54564

Лінійні нерівності з однією змінною

Конспект урока

Педагогика и дидактика

Мета уроку: систематизувати і узагальнити знання учнів по темі продовжити формувати практичні навики по розвязуванню нерівностей; на прикладах показати учням застосування нерівностей до практичних задач; стежити за дотриманням учнями графічної культури; розвивати математичну мову логічне мислення; вчити учнів працювати з підручником. Що називається розв`язком нерівності Що означає розв’язати нерівність 4. Сформулювати властивості які використовуються при розв’язуванні нерівностей. Ті учні які під час попередньої...

Украинкский

2014-03-16

51.5 KB

9 чел.

Тема уроку. Лінійні нерівності з однією змінною.

Мета уроку: систематизувати і узагальнити знання учнів по темі, продовжити формувати практичні навики по розв`язуванню нерівностей; на прикладах показати учням застосування нерівностей до практичних задач; стежити за дотриманням учнями графічної культури; розвивати математичну мову, логічне мислення; вчити учнів працювати з підручником.

Тип уроку: урок узагальнення та систематизації знань.

Обладнання: таблиці зі схемами, роздатковий матеріал.

Хід уроку

1. Перевірка виконання домашнього завдання.

      На попередньому уроці аналізувалися результати самостійної роботи за темою «Нерівності». Додому було дано завдання за схемою написати рецензію на роботу свого товариша.

План рецензії

       1. Відзначити, що сподобалося в роботі товариша.

       2. Відзначити, що не сподобалося.

       3. Відзначити характер помилок.

       4. Відзначити грамотність роботи.

       5. Внести пропозиції по покращенню роботи товариша.

2. Теоретична розминка.

       Робота в стаціонарній парі (один з учнів, що сидять разом за партою, відповідає, а інший опитує).

        Хтось один з учнів класу відповідь проговорює вголос. Контроль при допомозі червоних і зелених карток. Піднята червона картка – неправильна відповідь, піднята зелена – правильна відповідь.

Приблизний перелік питань для опитування.

     1. Правило порівняння двох довільних чисел.

2. Сформулювати теореми, які виражають властивості числових нерівностей.

3. Що називається розв`язком нерівності? Що означає розв’язати      нерівність?

4. Які нерівності називаються рівносильними?

5. Сформулювати властивості, які використовуються при розв’язуванні  нерівностей.

       Йде оцінка відповіді одного учня іншим (правильна відповідь – 2 бали, з деякою неточністю – 1 бал; максимальна кількість балів – 10).

3. Усний рахунок.

  •  Ті учні, які під час попередньої самостійної роботи  одержали 9, 10, 11 балів мають завдання: скласти схему розв’язання в загальному вигляді нерівності  aх > b.
  •  Інші учні приймають участь у математичній вікторині. Дошка розділена три частини, по кількості рядів у класі. На кожній половині учень – асистент записує бали, які одержує відповідний ряд. Завдання вікторини демонструють на переносній дошці. Учні великими буквами пишуть відповіді на листочках і по команді показують їх учителеві.

Завдання для вікторини.

1) Відомо, що  3 < a < 4.  Оцінити   3a   

2) Знаючи, що  4 < x < 5;  1 < y < 2  Оцінити  x + y;  x - y

3) Зобразити на координатні прямій проміжок  [ -3; 6]   (7; 10)

4) Які з цілих чисел належать проміжку  ( -4; 0)

    Вчитель в кожному ряді вибирає «сильну ланку», тобто тих, хто правильніше відповідає.

4. Систематизація знань.

    Наголосити учням що всі теми з  курсу алгебри можна розділити на чотири основні змістові лінії:

  1.  числа і дії над ним;
  2.  тотожні перетворення виразів;

3)  рівняння, нерівності;

4)  функції.

   

    Зараз робота на лінії «рівняння, нерівності».

     Розглянути пропозиції учнів, які працювали над схемою, зробити корекції.

     Учні в зошит записують наступне:

Нерівності числові

1)  a > b; b > c, то   a > c

2)  a > b,    cбудь–яка,  то a + c > b + c

3)  a > b; c > 0,  то   ac > bc

4)  a > b; c < 0,  то   ac < bc

5)  a > b; c > d,   то    a + c > b + d

6)  a > b; c > d  (додатні числа), то  ac > bd

Лінійні з однією змінною

1) переносити члени (міняти знак члена нерівності);

2) множити і ділити на додатнє число;

3) множити і ділити від`ємне число (міняти знак нерівності).

5. Прикладне використання нерівностей.

    Теорія потрібна не тільки для абстрактних перетворень, але і для практичних цілей. Нерівності – це дуже сильний інструмент в кожній галузі математики. Є багато фундаментальних результатів, які формулюються у вигляді нерівностей.

     На мові нерівностей розв`язується багато практичних задач. До них належать так звані задачі оптимізації. Тобто це є пошук найкращого варіанту у вирішенні того чи іншого завдання. Це є задачі на знаходження найбільш вигідних варіантів перевезень на транспорті, способів розкрою тканини, деревини, металу, пластмаси та інше, знаходження найбільш ефективних режимів роботи підприємств.

     Учні знайомляться з найпростішими задачами оптимізації.

Зразки задач

1. Маса чавунної заготовки 16 кг. Яку найменшу кількість таких заготовок треба взяти щоб відлити 41 деталь масою 12 кг кожна?

2. З дроту, довжина якого 10 м, виготовляють обручі, завдовжки 45см. Яку найбільшу кількість обручів можна виготовити?

3. Зі складів А і Б потрібно привести 60 комплектів меблів до магазину. Відомо, що перевезення одного комплекту зі складу А в магазин коштує 70 гривень, а зі складу Б – 40 гривень. Яку найбільшу кількість меблів можна вивантажити на складі А якщо на перевезення меблів до магазину виділяється 2800 гривень?

4. Фермерське господарство виділило під кормові культури 100 га. Вирішили використати цю землю під посіви кукурудзи і цукрового буряка. Як розподілити площу між цими культурами, якщо врожайність кукурудзи 500 ц з гектару, а буряка – 200 ц з гектару, що зібрати не менше 32 000 ц врожаю? Яка найменша площа може бути засіяна кукурудзою?

6. Самостійна робота.

    –   Ті учні, які готували схему, розв`язують задачі оптимізації, умови яких                        запропоновані вище.  Розв`язують самостійно дві задачі на вибір.

     – Учні які були визначені як «сильна ланка» підчас математичної     вікторини, розв`язують самостійно вправи. Завдання індивідуальні.

    Наприклад такі:

1. Відомо, що  15 < a < 25.     Оцінити значення виразів

   а)  0,2a  +  3;          б) 6 – 2a

2. Знаючи, що    2 < x < 4;  1< y < 3.   Оцінити

    а) 2x – 3y;           б) 4xy

3. Розв`язати нерівності

    а)  5x + 7 < 3x + 1;          б) 4x – 2 > 7x + 1

–  Решту учні класу працюють над тестовими завдання, виконуючи попередньо необхідні обчислення в зошиті. Вчитель постійно здійснює контроль. Для цього після виконання завдання учні піднімають картки з буквами правильної відповіді. Комплект букв А, Б, В, Г  є у кожного учня.

Приблизний зміст тесту.

1. Яка з нерівностей правильна?

А) - 10 > - 7;   Б) 5,3 > - 5,4;    В) – 6,5 > 0;    Г) 0 > 3,6.

2. Які з неведених чисел є розв`язками нерівності 10x + 1> 11?

     А) 1;      Б) 0;     В) - 3;     Г) 1,2.

3. Які з неведених чисел є розв`язками нерівності (x + 7)(x – 10) > 0?

     А) – 7;     Б) 11;   В) 5;     Г) – 5.

   В кінці уроку вчитель збирає зошити всіх учнів для перевірки.

7. Підсумок.

    Проаналізувати при допомозі учнів, що робилося для досягнення мети уроку. Оголосити оцінки за теорію (взаємо оцінка в парах), за складання схеми узагальнення; за кращу роботу під час вікторини і тестів.

8. Домашнє завдання.

 

  •  Ті учні, що розв’язували вже запропоновані задачі оптимізації, складають самостійно такі задачі. Якщо складно це виконати, то розв’язують ще одну із класних задач.
  •  Учні, що виконували письмову самостійну роботу і ті учні, що робили тест виконують диференційовані завдання зі збірників дидактичних матеріалів.  


 

А также другие работы, которые могут Вас заинтересовать

81431. Методы выделения индивидуальных белков: осаждение солями и органическими растворителями, гель-фильтрация, электрофорез, ионообменная и аффинная хроматография 104.42 KB
  Метод выделения белков основанный на различиях в их растворимости при разной концентрации соли в растворе. Соли щелочных и щёлочноземельных металлов вызывают обратимое осаждение белков т. Чаще всего для разделения белков методом высаливания используют разные концентрации солей сульфата аммония NH42SO4.
81432. Методы количественного измерения белков. Индивидуальные особенности белкового состава органов. Изменения белкового состава органов при онтогенезе и болезнях 110.81 KB
  Индивидуальные особенности белкового состава органов. Изменения белкового состава органов при онтогенезе и болезнях. Для определения количества белка в образце используется ряд методик: Биуретовый метод один из колориметрических методов количественного определения белков в растворе.
81433. История открытия и изучения ферментов. Особенности ферментативного катализа. Специфичность действия ферментов. Зависимость скорости ферментативных реакций от температуры, рН, концентрации фермента и субстрата 143.03 KB
  Особенности ферментативного катализа. Зависимость скорости ферментативных реакций от температуры рН концентрации фермента и субстрата. Собственно ферментами от лат. Важнейшие особенности ферментативного катализа эффективность специфичность и чувствительность к регуляторным воздействиям.
81434. Классификация и номенклатура ферментов. Изоферменты. Единицы измерения активности и количества ферментов 123.9 KB
  Единицы измерения активности и количества ферментов. Все изоферменты одного и того же фермента выполняют одну и ту же каталитическую функцию но могут значительно различаться по степени каталитической активности по особенностям регуляции или другим свойствам. Одна международная единица активности ME соответствует такому количеству фермента которое катализирует превращение 1 мкмоль субстрата за 1 мин при оптимальных условиях проведения ферментативной реакции. Количество единиц активности nME определяют по формуле: В 1973 г.
81435. Кофакторы ферментов: ионы металлов и коферменты. Коферментные функции витаминов (на примере витаминов В6, РР, В2) 115.95 KB
  Коферментные функции витаминов на примере витаминов В6 РР В2. Большинство ферментов для проявления ферментативной активности нуждается в низкомолекулярных органических соединениях небелковой природы коферментах и или в ионах металлов кофакторах. В ряде случаев ион металла может способствовать присоединению кофермента.
81436. Ингибиторы ферментов. Обратимое и необратимое ингибирование. Конкурентное ингибирование. Лекарственные препараты как ингибиторы ферментов 104.53 KB
  К ингибиторам следует относить вещества вызывающие снижение активности фермента. Следует отметить что все денатурирующие агенты также вызывают уменьшение скорости любой ферментативной реакции вследствие неспецифической денатурации белковой молекулы поэтому денатурирующие агенты к ингибиторам не относят. Ингибиторы способны взаимодействовать с ферментами с разной степенью прочности. Обратимое ингибирование Обратимые ингибиторы связываются с ферментом слабыми нековалентными связями и при определённых условиях легко отделяются от фермента.
81437. Регуляция действия ферментов: аллостерические ингибиторы и активаторы. Каталитический и регуляторный центры. Четвертичная структура аллостерических ферментов и кооперативные изменения конформации протомеров фермента 112.37 KB
  Поскольку конечный продукт структурно отличается от субстрата он связывается с аллостерическим некаталитическим центром молекулы фермента вызывая ингибирование всей цепи синтетической реакции. Ферменты для которых и субстрат и модулятор представлены идентичными структурами носят название гомотропных в отличие от гетеротропных ферментов для которых модулятор имеет отличную от субстрата структуру. Взаимопревращение активного и неактивного аллостерических ферментов в упрощенной форме а также конформационные изменения наблюдаемые при...
81438. Регуляция активности ферментов путем фосфорилирования и дефосфорилирования. Участие ферментов в проведении гормонального сигнала 107.64 KB
  Участие ферментов в проведении гормонального сигнала. Оказалось что активность ряда ключевых ферментов обмена углеводов в частности фосфорилазы гликогенсинтазы и др. Уровень активности ключевых ферментов обмена углеводов и соответственно интенсивность и направленность самих процессов обмена определяются соотношением фосфорилированных и дефосфорилированных форм этих ферментов.
81439. Различия ферментного состава органов и тканей. Органоспецифические ферменты. Изменение ферментов в процессе развития 101.32 KB
  Однако в характере метаболизма химическом составе и строении различных тканей и различных организмов имеются и бесспорные различия. Различия в химическом составе органов и тканей тоже зависят от их ферментного состава в первую очередь от тех ферментов которые участвуют в процессах биосинтеза. Не исключено что и более очевидные различия касающиеся строения и формы тех или иных органов и тканей также имеют энзимологическую природу: Известно что строение и форма находятся под контролем генов; контроль осуществляется путем образования...