона. Инерция, масса. Инерциальные системы отсчета. Механический принцип относительности. Преобразование координат Галилея. Теорема сложения скоростей и независимость массы от скорости в классической механике 58.95 KB
  Механическое движение относительно и его характер зависит от системы отсчета. Первый закон Ньютона выполняется не во всякой системе отсчета а те системы по отношению к которым он выполняется называются инерциальными системами отсчета.