54564

Лінійні нерівності з однією змінною

Конспект урока

Педагогика и дидактика

Мета уроку: систематизувати і узагальнити знання учнів по темі продовжити формувати практичні навики по розвязуванню нерівностей; на прикладах показати учням застосування нерівностей до практичних задач; стежити за дотриманням учнями графічної культури; розвивати математичну мову логічне мислення; вчити учнів працювати з підручником. Що називається розв`язком нерівності Що означає розв’язати нерівність 4. Сформулювати властивості які використовуються при розв’язуванні нерівностей. Ті учні які під час попередньої...

Украинкский

2014-03-16

51.5 KB

9 чел.

Тема уроку. Лінійні нерівності з однією змінною.

Мета уроку: систематизувати і узагальнити знання учнів по темі, продовжити формувати практичні навики по розв`язуванню нерівностей; на прикладах показати учням застосування нерівностей до практичних задач; стежити за дотриманням учнями графічної культури; розвивати математичну мову, логічне мислення; вчити учнів працювати з підручником.

Тип уроку: урок узагальнення та систематизації знань.

Обладнання: таблиці зі схемами, роздатковий матеріал.

Хід уроку

1. Перевірка виконання домашнього завдання.

      На попередньому уроці аналізувалися результати самостійної роботи за темою «Нерівності». Додому було дано завдання за схемою написати рецензію на роботу свого товариша.

План рецензії

       1. Відзначити, що сподобалося в роботі товариша.

       2. Відзначити, що не сподобалося.

       3. Відзначити характер помилок.

       4. Відзначити грамотність роботи.

       5. Внести пропозиції по покращенню роботи товариша.

2. Теоретична розминка.

       Робота в стаціонарній парі (один з учнів, що сидять разом за партою, відповідає, а інший опитує).

        Хтось один з учнів класу відповідь проговорює вголос. Контроль при допомозі червоних і зелених карток. Піднята червона картка – неправильна відповідь, піднята зелена – правильна відповідь.

Приблизний перелік питань для опитування.

     1. Правило порівняння двох довільних чисел.

2. Сформулювати теореми, які виражають властивості числових нерівностей.

3. Що називається розв`язком нерівності? Що означає розв’язати      нерівність?

4. Які нерівності називаються рівносильними?

5. Сформулювати властивості, які використовуються при розв’язуванні  нерівностей.

       Йде оцінка відповіді одного учня іншим (правильна відповідь – 2 бали, з деякою неточністю – 1 бал; максимальна кількість балів – 10).

3. Усний рахунок.

  •  Ті учні, які під час попередньої самостійної роботи  одержали 9, 10, 11 балів мають завдання: скласти схему розв’язання в загальному вигляді нерівності  aх > b.
  •  Інші учні приймають участь у математичній вікторині. Дошка розділена три частини, по кількості рядів у класі. На кожній половині учень – асистент записує бали, які одержує відповідний ряд. Завдання вікторини демонструють на переносній дошці. Учні великими буквами пишуть відповіді на листочках і по команді показують їх учителеві.

Завдання для вікторини.

1) Відомо, що  3 < a < 4.  Оцінити   3a   

2) Знаючи, що  4 < x < 5;  1 < y < 2  Оцінити  x + y;  x - y

3) Зобразити на координатні прямій проміжок  [ -3; 6]   (7; 10)

4) Які з цілих чисел належать проміжку  ( -4; 0)

    Вчитель в кожному ряді вибирає «сильну ланку», тобто тих, хто правильніше відповідає.

4. Систематизація знань.

    Наголосити учням що всі теми з  курсу алгебри можна розділити на чотири основні змістові лінії:

  1.  числа і дії над ним;
  2.  тотожні перетворення виразів;

3)  рівняння, нерівності;

4)  функції.

   

    Зараз робота на лінії «рівняння, нерівності».

     Розглянути пропозиції учнів, які працювали над схемою, зробити корекції.

     Учні в зошит записують наступне:

Нерівності числові

1)  a > b; b > c, то   a > c

2)  a > b,    cбудь–яка,  то a + c > b + c

3)  a > b; c > 0,  то   ac > bc

4)  a > b; c < 0,  то   ac < bc

5)  a > b; c > d,   то    a + c > b + d

6)  a > b; c > d  (додатні числа), то  ac > bd

Лінійні з однією змінною

1) переносити члени (міняти знак члена нерівності);

2) множити і ділити на додатнє число;

3) множити і ділити від`ємне число (міняти знак нерівності).

5. Прикладне використання нерівностей.

    Теорія потрібна не тільки для абстрактних перетворень, але і для практичних цілей. Нерівності – це дуже сильний інструмент в кожній галузі математики. Є багато фундаментальних результатів, які формулюються у вигляді нерівностей.

     На мові нерівностей розв`язується багато практичних задач. До них належать так звані задачі оптимізації. Тобто це є пошук найкращого варіанту у вирішенні того чи іншого завдання. Це є задачі на знаходження найбільш вигідних варіантів перевезень на транспорті, способів розкрою тканини, деревини, металу, пластмаси та інше, знаходження найбільш ефективних режимів роботи підприємств.

     Учні знайомляться з найпростішими задачами оптимізації.

Зразки задач

1. Маса чавунної заготовки 16 кг. Яку найменшу кількість таких заготовок треба взяти щоб відлити 41 деталь масою 12 кг кожна?

2. З дроту, довжина якого 10 м, виготовляють обручі, завдовжки 45см. Яку найбільшу кількість обручів можна виготовити?

3. Зі складів А і Б потрібно привести 60 комплектів меблів до магазину. Відомо, що перевезення одного комплекту зі складу А в магазин коштує 70 гривень, а зі складу Б – 40 гривень. Яку найбільшу кількість меблів можна вивантажити на складі А якщо на перевезення меблів до магазину виділяється 2800 гривень?

4. Фермерське господарство виділило під кормові культури 100 га. Вирішили використати цю землю під посіви кукурудзи і цукрового буряка. Як розподілити площу між цими культурами, якщо врожайність кукурудзи 500 ц з гектару, а буряка – 200 ц з гектару, що зібрати не менше 32 000 ц врожаю? Яка найменша площа може бути засіяна кукурудзою?

6. Самостійна робота.

    –   Ті учні, які готували схему, розв`язують задачі оптимізації, умови яких                        запропоновані вище.  Розв`язують самостійно дві задачі на вибір.

     – Учні які були визначені як «сильна ланка» підчас математичної     вікторини, розв`язують самостійно вправи. Завдання індивідуальні.

    Наприклад такі:

1. Відомо, що  15 < a < 25.     Оцінити значення виразів

   а)  0,2a  +  3;          б) 6 – 2a

2. Знаючи, що    2 < x < 4;  1< y < 3.   Оцінити

    а) 2x – 3y;           б) 4xy

3. Розв`язати нерівності

    а)  5x + 7 < 3x + 1;          б) 4x – 2 > 7x + 1

–  Решту учні класу працюють над тестовими завдання, виконуючи попередньо необхідні обчислення в зошиті. Вчитель постійно здійснює контроль. Для цього після виконання завдання учні піднімають картки з буквами правильної відповіді. Комплект букв А, Б, В, Г  є у кожного учня.

Приблизний зміст тесту.

1. Яка з нерівностей правильна?

А) - 10 > - 7;   Б) 5,3 > - 5,4;    В) – 6,5 > 0;    Г) 0 > 3,6.

2. Які з неведених чисел є розв`язками нерівності 10x + 1> 11?

     А) 1;      Б) 0;     В) - 3;     Г) 1,2.

3. Які з неведених чисел є розв`язками нерівності (x + 7)(x – 10) > 0?

     А) – 7;     Б) 11;   В) 5;     Г) – 5.

   В кінці уроку вчитель збирає зошити всіх учнів для перевірки.

7. Підсумок.

    Проаналізувати при допомозі учнів, що робилося для досягнення мети уроку. Оголосити оцінки за теорію (взаємо оцінка в парах), за складання схеми узагальнення; за кращу роботу під час вікторини і тестів.

8. Домашнє завдання.

 

  •  Ті учні, що розв’язували вже запропоновані задачі оптимізації, складають самостійно такі задачі. Якщо складно це виконати, то розв’язують ще одну із класних задач.
  •  Учні, що виконували письмову самостійну роботу і ті учні, що робили тест виконують диференційовані завдання зі збірників дидактичних матеріалів.  


 

А также другие работы, которые могут Вас заинтересовать

82165. ВЛИЯНИЕ РАЗЛИЧНЫХ ТИПОВ СОКРАТИЧЕСКОГО ДИАЛОГА НА ГЕНЕЗ ПРЕДСТАВЛЕНИЙ ДЕТЕЙ СТАРШЕГО ДОШКОЛЬНОГО ВОЗРАСТА О ДРУЖБЕ 268 KB
  В нашем беспокойном веке, который очень схож со временем Сократа по своему пристрастию к слову и властью его над людьми, а также полифоничностью самой эпохи, необходимо искать разумные способы употребления слова, уходить от монологического понимания риторики и искать диалогического общения...
82166. Совершенствование организации быстрого питания в условиях развивающегося рынка на примере трактира «Сани» 1022.5 KB
  В состав компании «Даско» помимо шести ресторанов различного формата ( от предприятия на фуд-корте торгового центра до элитного заведения, любимого представителями финансовых верхов республики и культурной богемой) входит дистрибьюторская компания, занимающаяся оптовыми поставками алкогольной продукции
82167. Нейросетевые технологии распознавания пиксельных изображений 578.33 KB
  Автоматическое (машинное) распознавание, описание, классификация и группирование образов – важные задачи в большом количестве инженерных и научных областей, таких как биология, физиология, медицина, маркетинг, компьютерное зрение, искусственный интеллект. Введем понятие образа.
82168. Отчет по работе участковой медицинской сестры МУЗ «Сарапульской детской городской больницы» 448 KB
  На территории обслуживания СДГБ проживает 11347 детей. Находиться 19 дошкольных учреждений; 14 школ в том числе: санаторная школа интернат для детей с бронхолегочными заболеваниями школа для слабослышащих детей специализированный детский сад для детей с заболеваниями глаз а так же Сарапульский детский...
82169. PR-ПОТЕНЦИАЛ ЛИТЕРАТУРНОГО ПРОЕКТА ДЖ.РОУЛИНГ «ГАРРИ ПОТТЕР» 601.5 KB
  На сегодня Гарри Поттер давно вышел за рамки литературы. Гарри Поттер – это целый культурный феномен и крупный элемент национального бренда Великобритании. Художественная литература как вид искусства являет собой целую коммуникативную площадку, и как такая коммуникативная площадка она обладает определенным PR-потенциалом.
82170. Использование информационных технологий в развитии самостоятельного туризма в России 2.19 MB
  Согласно Хартии туризма государствам следует: содействовать доступу туристов к общественному достоянию посещаемых мест применяя положения документов по упрощению формальностей выпущенных Организацией Объединённых Наций Международной организации гражданской авиации Международной морской...
82171. Особенности художественного мира Олега Митяева как барда и носителя городской культуры (опыт лингвокультурологического описания) 380 KB
  Актуальность темы определила цель работы, которая заключается в следующем: рассмотреть характер реализации фактов русской культуры в авторской песне и выявить черты ее языкового воплощения. Для достижения цели работы поставлены следующие задачи: во-первых, проследить этапы развития русской авторской песни...
82172. Изучение особенностей института наследования в Российском гражданском праве 1.29 MB
  Актуальность исследования. Институт наследования возник несколько тысячелетий назад с появлением частной собственности. Упоминание о наследовании можно найти в самых первых письменных источниках: глиняных табличках Шумера, египетских папирусах и др.
82173. Разграничение доведение до самоубийства от других смежных преступлений 161.76 KB
  Социальная обусловленность уголовной ответственности за доведение до самоубийства. История ответственности за доведение до самоубийства в российском уголовном законодательстве. Для более подробного изучения вопроса об ответственности за доведение до самоубийства необходимо обратиться к истории...