54662

Физические основы функционирования пневмосистем

Конспект урока

Педагогика и дидактика

Физические основы функционирования пневмосистем продолжение Термодинамические процессы – процессы в двигателях установках компрессорах протекающие при постоянных отдельных параметрах рабочего тела или при переменных всех параметрах. Равновесные термодинамические процессы – процессы проходящие при бесконечно малых перепадах давлений и температур при этом во всех точках термодинамической системы в любой момент времени параметры состояния одинаковы. Неравновесные необратимые термодинамические процессы – процессы проходящие...

Русский

2014-03-17

792 KB

9 чел.

УРОК № 14.

«Физические основы функционирования пневмосистем» (продолжение)

 

 Термодинамические процессы – процессы в двигателях, установках, компрессорах, протекающие при постоянных отдельных параметрах рабочего тела или при переменных всех параметрах.

 Равновесные термодинамические процессы – процессы, проходящие при бесконечно малых перепадах давлений и температур, при этом во всех точках термодинамической системы в любой момент времени параметры состояния одинаковы.

 Неравновесные (необратимые) термодинамические процессы – процессы, проходящие при значительных разностях давлений или температур.

 Процесс расширения – процесс с увеличением объема.

 Процесс сжатия – процесс с уменьшением объема.

 Круговой процесс – процесс, который после некоторых преобразований возвращается в исходное состояние.

 Теплоемкость – количество тепла, необходимое для изменения температуры на 1 единицы количества вещества.

 В расчетах используют – удельную теплоемкость.

 Теплоемкость в зависимости от выбранной единицы:

  •  массовая, CM, ;
  •  удельная объемная, C`, ;
  •  удельная мольная, C, .

CM, C` - выражают через удельную мольную теплоемкость. Т.к. в основном термодинамические процессы проходят при постоянном давлении и объеме, то в расчетах используют изоборную Cp и изохорную Cv массовую теплоемкости.

 Cp;  Cv – мольные изобарная и изохорная теплоемкости.

 Теплоемкость измеряется в ккал.

1 кал 4.19 Дж, 1 ккал 4.19 кДж.

 Изохорный процесс – процесс, проходящий при постоянном объеме (V = const).

Изменения давления прямопропорционально изменению абсолютных температур .

Тепло процесса – затрачивается на изменение внутренней энергии газа

Qv = Cv  (T2 – T1) + p (V2 – V1) = U + 0, Дж,

где Cv – изохорная массовая теплоемкость.

Удельная теплота qv = Cv  (T2T1) + p  (w2w1), Дж/кг.

Удельная работа l = p  (w2w1), Дж/кг.

Работа процесса L = m  l, Дж.

Работа отсутствует L = 0, т.к. объем газа постоянный и отсутствует его расширение.

График – изохора.

Рисунок 41 – График изохорного процесса

 Изобарный процесс – процесс, проходящий при постоянном давлении (p = const).

Изменение удельного объема прямопропорционально изменению абсолютных температур .

Тепло процесса – затрачивается на изменение внутренней энергии газа и совершение им работы

Qp =  U + L, Дж.

Работа процесса L = p  (V2V1), Дж. Удельная работа l = p  (w2w1), Дж/кг.

График процесса – изобара.

Рисунок 42 – График изобарного процесса

 Изотермический процесс – процесс, происходящий при постоянной температуре (T = const).

Изменение абсолютного давления обратнопропорционально изменению удельного объема , p1  w1 = p2  w2 = p  w = const.

Процесс экономичный, но не осуществимый.

Работа процесса L = m  l, Дж.

Удельная работа  .

График – изотерма.

Рисунок 43 – График изотермического процесса

 Адиабатный процесс – процесс, протекающий при постоянной энтропии (S = const).

Соотношение параметров – p  wk = const,

где k – показатель адиабаты ,

где Cp – изобарная массовая теплоемкость;

,  , ;

k = 1.67; 1.4; 1.29.

Процесс проходит без теплообмена с окружающей средой Q = 0, Qp =  U + L  L = - U.

Работа идет за счет уменьшения внутренней энергии.

Удельная работа , Дж/кг.

График – адиабата (криволинейная зависимость со значительными изменениями давления).

   Рисунок 44 – График адиабатного процесса

По адиабатному процессу работают быстроходные ДВС, реактивные двигатели и установки; процессы истечения газов и паров из сопел.

 Политропный процесс – общий процесс; ранее рассмотренные процессы – частные случаи политропного.

По политропному процессу работают все ДВС, поршневые компрессоры.

Формулы – аналогичны адиабатному процессу. Разница – показатель адиабаты, меняется на показатель политропы n.

Уравнение процесса – p  wn = const,

при n = 0, p = const; n = 1, p w = const; n = k, p wk = const; n = , V = const.

 Первый закон термодинамики – устанавливает связь между теплом процесса Q, изменением внутренней энергии U, работой процесса L (l).

Q = U2 – U1 + L,

где L = p  (V2V1) = p  V, Дж;

     U = U2 – U1 = M Cv  (t2 – t1), Дж,

где М – масса вещества.

Удельное количество тепла q = U + l, Дж/кг,

где l – удельная работа (производимая 1 кг газа).

 Основное в термодинамике – расчет тепла процесса, который ведут по массе и объему рабочего тела

Qp = M  Cp  (t2t1) = Vн  Сp`  t

Qv = M Cv  (t2 – t1)  = Vн  Сv`  t,

где Vн – объем газа, приведенный к нормальным условиям (к 0С и 760 мм. рт. ст.)

, м3,

где Tн – температура при 0С;

    Сp`, Сv` - удельные объемные изобарная и изохорная теплоемкости.

 Второй закон термодинамики – устанавливает качество используемого тепла в термодинамическом процессе.

  Сущность второго закона термодинамики:

  •  для постоянного процесса ДВС необходимо иметь перепад температур;
  •  всё тепло для сгорания нельзя превратить в полезную работу, т.к. потери неизбежны;
  •  тепло не может самопроизвольно проходить от более нагретого тела к менее нагретому без соответствующих установок.

 

(окончание см. урок № 15)

3


 

А также другие работы, которые могут Вас заинтересовать

68406. Конвективный теплообмен в однофазной среде 67.5 KB
  Конвективным теплообменом называется процесс передачи теплоты при движении жидкости или газа. Под конвекцией понимают процесс переноса теплоты при перемещении макрочастиц в жидкости или газе в пространстве из области одной температуры в область с другой температурой.
68409. Дифференциальные уравнения динамического пограничного слоя 1.09 MB
  Область действия сил вязкости можно определить первой подобластью, то есть пограничным слоем. Точнее в этой подобласти силы инерции и силы вязкости рассматриваются как величины одного порядка. Во внешнем потоке силами вязкости можно пренебречь. То есть можно считать внешний поток жидкости идеальный.
68411. Автоматизация измерений, контроля и испытаний 910.5 KB
  Предметом настоящей дисциплины являются теоретические и практические задачи, которые встречаются при эксплуатации подобных систем. Выходная контролируемая переменная Y1 преобразуется датчиком Д в переменную Y2 (как правило, электрический сигнал) и далее прибор ВП...
68412. Теоретические основы управления государственной и муниципальной собственностью 57.5 KB
  Одна из причин низкой результативности экономических преобразований в России связанных с формированием и развитием рыночной экономики заключена в недостаточно продуманном и умелом проведении преобразований форм и отношений собственности.
68413. Система управления государственной собственностью 77.5 KB
  Управление государственной собственностью представляет собой сознательное, целенаправленное воздействие со стороны государства на все объекты принадлежащей ему собственности. На практике это означает, что государство как собственник устанавливает определенные правила, условия владения...
68414. Система управления муниципальной собственностью 179 KB
  Система управления муниципальной собственностью Объекты и субъекты местного самоуправления Муниципальная собственность как материальная основа местного самоуправления. Основные способы формирования муниципального имущества Государственная политика в области управления и развития рынка недвижимости...