543

Исследование надежности и риска нерезервированной технической системы

Лабораторная работа

Информатика, кибернетика и программирование

Определить показатели надежности и риск нерезервированной технической системы. Исследовать функцию риска: представить функцию риска в виде таблицы и графика. Определить критическое время работы системы с использованием интегрированной системы MathCAD или табличного процессора Microsoft Excel

Русский

2013-01-06

93 KB

29 чел.

Лабораторная работа №5

Коваленко С.В., 441-э гр.

"Исследование надежности и риска нерезервированной технической системы"

5.1 Задание к лабораторной работе

Определить показатели надежности и риск нерезервированной технической системы. Исследовать функцию риска: представить функцию риска в виде таблицы и графика. Определить критическое время работы системы. Дать качественный и количественный анализ соотношения риска, вычисленного по точной и приближенной зависимостям. Все вычисления, а также построение графиков выполнить с использованием интегрированной системы MathCAD или табличного процессора Microsoft Excel.

5.2 Справочный материал к лабораторной работе

5.2.1 Постановка задачи

Дано:

  •  структурная схема системы в виде основного (последовательного в смысле надежности) соединения элементов;
  •  nчисло элементов системы;
  •  λi – интенсивность отказа i -го элемента системы, i=1,2,…, ;
  •   ri – риск отказа из-за i -го элемента системы, i=1,2,…,;
  •   R допустимый риск;
  •   T – суммарное время работы системы.

Определить:

  •  Tср – среднее время безотказной работы системы;
  •  Pс(t) – вероятность безотказной работы системы в течение времени t, а также ее значения при t = T и t = Tср;
  •  Rс(t) – риск системы как функцию времени; значение риска при t = T и t = Tср;
  •  критическое время работы системы;
  •  исследовать зависимость GR(t,n).

5.2.2. Сведения из теории

Основными показателями надежности нерезервированной невосстанавливаемой системы являются: Pс(t) – вероятность безотказной работы системы в течение времени t, Tср – среднее время безотказной работы системы. При постоянных интенсивностях отказов элементов

, ,

где  - интенсивность отказа системы.

Отказы являются событиями случайными. При этом потери зависят от вида отказа. Риск является неизбежным атрибутом эксплуатации техники. Риск, возникающий в результате отказов техники, называется техногенным.

 Техногенным риском называется возможность потерь из-за отказа техники. В большинстве случаев риск оценивается денежными единицами. Из определения следует, что риск является случайной величиной, вызванной двумя величинами: случайностью события “отказ” и случайностью величины потерь.

Риск системы  и  вычисляются по приближенной формуле:

или по точной формуле:

,

где qi(t)=1-Pi(t) – вероятность отказа i –го элемента системы в течение времени t; Qc(t)=1-Pc(t) – вероятность отказа системы в течение времени t.

Так как возрастает с ростом t , то представляет интерес предельное время, выше которого риск будет превышать допустимое. Определение критического времени работы системы сводится к определению корня последнего уравнения. Если вещественного корня нет, то при любом t риск системы не превосходит допустимого значения.

Если элементы системы равнонадежны, то соотношения  и имеет вид

.

 является убывающей функцией времени, при этом с увеличением длительности времени работы системы, погрешность приближенной формулы увеличивается.

5.2.3. Последовательность выполнения работы

Лабораторную работу следует выполнить в такой последова-тельности:

  1.  Вычислить показатели надежности системы Pс(t) и Tср. Значения вероятности безотказной работы системы Pс(t) вычислить при t=T и t=Tср.
  2.  Исследовать функцию риска системы по точной формуле, для чего:
  •  получить формулу риска для заданных данных n, λi, ri;
  •  исследовать зависимость Rc(t) представив функцию в виде графика и таблицы;
  •  вычислить значение риска для исходных данных своего варианта при t = T и t = Tср.
  1.  Исследовать GR(t,n) при допущении, что элементы системы равнонадежны и интенсивность отказа каждого элемента равна их средней интенсивности отказов, т.е.
  2.  Сделать выводы.

Ход работы

Исходные данные:

 

Риск исследуемой системы ниже допустимого допустимого значения, равного 5000 условных единиц

Вещественного корня нет. Это значит, что при любом t риск системы не превосходит допустимого значения

Техногенный риск функционирования системы возрастает с увеличением времени работы системы t и при t =? стремится к постоянной величине, равной среднему значению риска

Предельное значение погрешности приближенной формулы равно 1/n.

1. Чем больше элементов n и чем больше время работы системы, тем больше погрешность приближенной формулы.

2. Приближенной формулой можно пользоваться в том случае, когда время работы системы мало и риск, вычисленный по приближенной формуле, не превышает допустимого значения.

С увеличением t с 1000 до 10000 часов

риск увеличивается примерно с 100 до 700 условных единиц;

погрешность приближеннй формулы увеличивается в 1.4 раза.


 

А также другие работы, которые могут Вас заинтересовать

21674. Влияние внешних ЭМ полей на цепи АТС 557 KB
  На отдельных участках они могут иметь сближение с ЛЭП. ЭМ поля возникающие вокруг проводов ЛЭП индуцируют напряжения и токи в цепях ЛАТС которые могут нарушить нормальную работу АТС. Влияние ЛЭП на цепи АТС называется внешними влияниями. Высоковольтные ЛЭП служащие для передачи энергии на большие расстояния имеют U= 35 750 кВ тока f = 50 Гц или 800 1000 кВ постоянного тока.
21675. Особенности влияния на однопроводные и двухпроводные цепи 165.5 KB
  Особенности влияния на однопроводные и двухпроводные цепи Вопросы: 1. Поперечная асимметрия 2х проводные цепи относятся к симметричным системам. 1 Земляные волны проводов 2 и 3 могут сами оказывать индуктивное влияние на соседние цепи. В цепи 23 кроме земляной волны появится междуфазовая волна с напряжением U2 U3 и токами I2 I3.
21676. Определение индуктированных напряжений и токов опасного и мешающего влияний 334 KB
  Цепи будем считать однородными по длине и параллельными в пределах сближения. Когда во влияющей цепи 1 протекает переменный ток I1 то в результате магнитной индукции по всей длине цепи 2 будет индуцироваться э. Если ток во влияющей цепи I1 не изменяется в пределах всего сближения то продольная э. Практически это может быть если обе цепи электрически короткие.
21677. Взаимные влияния между цепями связи, телемеханики и меры защиты 307.5 KB
  Первичные параметры влияния на цепи связи в воздушных линиях связи; 3. Первичные параметры ЭМ влияния между цепями симметричных кабелей связи; 4. Причины взаимного влияния между цепями связей и основные параметрыпервичные и вторичные параметры влияния Качество и дальность связи обуславливаются не столько собственным затуханием цепей сколько мешающими взаимными влияниями между соседними цепями которые проявляются в виде переходного разговора или шума.
21678. Основное уравнение влияния между цепями 153.5 KB
  Токи электрического влияния ближнем и дальнем концах; 2. Токи магнитного влияния на ближнем и дальнем концах; Полный ток электромагнитного влияния на ближнем и даль нем концах. Токи электрического влияния ближнем и дальнем концах Рассмотрим общий случай когда две двухпроводные цепи с параллельными проводами имеют различные параметры и замкнуты на концах на согласованные нагрузки рис. Обозначим напряжения и токи во влияющей цепи U10 I10; на ближнем конце U20 I20 и U2l I2l на дальнем конце цепи подверженной влиянию.
21679. Переходное затухание между цепями в кабельных линиях 336.5 KB
  На ближнем конце ; дБ На дальнем конце . дБ Так как мощность в начале влияющей цепи; мощность в начале цепи подверженной влиянию мощность на дальнем конце цепи подверженной влиянию. 1 где уровни передачи в начале и в конце цепей. Согласно определению защищённости на ближнем конце: Откуда переходное затухание на ближнем конце.
21680. Общие понятия об организации связи на железнодорожном транспорте и видах НС 41 KB
  Организация связи на железнодорожном транспорте; 4. автоматики телемеханики и связи Изучение дисциплины будет проходить в 6ом семестре. Вы должны самостоятельно изучить следующие вопросы: Конструкции и свойства воздушных линий связи и высоковольтных линий автоблокировки; кабельных линий автоматики телемеханики и связи: кабелей связи ВЧ и НЧ; коаксиальных кабелей; кабелей автоматики телемеханики и силовых; волоконнооптических кабелей; волноводов; сверхпроводящих кабелей.
21681. Основы электродинамики направляющих систем 183.5 KB
  Исходные уравнения электродинамики; 2.Исходные уравнения электродинамики Основные уравнения электродинамики поля называемые уравнениями Максвелла обобщают два основных закона электродинамики: закон полного тока и закон электромагнитной индукции.2 представляют собой интегральную запись уравнений Максвелла чаще пользуются уравнениями в дифференциальной форме. Второе слагаемое в правой части уравнения 2.
21682. Особенности электромагнитных процессов в направляющих системах 222 KB
  1 Скорость перемещения фазы поля называют фазовой скоростью. На практике основной интерес представляет знание характеристик поля на очень больших расстояниях от излучателя таких что .8 Величину принято называть эквивалентной глубиной проникновения поля. Расчетные соотношения глубины проникновения поля для некоторых металлов приведены в таблице: Таблица 2.