54666

Классификация приводов, схемы

Конспект урока

Педагогика и дидактика

Классификация приводов схемы Автоматизированный привод самодействующий привод выполняющий работу с частичным участием человека. Автоматический привод – самодействующий привод выполняющий работу без участия человека. Приводы по виду энергии: электрический привод в котором источником механических движений в оборудовании является электродвигатель; пневматический – привод в котором энергия сжатого воздуха или газа пневмодвигателем преобразуется в механическую;...

Русский

2014-03-17

1.54 MB

16 чел.

УРОК № 21.

РАЗДЕЛ 4.

«ГИДРО- И ПНЕВМОСИСТЕМЫ ТЕХНОЛОГИЧЕСКОГО ОБОРУДОВАНИЯ»

«Классификация приводов, схемы»

 Автоматизированный привод – самодействующий привод, выполняющий работу с частичным участием человека.

 Автоматический привод – самодействующий привод, выполняющий работу без участия человека.

 Приводы по виду энергии:

  •  электрический – привод, в котором источником механических движений в оборудовании является электродвигатель;
  •  пневматический – привод, в котором энергия сжатого воздуха или газа пневмодвигателем преобразуется в механическую;
  •  гидравлический – привод, в котором для получения механической энергии используется энергия движущейся жидкости;
  •  комбинированный – привод, в котором движение исполнительного механизма оборудования осуществляется сочетанием элементов типов привода (пневматического и гидравлического; гидравлического и электрического; электрического и пневматического).

   Электромеханический привод состоит из:

  •  электродвигателя (переменного, постоянного тока);
  •  передающего механизма;
  •  системы управления.

 Они имеют достаточно большие моменты сопротивления.

1 – насос, 2 – предохранительный клапан, 3 – гидрораспределитель,

4 – гидроцилиндр, 5 – гидродроссель, 6 – бак

Рисунок 88 – Гидропривод с параллельным включением дросселя

 В нем регулирование скорости движения выходного звена (штока гидроцилиндра 4) обеспечивается за счет изменения площади проходного сечения регулируемого дросселя 5, включенного параллельно.

1 – насос, 2 – переливной клапан, 3 – гидрораспределитель,

4 – гидроцилиндр, 5 – гидродроссель, 6 – бак

Рисунок 89 – Гидропривод с последовательным включением дросселя

 В нем – дроссельное регулирование скорости при последовательном включении гидродросселя 5 (на входе в гидроцилиндр 4).

1 – насос, 2 – предохранительные клапаны, 3 – обратные клапаны,

4 – гидромотор, 5 – переливной клапан, 6 – дополнительный насос, 7 – гидробак

Рисунок 90 – Гидропривод с объемным регулированием

 В нем частота вращения вала гидромотора 4 регулируется за счет изменения рабочих объемов обеих гидромашин.

1 – насос, 2 – регулятор подачи, 3 – распределитель, 4 – гидроцилиндр,

5 – дроссель, 6 – переливной клапан, 7 – бак

Рисунок 91 – Гидропривод с объемно-дроссельным регулированием

 В нем используется объемно-дроссельный способ регулирования выходного звена (поршня гидроцилиндра 4) при помощи дросселя 5, включенного на выходе гидроцилиндра и переливного клапана 6.

1 – ресивер, 2 – распределитель, 3, 6  – дроссели, 4 – силовой цилиндр,

5, 7 – обратные клапаны

Рисунок 92 – Схема пневмопривода

«Приводы станков»

 Приводы станков по функциональному назначению:

  •  главный привод – для вращения шпинделя с заготовкой (в токарных станках), для вращения шпинделя с инструментом (для фрезерных станков);
  •  привод подач – для перемещения режущего инструмента относительно заготовки для создания формообразующей поверхности детали;
  •  вспомогательные приводы – для перемещения заготовок в рабочую зону, закрепления заготовок, подвода и отвода режущего инструмента, привода инструментальных блоков.

 Приводы по способу изменения скорости движения:

  •  регулируемые – имеют ступенчатое и бесступенчатое регулирование скорости движения;
  •  нерегулируемые – имеют одну скорость движения (используются во вспомогательных приводах).

 Приводы по режиму работы:

  •  легкого;
  •  среднего;
  •  тяжелого режимов работы.

 Режим работы определяется числом включений в час, временем продолжительной работы двигателя.

«Гидросхемы металлорежущих станков и подъемных механизмов»

1 – насос, 2 – дроссель, 3 – гидрораспределитель, 4 – гидроцилиндр,

5 – фильтр, 6 – бак, 7 – переливной клапан

Рисунок 93 – Гидропривод строгального станка

 Насос 1 с переливным клапаном 7 образует насосную установку, подающую жидкость из бака 6 в гидроцилиндр 4 (обеспечивает движение режущего инструмента). Скорость движения поршня гидроцилиндра vп регулируется за счет изменения проходного сечения регулируемого гидродросселя 2, а реверс  – переключением гидрораспределителя 3. Для очистки рабочей жидкости в систему включен фильтр 5.

1 – фильтр, 2 – насос, 3 – гидробак, 4 – шкивы, 5 – редукторы, 6 – дроссель,

7, 8 – гидромоторы

Рисунок 94 – Гидропривод подъемного механизма

 Регулируемый насос 2 подает рабочую жидкость из гидробака 3 через дроссель 6 к двум гидромоторам 7, 8. От них через фильтр 1 – обратно в гидробак. Выходные валы гидромоторов через механические редукторы 5 связаны со шкивами 4, на которые наматываются тросы с подвешенными грузами.

«Пневмогидравлический привод с ЧПУ»

Рисунок 95 – Схема пневмогидравлического привода с ЧПУ

 Программа работы привода – записана на перфоленту 1. Считывается – пневматическим бесконтактным устройством 2 и вводится в блок сравнения БС. Одновременно в блок сравнения поступает информация от датчика обратной связи 3 о фактическом положении исполнительного органа 4. Блок сравнения сравнивает заданную информацию с фактической и выдает сигналы рассогласования, которые усиливаются и поступают в рабочие коллекторы пневмопреобразователя 5.

 Шток преобразователя приводит в движение заслонку 6, которая поворачивается по часовой стрелке, прикрывает левое сопло и увеличивает проходное сечение правого сопла. Давление перед левым соплом увеличивается, перед правым – уменьшается. В результате – увеличивается давление в канале после дросселя 7 и в левой полости управления распределителя 9. Одновременно, в канале за дросселем 8 и в правой полости распределителя 9 давление уменьшается. Равновесие сил, действующих на торцы распределителя, нарушается. Распределитель перемещается вправо, соединяя напорную линию с линией а. При этом линия б соединяется со сливной линией. В рабочих полостях гидродвигателя 10 возникает перепад давления, который приводит во вращение ротор и связанный с ним ходовой винт 12 через редуктор 11.

 Фактическое перемещение контролируется датчиком положения 3.

 Некоторому перемещению рабочего органа соответствует один импульс датчика 3. Перемещение, соответствующее одному импульсу – разрешающая способность датчика, которая может составлять несколько десятков микрометров.

 Как только число импульсов, поданных датчиком, будет соответствовать числу, заданному программой, сигналы x, y, выходящие из блока сравнения, станут одинаковыми. Мембрана преобразователя 5 и заслонка 6 установятся в нейтральном (среднем) положении. Давления в торцевых полостях управления распределителя 9 уравновесятся. Под действием центрирующих пружин распределитель установится в среднем положении и перекроет линии а, б. Гидродвигатель остановится.

 Если в результате инерции движущихся частей произойдет перебег, то блок сравнения выдаст сигналы на возврат и гидродвигатель вернет исполнительный орган 4 в заданное положение.


 

А также другие работы, которые могут Вас заинтересовать

11931. Определение удельного сопротивления проводников 120 KB
  ЛАБОРАТОРНАЯ РАБОТА № 4 Определение удельного сопротивления проводников Цель работы: изучить основные электрические свойства проводниковых материалов и их характеристики. ПРОГРАММА РАБОТЫ 1. Ознакомиться с образцами проводниковых материалов. 2. Изучить осн...
11932. Конституционное право. Конституция 49.34 KB
  Конституционное право как отрасль российского права берет свое начало от понятия «конституция». Конституции как основной закон государства появились в конце XVIII века. Первая конституция была принята в 1787 г. в США. В Европе первые конституции были приняты в 1791 г. во Франции и в Польше.
11933. Определение электрической прочности трансформаторного масла 153 KB
  ЛАБОРАТОРНАЯ РАБОТА № 2 Определение электрической прочности трансформаторного масла ПРОГРАММА РАБОТЫ Усвоить методику электрического испытания трансформаторного мала. Произвести стандартное испытание масла на электрическую прочность. Определить ...
11934. Исследование магнитных свойств ферромагнитных материалов 291.5 KB
  ЛАБОРАТОРНАЯ РАБОТА № 3 Исследование магнитных свойств ферромагнитных материалов ПРОГРАММА РАБОТЫ 1. Изучить основные магнитные характеристики ферромагнитных материалов. 2. Снять динамическую кривую намагничивания ферромагнетика по методу вольтметра и ампе
11935. Исследование электрических свойств проводниковых материалов 824 KB
  ЛАБОРАТОРНАЯ РАБОТА № 4 Исследование электрических свойств проводниковых материалов ПРОГРАММА РАБОТЫ 1. Познакомиться с основными проводниковыми материалами применяемыми в энергетике. 2. Изучить основные электрические свойства проводниковых материалов. 3...
11936. Измерение диэлектрической проницаемости и тангенса угла диэлектрических потерь твердых диэлектриков 85.5 KB
  ЛАБОРАТОРНАЯ РАБОТА № 5 Измерение диэлектрической проницаемости и тангенса угла диэлектрических потерь твердых диэлектриков Цель работы: проверить опытным путем значения диэлектрической проницаемости εr и тангенса угла диэлектрических потерь tg δ некоторых элект...
11937. Исследование свойств модели резисторного каскада с общим эмиттером в частотной и временной областях на ПК 479.12 KB
  Лабораторная работа №1. Исследование свойств модели резисторного каскада с общим эмиттером в частотной и временной областях на ПК. 1.Цель работы: Изучить свойства каскада ОЭ в режиме малого сигнала в частотной и временной областях. Исследовать влияние сопр
11938. Схемотехника Методические указания к выполнению лабораторных работ 5.09 MB
  Схемотехника Методические указания к выполнению лабораторных работ Изложена методика выполнения лабораторных работ целью которых является знакомство с принципами работы основных узлов цифровой техники и выработка практических навыков инженерного проектирова...