5541

Теория сигналов и систем. Конспект лекций и практических занятий

Конспект

Коммуникация, связь, радиоэлектроника и цифровые приборы

Лекция 1. Введение в теорию сигналов Содержание 1. Общие сведения и понятия. 1.1 Понятие сигнала. 1.2 Шумы и помехи. 1.3 Размерность сигналов. 1.4 Математическое описание сигналов. 1.5 Спектральное представление сигналов. 1.1. Общие сведения и...

Русский

2012-12-13

1.67 MB

289 чел.

Лекция 1. Введение в теорию сигналов

Содержание

1. Общие сведения и понятия.

1.1 Понятие сигнала.

1.2 Шумы и помехи.

1.3 Размерность сигналов.

1.4 Математическое описание сигналов.

1.5 Спектральное представление сигналов.

1.1.  Общие сведения и понятия [1,10, 15, 25]

Понятие сигнала. В XVIII веке в теорию математики вошло понятие функции, как определенной зависимости какой-либо величины y от другой величины – независимой переменной х, с математической записью такой зависимости в виде у(х). Довольно скоро математика функций стала базовой основой теории всех естественных и технических наук. Особое значение функциональная математика приобрела в технике связи, где временные функции вида s(t), v(f) и т.п., используемые для передачи информации, стали называть сигналами.

В технических отраслях знаний термин "сигнал" (signal, от латинского signum – знак) очень часто используется в широком смысловом диапазоне, без соблюдения строгой терминологии. Под ним понимают и техническое средство для передачи, обращения и использования информации - электрический, магнитный, оптический сигнал; и физический процесс, представляющий собой материальное воплощение информационного сообщения - изменение какого-либо параметра носителя информации (напряжения, частоты, мощности электромагнитных колебаний, интенсивности светового потока и т.п.) во времени, в пространстве или в зависимости от изменения значений каких-либо других аргументов (независимых переменных); и смысловое содержание определенного физического состояния или процесса, как, например, сигналы светофора, звуковые предупреждающие сигналы и т.п.  Все эти понятия объединяет конечное назначение сигналов. Это определенные сведения, сообщения, информация о каких-либо процессах, состояниях или физических величинах объектов материального мира, выраженные в форме, удобной для передачи, обработки, хранения и использования этих сведений.

Термин “сигнал” очень часто отождествляют с понятиями “данные” (data) и “информация” (information). Действительно, эти понятия взаимосвязаны и не существуют одно без другого, но относятся к разным категориям.

Понятие информации имеет много определений, от наиболее широкого (информация есть формализованное отражение реального мира) до практического (сведения и данные, являющиеся объектом хранения, передачи, преобразования, восприятия и управления). В настоящее время мировая наука все больше склоняется к точке зрения, что информация, наряду с материей и энергией, принадлежит к фундаментальным философским категориям естествознания и относится к одному из свойств объективного мира, хотя и несколько специфичному. Что касается “данных” (от латинского datum – факт), то это совокупность фактов, результатов наблюдений, измерения каких-либо физических свойств объектов, явлений или процессах материального мира, представленных в формализованном виде, количественном или качественном. Это не информация, а только атрибут информации - сырье для получения информации путем соответствующей обработки и интерпретации (истолкования).  

Наука и техника интернациональны, и используют, в основном, общепринятые термины, большинство из которых англоязычны. Термин "signal" в мировой практике является общепринятым для характеристики формы представления данных, при которой данные рассматриваются как результат некоторых измерений объекта исследований в виде последовательности значений скалярных величин (аналоговых, числовых, графических и пр.) в зависимости от изменения каких-либо переменных значений (времени, энергии, температуры, пространственных координат, и пр.). С учетом этого, в дальнейшем под термином “сигнал” в узком смысле этого слова будем понимать каким-либо образом упорядоченное отображение изменения физического состояния какого-либо объекта – материального носителя сигнала. На это формализованное отображение переносятся данные о характере изменения в пространстве, во времени или по любой другой переменной определенных физических величин, физических свойств или физического состояния объекта исследований. А так как данные содержат информацию, как об основных целевых параметрах объекта исследований, так и о различных сопутствующих и мешающих факторах измерений, то в широком смысле этого слова можно считать, что сигнал является носителем общей измерительной информации. При этом материальная форма носителей сигналов (механическая, электрическая, магнитная, акустическая, оптическая и любая другая), равно как и форма отображения данных в каких-либо физических параметрах или процессах носителей, значения не имеет. Информативным параметром сигнала может являться любой параметр носителя сигнала, функционально и однозначно связанный со значениями информационных данных.

Наиболее распространенное представление сигналов - в электрической форме в виде зависимости напряжения от времени U(t). Так, например, сигнал изменения напряженности магнитного поля по профилю аэросъемки – это и временная последовательность изменения электрического напряжения на выходе датчика аэромагнитометра, и запись этого напряжения на ленте регистратора, и последовательные значения цифровых отсчетов при обработке лент регистратора и вводе сигнала в ЭВМ.

Рис. 1.1.1. Сигнал.

С математической точки зрения сигнал представляет собой функцию, т.е. зависимость одной величины от другой, независимой переменной. По содержанию это информационная функция, несущая сообщение о физических свойствах, состоянии или поведении какой-либо физической системы, объекта или среды, а целью обработки сигналов можно считать извлечение определенных информационных сведений, которые отображены в этих сигналах (кратко - полезная или целевая информация) и преобразование этих сведений в форму, удобную для восприятия и дальнейшего использования.

Под "анализом" сигналов (analysis) имеется в виду не только их чисто математические преобразования, но и получение на основе этих преобразований выводов о специфических особенностях соответствующих процессов и объектов. Целями анализа сигналов обычно являются:

- Определение или оценка числовых параметров сигналов (энергия, средняя мощность, среднее квадратическое значение и пр.).

- Разложение сигналов на элементарные составляющие для сравнения свойств различных сигналов.

- Сравнение степени близости, "похожести", "родственности" различных сигналов, в том числе с определенными количественными оценками.

Математический аппарат анализа сигналов весьма обширен, и широко применяется на практике во всех без исключения областях науки и техники.

С понятием сигнала неразрывно связан термин регистрации сигналов, использование которого также широко и неоднозначно, как и самого термина сигнал. В наиболее общем смысле под этим термином можно понимать операцию выделения сигнала и его преобразования в форму, удобную для дальнейшего использования. Так, при получении информации о физических свойствах каких-либо объектов, под регистрацией сигнала понимают процесс измерения физических свойств объекта и перенос результатов измерения на материальный носитель сигнала или непосредственное энергетическое преобразование каких-либо свойств объекта в информационные параметры материального носителя сигнала (как правило - электрического). Но так же широко термин регистрации сигналов используют и для процессов выделения уже сформированных сигналов, несущих определенную информацию,  из суммы других сигналов (радиосвязь, телеметрия и пр.), и для процессов фиксирования сигналов на носителях долговременной памяти, и для многих других процессов, связанных с обработкой сигналов.

Применительно к настоящему курсу под термином регистрации будем понимать регистрацию данных (data logging) которые проходят через конкретную систему или точку системы и определенным образом фиксируются на каком-либо материальном носителе или в памяти системы. Что касается процесса получения информации при помощи технических средств, обеспечивающих опытным путем нахождение соотношения измеряемой величины с принятой по определению образцовой единицей этой величины, и представление измеренного соотношения в какой-либо физической или числовой форме информационного сигнала, то для этого процесса будем применять, в основном, термин детектирования.

Шумы и помехи (noise). При детектировании сигналов, несущих целевую для данного вида измерений информацию, в сумме с основным сигналом одновременно регистрируются и мешающие сигналы - шумы и помехи самой различной природы (рис. 1.1.2). К помехам относят также искажения полезных сигналов при влиянии различных дестабилизирующих факторов на процессы измерений, как, например, влияние микрокаверн в стенках скважины на измерения в рентгенорадиометрических методах каротажа, грозовых разрядов на электроразведочные методы измерений и т.п. Выделение полезных составляющих из общей суммы зарегистрированных сигналов или максимальное подавление шумов и помех в информационном сигнале при сохранении его полезных составляющих является одной из основных задач первичной обработки сигналов (результатов наблюдений).

Рис. 1.1.2. Сигнал с помехами.

Типы помех разделяют по источникам их возникновения, по энергетическому спектру, по характеру воздействия на сигнал, по вероятностным характеристикам и другим признакам.

Источники помех бывают внутренние и внешние.

Внутренние шумы могут быть присущи физической природе источников сигналов, как, например, тепловые шумы электронных потоков в электрических цепях или дробовые эффекты в электронных приборах, или возникают в измерительных устройствах и системах передачи и обработки сигналов от влияния различных дестабилизирующих факторов - температуры, повышенной влажности, нестабильности источников питания, влияния механических вибраций на гальванические соединения, и т.п.

Внешние источники шумов бывают искусственного и естественного происхождения. К искусственным источникам помех относятся индустриальные помехи - двигатели, переключатели, генераторы сигналов различной формы и т.д. Естественными источниками помех являются молнии, флюктуации магнитных полей, всплески солнечной энергии, и т.д.

Электрические и магнитные поля различных источников помех вследствие наличия индуктивных, емкостных и резистивных связей создают на различных участках и цепях сигнальных систем паразитные разности потенциалов и токи, накладывающиеся на полезные сигналы.

Помехи подразделяются на флюктуационные, импульсные и периодические. Флюктуационные или шумовые помехи представляют хаотический и беспорядочный во времени процесс в виде нерегулярных случайных всплесков различной амплитуды. Как правило, флюктуационные помехи распределены по нормальному закону с нулевым средним и оказывают существенное влияние только на сигналы низкого уровня.

Импульсные помехи во многом похожи на шумовые помехи и проявляются как в виде отдельных импульсов,  так и в виде последовательности импульсов, форма и параметры которых имеют случайный характер. Причинами импульсных помех являются резкие броски тока и напряжения в промышленных установках, транспортных средствах, а также природные электрические явления. Распределение импульсных помех, как правило, симметричное с произвольной плотностью распределения.

Периодические помехи вызываются периодическими низкочастотными или высокочастотными полями линий электропередач, силовых электроустановок и др. Если основная мощность помех сосредоточена на отдельных участках диапазона частот, например, на частоте напряжения промышленной сети или кратна этой частоте, то такие помехи называют сосредоточенными.

В зависимости от характера воздействия на сигнал помехи разделяют на аддитивные и мультипликативные. Аддитивные (налагающиеся) помехи суммируются с сигналом, не зависят от его значений и формы и не изменяют информативной составляющей самого сигнала. Мультипликативные или деформирующие помехи могут изменять форму информационной части сигнала, иметь зависимость от его значений и от определенных особенностей в сигнале и т.п. При известном характере мультипликативных помех возможна коррекция сигнала на их влияние.

Следует заметить, что деление сигналов на полезные и мешающие (шумовые) является достаточно условным. Источниками мешающих сигналов также могут быть определенные физические процессы, явления или объекты. При выяснении природы мешающих сигналов они могут переводиться в разряд информационных. Так, например, вариации диаметра скважин является мешающим фактором практически для всех ядерно-физических методов каротажа. Вместе с тем этот же фактор, при соответствующем методическом и аппаратурном обеспечении, может дать возможность бесконтактного определения диаметра скважин в качестве дополнительного информационного параметра.

Размерность сигналов. Простейшими сигналами геофизической практики являются одномерные сигналы, как, например, сейсмические импульсы s(t), измерения каких-либо параметров геофизических полей (электрических, магнитных, и пр.) по профилям на поверхности земли s(x) или по стволу скважины s(h), и т.п. Значения одномерных сигналов зависят только от одной независимой переменной, как, например, на рис. 1.1.1 и 1.1.2.

Рис. 1.1.3. Двумерный сигнал.

В общем случае сигналы являются многомерными функциями пространственных, временных и прочих независимых переменных - сейсмическая волна вдоль линии профиля s(x,t), аномалия гравитационного поля на поверхности наблюдений s(x,y), пространственно - энергетическое распределение потока ионизирующих частиц или квантов от источника излучения s(x,y,z,Е) и т.п. Все большее применение находят также многомерные сигналы, образованные некоторым множеством одномерных сигналов, как, например, комплексные каротажные измерения нескольких физических параметров горных пород по стволу скважины одновременно. 

Многомерные сигналы могут иметь различное представление по своим аргументам. Так, полный акустический сигнал сейсмического профиля дискретен по пространству (точкам расположения приемников) и непрерывен по времени.

Многомерный сигнал может рассматриваться, как упорядоченная совокупность одномерных сигналов. С учетом этого при анализе и обработке сигналов многие принципы и практические методы обработки одномерных сигналов, математический аппарат которых развит достаточно глубоко, распространяются и на многомерные сигналы. Физическая природа сигналов для математического аппарата их обработки значения не имеет.

Вместе с тем обработка многомерных сигналов имеет свои особенности, и может существенно отличаться от одномерных сигналов в силу большего числа степеней свободы. Так, при дискретизации многомерных сигналов имеет значение не только частотный спектр сигналов, но и форма растра дискретизации. Пример не очень полезной особенности - многомерные полиномы сигнальных функций, в отличие от одномерных, не разлагаются на простые множители. Что касается порядка размерности многомерных сигналов, то ее увеличение выше двух практически не изменяет принципы и методы анализа данных, и сказывается, в основном, только на степени громоздкости формул и чисто техническом усложнении вычислений.

Учитывая эти факторы, при рассмотрении общей теории анализа, преобразований и обработки сигналов ограничимся, в основном, одно- и двумерными сигнальными функциями, а в качестве универсальных независимых переменных (аргументов функций) будем использовать, как правило, переменную "t" для одномерных сигналов и переменные "x,t" или "x,y" для двумерных сигналов, безотносительно к их физическому содержанию (пространство, время, энергия и пр.).

Математическое описание сигналов. Сигналы могут быть объектами теоретических исследований и практического анализа только в том случае, если указан способ их математического описания. Математическое описание позволяет абстрагироваться от физической природы сигнала и материальной формы его носителя, проводить классификацию сигналов, выполнять их сравнение, устанавливать степень тождества, моделировать системы обработки сигналов.

Большинство сигналов, встречающихся на практике, представлены во временной области  функциями времени. При отображении сигналов на графике одной из координат (независимой) является ось времени, а другой координатой (зависимой) – ось амплитуд. Тем самым мы получаем амплитудно-временное представление сигнала. В общем случае  описание сигнала задается функциональной зависимостью определенного информационного параметра сигнала от независимой переменной (аргумента) – s(х), y(t) и т.п. Такая форма описания и графического представления сигналов называется динамической (сигнал в реальной динамике его поведения по аргументам). Функции математического описания сигналов могут быть как вещественными, так и комплексными. Выбор математического аппарата описания определяется простотой и удобством его использования при анализе и обработке сигналов.

Отметим двойственность применения описания сигналов функциями типа s(t) и т.п. С одной стороны s(t) – это величина, равная значению функции в момент времени t. С другой стороны мы обозначаем через s(t) и саму функцию, т.е. то правило, по которому каждому значению t ставится в соответствие определенная величина s. В большинстве аналитических выражений это не вызывает недоразумений и при однозначном соответствии значений сигналов их аналитическим выражениям принимается по умолчанию.

Сделаем также одно замечание по терминологии описания сигналов. В теоретических работах по анализу сигналов конкретные значения величины сигнала (отсчеты значений по аргументу) часто именуют координатами сигнала. В отраслях знаний, связанных с геологией и горным делом, и в геофизической практике в том числе, этот термин  используется по своему прямому смысловому назначению – пространственных координат результатов измерений, и является неизменным атрибутом всех геолого-геофизических данных. С учетом последнего фактора условимся применять термин “координата” по своему традиционному смысловому назначению в качестве обобщающего термина для независимых переменных сигнальных функций. При этом под понятием координат значений сигнала будем понимать не только какие-либо пространственные координаты, как это непосредственно имеет место для результатов измерений при геолого-геофизических съемках, но и любые другие аргументы, на числовой оси которых отложены значения или отсчеты сигнала и рассматривается динамика его изменения (пример на рис. 1.1.1).  

Спектральное представление сигналов. Кроме привычного динамического  представления сигналов и функций в виде зависимости их значений от определенных аргументов (времени, линейной или пространственной координаты и т.п.) при анализе и обработке данных широко используется математическое описание сигналов по аргументам, обратным аргументам динамического представления. Так, например, для времени обратным аргументом является частота. Возможность такого описания определяется тем, что любой сколь угодно сложный по своей форме сигнал, не имеющий разрывов второго рода (бесконечных значений на интервале своего задания), можно представить в виде суммы более простых сигналов, и, в частности, в виде суммы простейших гармонических колебаний, что выполняется при помощи преобразования Фурье. Соответственно, математически разложение сигнала на гармонические составляющие описывается функциями значений амплитуд и начальных фаз колебаний по непрерывному или дискретному аргументу – частоте изменения функций на определенных интервалах аргументов их динамического представления. Совокупность амплитуд гармонических колебаний разложения называют амплитудным спектром сигнала, а совокупность начальных фаз – фазовым спектром. Оба спектра вместе образуют полный частотный спектр сигнала, который по точности математического представления тождественен динамической форме описания сигнала.

Линейные системы преобразования сигналов описываются дифференциальными уравнениями, причем для них верен принцип суперпозиции, согласно которому реакция систем на сложный сигнал, состоящий из суммы простых сигналов, равна сумме реакций от каждого составляющего сигнала в отдельности. Это позволяет при известной реакции системы на гармоническое колебание с определенной частотой определить реакцию системы на любой сложный сигнал, разложив его в ряд гармоник по частотному спектру сигнала. Широкое использование гармонических функций при анализе сигналов объясняется тем, что они являются достаточно простыми ортогональными функциями и определены при всех значениях непрерывных переменных. Кроме того, они являются собственными функциями времени, сохраняющими свою форму при прохождении колебаний через любые линейные системы и системы обработки данных с постоянными параметрами (изменяются только амплитуда и фаза колебаний). Немаловажное значение имеет и то обстоятельство, что для гармонических функций и их комплексного анализа разработан мощный математический аппарат.

Примеры частотного представления сигналов приводятся ниже (рис. 1.1.5 – 1.1.12).

Кроме гармонического ряда Фурье применяются и другие виды разложения сигналов: по функциям Уолша, Бесселя, Хаара, полиномам Чебышева, Лаггера, Лежандра и др. Главное условие однозначности и математической идентичности отображения сигналов - ортогональность функций разложения. Но при качественном анализе сигналов могут применяться и неортогональные функции, выявляющие какие-либо характерные особенности сигналов, полезные для интерпретации физических данных.


Лекция 3.  ОПИСАНИЕ  СИГНАЛОВ  

Содержание

1. Математические модели сигналов. Виды моделей. Классификация сигналов.

2. Типы сигналов. Аналоговый сигнал. Дискретный сигнал. Цифровой сигнал. Преобразования типа сигналов. Графическое отображение сигналов. Тестовые сигналы.

3. Системы преобразования сигналов. Общее понятие систем. Основные системные операции. Линейные системы.

4. Информационная емкость сигналов. Понятие информации. Количественная мера информации. Энтропия источника информации. Основные свойства энтропии Энтропия непрерывного источника информации. Информационная емкость сигналов. 

Математические модели сигналов. Теория анализа и обработки физических данных базируется на математических моделях соответствующих физических полей и физических процессов, на основе которых создаются математические модели сигналов. Математические модели сигналов дают возможность обобщенно, абстрагируясь от физической природы, судить о свойствах сигналов, предсказывать изменения сигналов в изменяющихся условиях, заменять физическое моделирование процессов математическим. С помощью математических моделей имеется возможность описывать свойства сигналов, которые являются главными, определяющими в изучаемых процессах, и игнорировать большое число второстепенных признаков. Знание математических моделей сигналов дает возможность классифицировать их по различным признакам, характерным для того или иного типа моделей. Так, сигналы разделяются на неслучайные и случайные в зависимости от возможности точного предсказания их значений в любые моменты времени. Сигнал является неслучайным и называется детерминированным, если математическая модель позволяет осуществлять такое предсказание. Детерминированный сигнал задается, как правило, математической функцией или вычислительным алгоритмом, а математическая модель сигнала может быть представлена в виде

s = F(t, z, w,…; A, B, C,…),

где s – информативный параметр сигнала; t, z, w, … – независимые аргументы (время, пространственная координата, частота и др.); A, B, C… – параметры сигналов.

Модель должна быть, по возможности, проще, минимизирована по количеству независимых аргументов и адекватна изучаемому процессу, что во многом предопределяет результаты измерений.

Математическое описание не может быть всеобъемлющим и идеально точным и, по существу, всегда отображает не реальные объекты, а их упрощенные (гомоморфные) модели. Модели могут задаваться таблицами, графиками, функциональными зависимостями, уравнениями состояний и переходов из одного состояния в другое и т.п. Формализованное описание может считаться математической моделью оригинала, если оно позволяет с определенной точностью прогнозировать состояние и поведение изучаемых объектов путем формальных процедур над их описанием.

Неотъемлемой частью любой математической модели сигнала является область определения сигнала, которая устанавливается интервалом задания независимой переменной. Примеры задания интервала для переменных:

axb,      x  [a, b].

a < y ≤ b,      y (a, b].

a < z < b,      z (a, b).

 Пространство значений независимой переменной обычно обозначается через индекс R. Так, например, R:=(- , +),  x  R.

Кроме задания области определения сигнала могут быть также заданы виды численных значений переменных (целые, рациональные, вещественные, комплексные).

Математические модели полей и сигналов на первом этапе обработки и анализа результатов наблюдений должны позволять в какой-то мере игнорировать их физическую природу и возвращать ее в модель только на заключительном этапе интерпретации данных.

Виды моделей сигналов. При анализе физических данных используются два основных подхода к созданию математических моделей сигналов.

Первый подход оперирует с детерминированными сигналами, значения которых в любой момент времени или в произвольной точке пространства (а равно и в зависимости от любых других аргументов) являются априорно известными или могут быть достаточно точно определены (вычислены). Такой подход удобен в прямых задачах (расчеты полей для заданных моделей сред). Для описания неслучайных сигналов используются также квазидетерминированные модели, в которых значения одного или нескольких параметров априорно неизвестны, и считаются случайными величинами с малой случайной компонентой, влиянием которой можно пренебречь.

Второй подход предполагает случайный характер сигналов, закон изменения которых во времени (или в пространстве) носит случайный характер, и которые принимают конкретные значения с некоторой вероятностью. Модель такого сигнала представляет собой описание статистических характеристик случайного процесса путем задания законов распределения вероятностей, корреляционной функции, спектральной плотности энергии и др.

Случайность может быть обусловлена как собственной физической природой сигналов, что характерно, например, для радиосигналов, так и вероятностным характером регистрируемых сигналов как по времени или месту их появления, так и по содержанию. С этих позиций случайный сигнал может рассматриваться как отображение случайного по своей природе процесса или физических свойств объекта (процесса), которые определяются случайными параметрами влияющими на распространение сигнала в среде, результаты измерений в которой трудно предсказуемы.

Между этими двумя видами сигналов нет резкой границы. Строго говоря, детерминированных процессов и отвечающих им детерминированных сигналов  в природе не существует. Даже сигналы, хорошо известные на входе в среду (при внешнем воздействии на нее), по месту их регистрации всегда осложнены случайными помехами, влиянием дестабилизирующих факторов и априорно неизвестными параметрами и строением самой среды. С другой стороны, модель случайного поля часто аппроксимируется методом суперпозиции (сложения) сигналов известной формы. Детерминированные модели могут использоваться и для изучения чисто случайных процессов, если уровень полезного сигнала в этом процессе значительно выше уровня статистических флюктуаций.

На выбор математической модели поля в том или ином случае в немалой степени влияет также сложность математического аппарата обработки сигналов. Не исключается и изменение модели, как правило, с переводом из вероятностной в детерминированную, в процессе накопления информации об изучаемом явлении или объекте.

Классификация сигналов осуществляется на основании существенных признаков соответствующих математических моделей сигналов. Все сигналы разделяют на две крупных группы: детерминированные и случайные. Классификация сигналов внутри групп приведена на рис. 1.1.4.

Рис. 1.1.4. Классификация сигналов.

С математических позиций группы сигналов обычно называют множествами, в которые объединяют сигналы по какому-либо общему свойству. Принадлежность сигнала s к множеству LР записывается в виде LP = {s; P}, где Р – определенное свойство данного множества сигналов.  

Классификация детерминированных сигналов. Обычно выделяют два класса детерминированных сигналов: периодические и непериодические.

К множеству периодических относят гармонические и полигармонические сигналы. Для периодических сигналов выполняется общее условие s(t) = s(t + kT), где k = 1, 2, 3, ... - любое целое число (из множества целых чисел I от -∞ до ∞), Т - период, являющийся конечным отрезком независимой переменной. Множество периодических сигналов:

LP = {s(t); s(t+kT) = s(t), -∞ < t < ∞, kI}.

 

Рис. 1.1.5.  Гармонический сигнал и спектр его амплитуд.

Гармонические сигналы (синусоидальные), описываются следующими формулами:

s(t) = Asin (2pfоt+) = Asin (wоt+),      

s(t) = Acos(wоt+j),                                          (1.1.1)

где А, fo, wo, j,  - постоянные величины, которые могут исполнять роль информационных параметров сигнала: А - амплитуда сигнала, fо - циклическая частота в герцах, wо = 2pfо - угловая частота в радианах, j и - начальные фазовые углы в радианах. Период одного колебания T = 1/fо = 2p/wo. При = -/2 синусные и косинусные функции описывают один и тот же сигнал. Частотный спектр сигнала представлен амплитудным и начальным фазовым значением частоты fо (при t = 0).

Полигармонические сигналы составляют наиболее широко распространенную группу периодических сигналов и описываются суммой гармонических колебаний:

s(t) =An sin (2pfnt+jn),                              (1.1.2)

или непосредственно функцией s(t) = y(t  kTp),   k = 1,2,3,..., где Тр - период одного полного колебания сигнала y(t), заданного на одном периоде. Значение fp =1/Tp называют фундаментальной частотой колебаний. Полигармонические сигналы представляют собой сумму определенной постоянной составляющей (fо=0) и произвольного (в пределе - бесконечного) числа гармонических составляющих с произвольными значениями амплитуд An и фаз n, с периодами, кратными периоду фундаментальной частоты fp. Другими словами, на периоде фундаментальной частоты fp, которая равна или кратно меньше минимальной частоты гармоник, укладывается кратное число периодов всех гармоник, что и создает периодичность повторения сигнала. Частотный спектр полигармонических сигналов дискретен, в связи с чем второе распространенное математическое представление сигналов - в виде спектров (рядов Фурье).

В качестве примера на рис. 1.1.6 приведен отрезок периодической сигнальной функции, которая получена суммированием постоянной составляющей (частота постоянной составляющей равна 0) и трех гармонических колебаний с разными значениями частоты и начальной фазы колебаний. Математическое описание сигнала задается формулой:

s(t) =Akcos(2pfkt+jk),

где:  Ak = {5, 3, 4, 7} - амплитуда гармоник;  fk = {0, 40, 80, 120} - частота в  герцах;  jk = {0, -0.4, -0.6, -0.8} - начальный фазовый угол колебаний в радианах; k = 0, 1, 2, 3. Фундаментальная частота сигнала 40 Гц.

Рис. 1.1.6. Модель сигнала.

Рис. 1.1.7. Спектр сигнала.

Частотное представление данного сигнала (спектр сигнала) приведено на рис. 1.1.7. Обратим внимание, что частотное представление периодического сигнала s(t), ограниченного по числу гармоник спектра, составляет всего восемь отсчетов и весьма компактно по сравнению с временным представлением.

Периодический сигнал любой произвольной формы может быть представлен в виде суммы гармонических колебаний с частотами, кратными фундаментальной частоте колебаний fр = 1/Тр. Для этого достаточно разложить один период сигнала в ряд Фурье по тригонометрическим функциям синуса и косинуса с шагом по частоте, равным фундаментальной частоте колебаний Df = fp:

s(t) =(ak cos 2pkDft + bk sin 2pkDft),                           (1.1.3)

ao = (1/T)s(t) dt,   ak = (2/T)s(t) cos 2pkDft dt,               (1.1.4)

bk = (2/T)s(t) sin 2pkDft dt.                                   (1.1.5)

Количество членов ряда Фурье K = kmax обычно ограничивается максимальными частотами fmax гармонических составляющих в сигналах так, чтобы fmax < K·fp. Однако для сигналов с разрывами и скачками имеет место fmax   , при этом количество членов ряда ограничивается по допустимой погрешности аппроксимации функции s(t).

Одночастотные косинусные и синусные гармоники можно объединить и представить разложение в более компактной форме:

s(t) = Sk cos (2pkDft-jk),                                (1.1.3')

Sk =,    jk = argtg (bk/ak).                            (1.1.6)

Рис. 1.1.8. Прямоугольный периодический сигнал (меандр).

Пример представления прямоугольного периодического сигнала (меандра) в виде амплитудного ряда Фурье в частотной области приведен на рис. 1.1.8. Сигнал четный относительно t=0, не имеет синусных гармоник, все значения jk для данной модели сигнала равны нулю.

Информационными параметрами полигармонического сигнала могут быть как определенные особенности формы сигнала (размах от минимума до максимума, экстремальное отклонение от среднего значения, и т.п.), так и параметры определенных гармоник в этом сигнале. Так, например, для прямоугольных импульсов информационными параметрами могут быть период повторения импульсов, длительность импульсов, скважность импульсов (отношение периода к длительности). При анализе сложных периодических сигналов информационными параметрами могут также быть:

- Текущее среднее значение за определенное время, например, за время периода:

(1/Т)s(t) dt.

- Постоянная составляющая одного периода:

(1/Т)s(t) dt.

- Среднее выпрямленное значение:

(1/Т)|s(t)| dt.

- Среднее квадратичное значение:

.

К непериодическим сигналам относят почти периодические и апериодические сигналы. Основным инструментом их анализа также является частотное представление.

Почти периодические сигналы близки по своей форме к полигармоническим. Они также представляют собой сумму двух и более гармонических сигналов (в пределе – до бесконечности), но не с кратными, а с произвольными частотами, отношения которых (хотя бы двух частот минимум) не относятся к рациональным числам, вследствие чего фундаментальный период суммарных колебаний бесконечно велик.

Рис. 1.1.9. Почти периодический сигнал и спектр его амплитуд.

Так, например, сумма двух гармоник с частотами 2fo и 3.5fo дает периодический сигнал (2/3.5 – рациональное число) с фундаментальной частотой 0.5fo, на одном периоде которой будут укладываться 4 периода первой гармоники и 7 периодов второй. Но если значение частоты второй гармоники заменить близким значением fo, то сигнал перейдет в разряд непериодических, поскольку отношение 2/ не относится к числу рациональных чисел. Как правило, почти периодические сигналы порождаются физическими процессами, не связанными между собой. Математическое отображение сигналов тождественно полигармоническим сигналам (сумма гармоник), а частотный спектр также дискретен.

Апериодические сигналы составляют основную группу непериодических сигналов и задаются произвольными функциями времени. На рис. 1.1.10 показан пример апериодического сигнала, заданного формулой на интервале (0, ):

s(t) = exp(-at) - exp(-bt),

где a и b – константы, в данном случае a = 0.15, b = 0.17.  

 

  Рис. 1.1.10. Апериодический сигнал и модуль спектра.    Рис. 1.1.11. Импульсный сигнал и модуль спектра.

К апериодическим сигналам относятся также импульсные сигналы, которые в радиотехнике и в отраслях, широко ее использующих, часто рассматривают в виде отдельного класса сигналов. Импульсы представляют собой сигналы, как правило, определенной и достаточно простой формы, существующие в пределах конечных временных интервалов. Сигнал, приведенный на рис. 1.1.11, относится к числу импульсных.

Частотный спектр апериодических сигналов непрерывен и может содержать любые гармоники в частотном интервале [0, ].  Для его вычисления используется интегральное преобразование Фурье, которое можно получить переходом в формулах (1.1.3) от суммирования к интегрированию при Df  0 и kDf  f.

s(t) =(a(f) cos 2pft + b(f) sin 2pft) df =S(f) cos(2pft-j(f)) df.         (1.1.7)

a(f) = s(t) cos 2pft dt,     b(f) = s(t) sin 2pft dt,                     (1.1.8)

S(f) =,    j(f) = argtg (b(f)/a(f)).                          (1.1.9)

Частотные функции a(f), b(f) и S(f) представляют собой не амплитудные значения соответствующих гармоник на определенных частотах, а распределения спектральной плотности амплитуд этих гармоник по частотной шкале. Формулы (1.1.8-1.1.9) обычно называют формулами прямого преобразования Фурье, формулы (1.1.7) – обратного преобразования.

Если нас не интересует поведение сигнала за пределами области его задания [0, Т], то эта область может восприниматься, как один период периодического сигнала, т.е. значение Т принимается за фундаментальную частоту периодический колебаний, при этом для частотной модели сигнала может применяться разложение в ряды Фурье по области его задания (1.1.3-1.1.6).

В классе импульсных сигналов выделяют подкласс радиоимпульсов. Пример радиоимпульса приведен на рис. 1.1.12.

Рис. 1.1.12. Радиоимпульс и модуль его спектра.

Уравнение радиоимпульса имеет вид

s(t) = u(t) cos(2pfot+jo).

где cos(2pfot+jo) – гармоническое колебание заполнения радиоимпульса, u(t) – огибающая радиоимпульса. Положение главного пика спектра радиоимпульса на частотной шкале соответствует частоте заполнения fo, а его ширина определяется длительностью радиоимпульса. Чем больше длительность радиоимпульса, тем меньше ширина главного частотного пика.

 С энергетических позиций сигналы разделяют на два типа: с ограниченной (конечной) энергией и с бесконечной энергией.

Для множества сигналов с ограниченной энергией должно выполняться условие:

L2E = {s;  |s(t)|2 dt < ∞}.

О сигналах s(t) данного множества принято говорить, что они интегрируемы с квадратом. Очевидно, что этому множеству могут соответствовать только сигналы, стремящиеся к нулю на бесконечности: s(t) → 0.

Как правило, к этому типу сигналов относятся апериодические и импульсные сигналы, не имеющие разрывов 2-го рода при ограниченном количестве разрывов 1-го рода. Любые периодические, полигармонические и почти периодические сигналы, а также сигналы с разрывами и особыми точками 2-го рода, уходящими в бесконечность, относятся к сигналам с бесконечной энергией. Для их анализа применяются специальные методы.

Для бесконечных по энергии сигналов, в том числе для периодических, ограничение по энергии может задаваться для определенного интервала (периода) T = t1-t2:

L2E(T) = {s;|s(t)|2 dt < ∞}.

Иногда в отдельный класс выделяют сигналы конечной длительности, отличные от нуля только на ограниченном интервале аргументов (независимых переменных). Такие сигналы обычно называют финитными.

 С позиций временной динамики сигналы подразделяются на стационарные и нестационарные. Стационарными называются  сигналы, частотный спектр которых не изменяется во времени и не зависит от интервала задания сигналов. К ним относятся периодические и почти периодические сигналы. Большинство практических сигналов являются нестационарными на достаточно больших интервалах задания, но могут содержать в своем составе стационарные частотные составляющие. Так, модулированные сигналы радио и телевидения относятся к числу нестационарных, но имеют стационарные несущие частоты.

Классификация случайных сигналов. Случайным сигналом называют функцию времени, значения которой заранее неизвестны, и могут быть предсказаны лишь с некоторой вероятностью. Случайный сигнал отображает случайное физическое явление или физический процесс, причем, зарегистрированный в единичном наблюдении, сигнал не воспроизводится при повторных наблюдениях и не может быть описан явной математической зависимостью. При регистрации случайного сигнала реализуется только один из возможных вариантов (исходов) случайного процесса, а достаточно полное и точное описание процесса в целом можно произвести только после многократного повторения наблюдений и вычисления определенных статистических характеристик ансамбля реализаций сигнала. В качестве основных статистических характеристик случайных сигналов принимают:

а) закон распределения вероятности нахождения величины сигнала в определенном интервале значений;

б) спектральное распределение мощности сигнала.

Случайные сигналы подразделяют на стационарные и нестационарные. Случайные стационарные сигналы сохраняют свои статистические характеристики в последовательных реализациях случайного процесса. Что касается случайных нестационарных сигналов, то их общепринятой классификации не существует. Как правило, из них выделяют различные группы сигналов по особенностям их нестационарности.

1.2.  Типы сигналов [1,10,15]

Выделяют следующие типы сигналов, которым соответствуют определенные формы их математического описания.

Рис. 1.2.1.  Аналоговый сигнал.

Аналоговый сигнал (analog signal) является непрерывной функцией непрерывного аргумента, т.е. определен для любого значения аргументов. Источниками аналоговых сигналов, как правило, являются физические процессы и явления, непрерывные в динамике своего развития во времени, в пространстве или по любой другой независимой переменной, при этом регистрируемый сигнал подобен (“аналогичен”) порождающему его процессу. Пример математической записи сигнала: y(t) = 4.8 exp[-(t-4)2/2.8]. Пример графического отображения данного сигнала приведен на рис. 1.2.1, при этом как сама функция, так и ее аргументы, могут принимать любые значения в пределах некоторых интервалов y1 y y2, t1 t t2. Если интервалы значений сигнала или его независимых переменных не ограничиваются, то по умолчанию они принимаются равными от - до +.  Множество возможных значений сигнала образует континуум - непрерывное пространство, в котором любая сигнальная точка может быть определена с точностью до бесконечности. Примеры сигналов, аналоговых по своей природе - изменение напряженности электрического, магнитного, электромагнитного поля во времени и в пространстве.

Рис. 1.2.2. Дискретный сигнал

Дискретный сигнал (discrete signal) по своим значениям также является непрерывной функцией, но определенной только по дискретным значениям аргумента. По множеству своих значений он является конечным (счетным) и описывается дискретной последовательностью отсчетов (samples) y(nDt), где y1 y  y2, Dt - интервал между отсчетами (интервал или шаг дискретизации, sample time), n = 0, 1, 2,...,N. Величина, обратная шагу дискретизации: f = 1/Dt, называется частотой дискретизации (sampling frequency). Если дискретный сигнал получен дискретизацией (sampling) аналогового сигнала, то он представляет собой последовательность отсчетов, значения которых в точности равны значениям исходного сигнала по координатам nDt.

Пример дискретизации аналогового сигнала, приведенного на рис. 1.2.1, представлен на рис. 1.2.2. При Dt = const (равномерная дискретизация данных) дискретный сигнал можно описывать сокращенным обозначением y(n). В технической литературе в обозначениях дискретизированных функций иногда оставляют прежние индексы аргументов аналоговых функций, заключая последние в квадратные скобки - y[t]. При неравномерной дискретизации сигнала обозначения дискретных последовательностей (в текстовых описаниях) обычно заключаются в фигурные скобки - {s(ti)}, а значения отсчетов приводятся в виде таблиц с указанием значений координат ti. Для числовых последовательностей (равномерных и неравномерных) применяется и следующее числовое описание: s(ti) = {a1, a2, ..., aN}, t = t1, t2, ...,tN. Примеры дискретных геофизических сигналов  - результаты вертикального электрического зондирования (дискретная величина разноса токовых электродов), профили геохимического опробования, и т.п.

Цифровой сигнал (digital signal) квантован по своим значениям и дискретен по аргументу. Он описывается квантованной решетчатой функцией yn = Qk[y(nDt)],  где Qk - функция квантования с числом уровней квантования k, при этом интервалы квантования могут быть как с равномерным распределением, так и с неравномерным, например - логарифмическим. Задается цифровой сигнал, как правило, в виде дискретного ряда (discrete series) числовых данных - числового массива по последовательным значениям аргумента при Dt = const, но в общем случае сигнал может задаваться и в виде таблицы для произвольных значений аргумента.

Рис. 1.2.3. Цифровой сигнал

По существу, цифровой сигнал по своим значениям (отсчетам) является формализованной разновидностью дискретного сигнала при округлении отсчетов последнего до определенного количества цифр, как это показано на рис 1.2.3.  Цифровой сигнал конечен по множеству своих значений. Процесс преобразования бесконечных по значениям аналоговых отсчетов в конечное число цифровых значений называется квантованием по уровню, а возникающие при квантовании ошибки округления отсчетов (отбрасываемые значения) – шумами (noise) или ошибками (error) квантования (quantization).   

В системах цифровой обработки данных и в ЭВМ сигнал всегда представлен с точностью до определенного количества разрядов, а, следовательно, всегда является цифровым. С учетом этих факторов при описании цифровых сигналов функция квантования обычно опускается (подразумевается равномерной по умолчанию), а для описания сигналов используются правила описания дискретных сигналов. Что касается формы обращения цифровых сигналов в системах хранения, передачи и обработки, то, как правило, они представляет собой комбинации коротких одно- или двуполярных импульсов одинаковой амплитуды, которыми в двоичном коде с определенным количеством числовых разрядов кодируются числовые последовательности сигналов (массивов данных).

Рис. 1.2.4. Дискретно-аналоговый сигнал

В принципе, квантованными по своим значениям могут быть и аналоговые сигналы, зарегистрированные соответствующей аппаратурой (рис. 1.2.4), которые принято называть дискретно-аналоговыми. Но выделять эти сигналы в отдельный тип  не имеет смысла - они остаются аналоговыми кусочно-непрерывными сигналами с шагом квантования, который определяется допустимой погрешностью измерений.

Большинство сигналов, с которыми приходится иметь дело при обработке данных, относятся к классу цифровых.

Преобразования типа сигналов. Формы математического отображения сигналов,  особенно на этапах их первичной регистрации (детектирования) и в прямых задачах описания геофизических полей и физических процессов, как правило, отражают их физическую природу. Однако последнее не является обязательным и зависит от методики измерений и технических средств детектирования, преобразования, передачи, хранения и обработки сигналов. На разных этапах процессов получения и обработки информации как материальное представление сигналов в устройствах регистрации и обработки, так и формы их математического описания при анализе данных,  могут изменяться путем соответствующих операций преобразования типа сигналов.

Операция дискретизации (discretization) осуществляет преобразование аналоговых сигналов (функций), непрерывных по аргументу, в функции мгновенных значений сигналов по дискретному аргументу. Дискретизация обычно производится с постоянным шагом по аргументу (равномерная дискретизация), при этом s(t) Þ s(nDt), где значения s(nDt) представляют собой отсчеты функции s(t) в моменты времени t = nDt,  n = 0, 1, 2,..., N. Частота, с которой выполняются замеры аналогового сигнала, называется частотой дискретизации. В общем случае, сетка отсчетов по аргументу может быть произвольной, как, например, s(t) Þ s(tk), k=1, 2, …, K, или задаваться по определенному закону.  В результате дискретизации непрерывный (аналоговый) сигнал переводится в последовательность чисел.

Операция восстановления аналогового сигнала из его дискретного представления обратна операции дискретизации и представляет, по существу, интерполяцию данных.

Дискретизация сигналов может приводить к определенной потере информации о поведении сигналов в промежутках между отсчетами. Однако существуют  условия, определенные теоремой Котельникова-Шеннона, согласно которым аналоговый сигнал с ограниченным частотным спектром может быть без потерь информации преобразован в дискретный сигнал, и затем абсолютно точно восстановлен по значениям своих дискретных отсчетов.

Как известно, любая непрерывная функция может быть разложена на конечном отрезке в ряд Фурье, т.е. представлена в спектральной форме - в виде суммы ряда синусоид с кратными (нумерованными) частотами с определенными амплитудами и фазами. У относительно гладких функций спектр быстро убывает (коэффициенты модуля спектра быстро стремятся к нулю). Для представления "изрезанных" функций, с разрывами и "изломами", нужны синусоиды с большими частотами. Говорят, что сигнал имеет ограниченный спектр, если после определенной частоты F все коэффициенты спектра равны нулю, т.е. сигнал представляется в виде конечной суммы ряда Фурье.

Теоремой Котельникова-Шеннона устанавливается, что если спектр сигнала ограничен частотой F, то после дискретизации сигнала с частотой не менее 2F можно восстановить исходный непрерывный сигнал по полученному цифровому сигналу абсолютно точно. Для этого нужно выполнить интерполяцию цифрового сигнала "между отсчетами" специальной  функцией (Котельникова-Шеннона).

На практике эта теорема имеет огромное значение. Например, известно, что диапазон  звуковых сигналов, воспринимаемых человеком, не превышает 20 кГц. Следовательно, при дискретизации записанных звуковых сигналов с частотой не менее 40 кГц мы можем точно восстановить исходный аналоговый сигнал по его цифровым отсчетам, что и выполняется в проигрывателях компакт-дисков для восстановления звука. Частота дискретизации звукового сигнала при записи на компакт-диск составляет 44100 Гц.

Операция квантования или аналого-цифрового преобразования (АЦП; английский термин Analog-to-Digital Converter, ADC) заключается в преобразовании дискретного сигнала s(tn) в цифровой сигнал s(n) = sn s(tn), n = 0, 1, 2,.., N,  как правило, кодированный в двоичной системе счисления. Процесс преобразования отсчетов сигнала в числа называется квантованием по уровню (quantization), а возникающие при этом потери информации за счет округления – ошибками или шумами квантования (quantization error, quantization noise).

При преобразовании аналогового сигнала непосредственно в цифровой сигнал операции дискретизации и квантования совмещаются.

Операция цифро-аналогового преобразования (ЦАП; Digital-to-Analog Converter, DAC) обратна операции квантования, при этом на выходе регистрируется либо дискретно-аналоговый сигнал s(tn), который имеет ступенчатую форму (рис. 1.2.4), либо непосредственно аналоговый сигнал s(t), который восстанавливается из s(tn), например, путем сглаживания.

Так как квантование сигналов всегда выполняется с определенной и неустранимой погрешностью (максимум - до половины интервала квантования), то операции АЦП и ЦАП не являются взаимно обратными с абсолютной точностью.

Алиасинг. А что произойдет, если спектр аналогового сигнала был неограниченным или имел частоту, выше частоты дискретизации?

Рис. 1.2.5. Появление кажущейся частоты при дискретизации.

Предположим, что при записи акустического сигнала оркестра в помещении от какого-то устройства присутствует ультразвуковой сигнал с частотой 30 кГц. Запись выполняется с дискретизацией сигнала на выходе микрофона с типовой частотой 44.1 кГц. При прослушивании такой записи с использованием ЦАП мы услышим шумовой сигнал на частоте 30 – 44.1/2 8 кГц.  Восстановленный сигнал будет выглядеть так, как если бы частоты, лежащие выше половины частоты дискретизации, "зеркально" от нее отразились в нижнюю часть спектра и сложились с присутствующими там гармониками.  Это так называемый эффект появления ложных (кажущихся) частот (aliasing). Эффект аналогичен всем известному эффекту обратного вращения колес автомобиля на экранах кино и телевизоров, когда скорость их вращения начинает превышать частоту смены кадров. Природу эффекта можно наглядно видеть на рис. 1.2.5. Аналогично в главный частотный диапазон дискретных сигналов "отражаются" от частоты дискретизации и все высокочастотные шумы, присутствующие в исходном аналоговом сигнале.

Для предотвращения алиасинга следует повышать частоту дискретизации или ограничить спектр сигнала перед оцифровкой фильтрами низких частот (НЧ-фильтры, low-pass filters), которые пропускают без изменения все частоты, ниже заданной, и подавляют в сигнале частоты, выше заданной. Эта граничная частота называется частотой среза (cutoff frequency) фильтра. Частота среза анти-алиасинговых фильтров устанавливается равной половине частоты дискретизации. В реальные АЦП почти всегда встраивается анти-алиасинговый фильтр.

Графическое отображение сигналов общеизвестно и особых пояснений не требует. Для одномерных сигналов график – это совокупность пар значений {t, s(t)} в прямоугольной системе координат (рис. 1.2.1 – 1.2.4).  При графическом отображении дискретных и цифровых сигналов используется либо способ непосредственных дискретных отрезков соответствующей масштабной длины над осью аргумента, либо способ огибающей (плавной или ломанной) по значениям отсчетов. В силу непрерывности геофизических полей и, как правило, вторичности цифровых данных, получаемых дискретизацией и квантованием аналоговых сигналов, второй способ графического отображения будем считать основным. 

Тестовые сигналы (test signal). В качестве тестовых сигналов, которые применяются при моделировании и исследовании систем обработки данных, обычно используются сигналы простейшего типа: гармонические синус-косинусные функции, дельта-функция и функция единичного скачка.

Дельта-функция или функция Дирака. По определению, дельта-функция описывается следующими математическими выражениями (в совокупности):

d(t-t) = 0   при t ¹ t,

d(t-t) dt = 1.

Функция d(t-t) не является дифференцируемой, и имеет размерность, обратную размерности ее аргумента, что непосредственно следует из безразмерности результата интегрирования. Значение дельта-функции равно нулю везде за исключением точки t, где она представляет собой бесконечно узкий импульс с бесконечно большой амплитудой, при этом площадь импульса равна 1.

Дельта-функция является полезной математической абстракцией. На практике такие функции не могут быть реализованы с абсолютной точностью, так как невозможно реализовать значение, равное бесконечности, в точке t = t на аналоговой временной шкале, т.е. определенной по времени также с бесконечной точностью. Но во всех случаях, когда площадь импульса равна 1, длительность импульса достаточно мала, а за время его действия на входе какой-либо системы сигнал на ее выходе практически не изменяется (реакция системы на импульс во много раз больше длительности самого импульса), входной сигнал можно считать единичной импульсной функцией со свойствами дельта - функции.

При всей своей абстрактности дельта - функция имеет вполне определенный физический смысл. Представим себе импульсный сигнал прямоугольной формы П(t-) длительностью , амплитуда которого равна 1/, а площадь соответственно равна 1. При  уменьшении значения длительности импульс, сокращаясь по длительности,  сохраняет свою площадь, равную 1, и возрастает по амплитуде. Предел такой операции при   0 и носит название дельта - импульса. Этот сигнал d(t-t) сосредоточен в одной координатной точке t = t, конкретное амплитудное значение сигнала не определено, но площадь (интеграл) остается равной 1. Это не мгновенное значение функции в точке t = t, а именно импульс  (импульс силы в механике, импульс тока в электротехнике и т.п.) – математическая модель короткого действия, значение которого равно 1.

Дельта-функция обладает фильтрующим свойством. Суть его заключается в том, что если дельта-функция d(t-t) входит под интеграл какой-либо функции в качестве множителя, то результат интегрирования равен значению подынтегральной функции в точке t расположения дельта-импульса, т.е.:

f(t) d(t-t) dt = f(t).

Интегрирование в этом выражении может ограничиваться ближайшими окрестностями точки t.

Функция единичного скачка или функция Хевисайда иногда называется также функцией включения. Полное математическое выражение функции:

При моделировании сигналов и систем значение функции скачка в точке t=0 очень часто принимают равным 1, если это не имеет принципиального значения.

Функция единичного скачка используется при создании математических моделей сигналов конечной длительности. При умножении любой произвольной функции, в том числе периодической, на прямоугольный импульс, сформированный из двух последовательных функций единичного скачка

s(t) = (t) - (t-T),

из нее вырезается участок на интервале 0-Т, и обнуляются значения функции за пределами этого интервала.

Функция Кронекера. Для дискретных и цифровых систем разрешающая способность по аргументу сигнала определяется интервалом его дискретизации Dt. Это позволяет в качестве единичного импульса использовать дискретный интегральный аналог дельта-функции - функцию единичного отсчета d(kDt-nDt), которая равна 1 в координатной точке k = n, и нулю во всех остальных точках. Функция d(kDt-nDt) может быть определена для любых значений Dt = const, но только для целых значений координат k и n, поскольку других номеров отсчетов в дискретных функциях не существует.

Математические выражения d(t-t) и d(kDt-nDt) называют также импульсами Дирака и Кронекера. Однако, применяя такую терминологию, не будем забывать, что это не просто единичные импульсы в координатных точках t и nDt, а полномасштабные импульсные функции, определяющие как значения импульсов в определенных координатных точках, так и нулевые значения по всем остальным координатам, в пределе от - до  .  

1.3.  Системы  преобразования  сигналов [1, 9, 14, 18]

Сигналы, в любой форме материального представления, содержат определенную полезную информацию. Если при преобразованиях сигналов происходит нарушение заключенной в них информации (частичная утрата, количественное изменение соотношения информационных составляющих или параметров, и т.п.), то такие изменения называются искажениями сигнала. Если полезная информация остается неизменной или адекватной содержанию во входном сигнале, то такие изменения называются преобразованиями сигнала.

Математические преобразования сигналов осуществляются для того, чтобы получить какую-то дополнительную информацию, недоступную в исходном сигнале, или выделить из входного сигнала полезную информацию и сделать ее более доступной для дальнейшей обработки, измерений каких-либо параметров, передаче по каналам связи, и пр. Преобразованный сигнал принято называть трансформантой исходного.

Любые изменения сигналов сопровождаются изменением их спектра, и по характеру этого изменения разделяются на два вида: линейные и нелинейные. К нелинейным относят изменения, при которых в составе спектра сигналов появляются (вводятся) новые гармонические составляющие, отсутствующие во входном сигнале. При линейных изменениях сигналов изменяются амплитуды и/или начальные фазы гармонических составляющих спектра (вплоть до полного подавления в сигнале определенных гармоник). И линейные, и нелинейные изменения сигналов могут происходить как с сохранением полезной информации, так и с ее искажением. Это зависит не только от характера изменения спектра сигналов, но и от спектрального состава самой полезной информации.

Общее понятие систем. Преобразование и обработка сигналов осуществляется в системах. Понятия сигнала и системы неразрывны, так как любой сигнал существует в пределах какой-либо системы. Система обработки сигналов может быть реализована как в материальной форме (специальное устройство, измерительный прибор, совокупность физических объектов с определенной структурой взаимодействия и т.п.), так и программно на ЭВМ или любом другом специализированном вычислительном устройстве. Форма реализации системы существенного значения не имеет, и определяет только ее возможности при анализе и обработке сигналов.

Рис. 1.3.1. Графическое представление системы.

Безотносительно к назначению система всегда имеет вход, на который подается внешний входной сигнал, в общем случае многомерный, и выход, с которого снимается обработанный выходной сигнал. Собственно система представляет собой системный оператор (алгоритм) преобразования входного сигнала s(t) – воздействия или возбуждения, в сигнал на выходе системы y(t) – отклик или выходную реакцию системы. Символическое обозначение операции преобразования (трансформации сигнала):  y(t) = T[s(t)].

Системный оператор T - это набор правил преобразования (transformation) сигнала s(t) в сигнал y(t). Так, например, в самом простейшем случае таким правилом может быть таблица перекодировки входных сигналов в выходные.

Для детерминированных входных сигналов соотношение между выходными и входными сигналами всегда однозначно задается системным оператором. В случае реализации на входе системы случайного входного процесса происходит изменение статистических характеристик сигнала (математического ожидания, дисперсии, корреляционной функции и пр.), которое также определяется системным оператором.

Для полного определения системы необходимо задание характера, типа и области допустимых величин входных и выходных сигналов. По типу обработки входных сигналов они обычно подразделяются на системы непрерывного времени для обработки сигналов в процессе измерений, и цифровые системы для обработки данных, зарегистрированных на промежуточных носителях. Совокупность системного оператора Т и областей входных и выходных сигналов образует математическую модель системы.

Линейные и нелинейные системы составляют два основных класса систем обработки сигналов.

Термин линейности (linear) означает, что система преобразования сигналов должна иметь произвольную, но в обязательном порядке линейную связь между входным сигналом (возбуждением) и выходным сигналом (откликом) с определенным изменением спектрального состава входного сигнала (усиление или подавление определенных частотных составляющих сигнала. В нелинейных (nonlinear) системах связь между входным и выходным сигналом определяется произвольным нелинейным законом с дополнением частотного состава входного сигнала частотными составляющими, отсутствующими во входном сигнале.

Стационарные и нестационарные системы. Система считается стационарной и имеет постоянные параметры, если ее свойства (математический алгоритм оператора преобразования) в пределах заданной точности не зависят от входного и выходного сигналов и не изменяются ни во времени, ни от каких-либо других внешних факторов. В противном случае система является нестационарной, и называется параметрической или системой с переменными параметрами. Среди последних большое значение имеют так называемые адаптивные системы обработки данных. В этих системах производится, например, оценивание определенных параметров входных и выходных сигналов, по результатам сравнения которых осуществляется подстройка параметров преобразования (переходной характеристики системы) таким образом, чтобы обеспечить оптимальные по производительности условия обработки сигналов или минимизировать погрешность обработки.

Основные системные операции. К базовым линейным операциям, из которых могут быть сформированы любые линейные операторы преобразования, относятся операции скалярного умножения, сдвига и сложения сигналов:

y(t) = c s(t),         y(t) = s(t-Dt),         y(t) = a(t)+b(t).

Для нелинейных систем выделим важный тип безинерционных операций нелинейной трансформации сигнала, результаты которой зависят только от его входных значений. К ним относятся, например, операции квадратирования и логарифмирования сигнала:

y(t) = [s(t)]2,     y(t) = log[s(t)].

Линейные системы. Система считается линейной, если ее реакция на входные сигналы аддитивна (выполняется принцип суперпозиции сигналов) и однородна (выполняется принцип пропорционального подобия). Другими словами, отклик линейной системы на взвешенную сумму входных сигналов должен быть равен взвешенной сумме откликов на отдельные входные сигналы независимо от их количества и для любых весовых коэффициентов, в том числе комплексных.

При программной реализации линейных систем на ЭВМ особых затруднений с обеспечением линейности в разумных пределах значений входных и выходных сигналов, как правило, не возникает. При физической (аппаратной) реализации систем обработки данных диапазон входных и выходных сигналов, в котором обеспечивается линейность преобразования сигналов, всегда ограничен и должен быть специально оговорен.  

Инвариантность систем к сдвигу. Система называется инвариантной к сдвигу, если сдвиг входного сигнала по аргументам (времени, координатам пространства и т.п.) вызывает соответствующий сдвиг выходного сигнала:

y(x,t) = T[s(x,t)],   T[s(x-Dx,t-Dt)] = y(x-Dx,t-Dt).

Это означает, что форма выходного сигнала зависит только от входного сигнала, и не зависит от времени поступления сигнала на вход системы. Инвариантность системы к сдвигу является одним из подтверждений постоянства ее параметров.

Линейные системы, инвариантные к сдвигу. Линейность и инвариантность к сдвигу являются независимыми свойствами систем и не определяют друг друга. Так, например, операция квадратирования сигнала инвариантна к сдвигу, но нелинейна.

В теории анализа и обработки данных основное место занимают системы, линейные и инвариантные к сдвигу (ЛИС - системы). Они обладают достаточно широкими практическими возможностями при относительной простоте математического аппарата. В дальнейшем, если это специально не оговаривается, будем иметь в виду именно такие системы.

Преимущество, которое отдается ЛИС - системам в методах обработки информации, базируется на возможности разложения входного сигнала любой, сколь угодно сложной формы, на составляющие простейших форм, отклик системы на которые известен и хорошо изучен, с последующим вычислением выходного сигнала в виде суммы откликов на все составляющие входного сигнала. В качестве простейших форм разложения сигналов используются, как правило, единичные импульсы и гармонические составляющие. Разложение по единичным импульсам применяется при динамическом представлении сигнала в зависимости от реальных физических аргументов (времени, координат и пр.) и использует операцию свертки. Разложение на гармонические составляющие использует спектральное (частотное) представление сигнала и преобразование Фурье.

 Соединения ЛИС - систем. При последовательном (каскадном) соединении систем выходной сигнал одной системы служит входным сигналом для второй и т.д. в зависимости от количества составляющих систем каскада. По отношению к общей системной операции преобразования порядок соединения входящих в нее систем значения не имеет. Так, для двух последовательно соединенных систем на рис. 1.3.2:

Рис. 1.3.2 Соединения систем.

y(t) = T2[T1[s(t)]] = T1[T2[s(t)]].

При параллельном соединении входной сигнал поступает одновременно на входы всех составляющих систем, а выходные сигналы систем суммируются:

y(t) = T1[s(t)] + T2[s(t)] + ... + TN[s(t)].

 Образуемые в результате соединений системы в целом также являются ЛИС - системами, если линейны и инвариантны к сдвигу системы, в них входящие.

 Обобщенная схема системы цифровой обработки сигналов на рис. 1.3.3 приведена в качестве примера.

Рис. 1.3.3. Структурная схема системы дифференцирования сигналов.

1.4.  информационная емкость сигналов [10,12,28]

Объем информации, находящейся в обращении и необходимой для функционирования и развития современного общества, нарастает примерно пропорционально квадрату развития производительных сил. В передовых по научно-техническому развитию странах мира доля рабочей силы, занятой вопросами сбора, обработки и обеспечения информацией, превышает долю рабочей силы в сфере материального производства. Применение методов и средств автоматизации на всех этапах обращения информации, эффективная организация ее хранения, обработки и обмена, приобретают все большее значение в качестве основного условия успешного функционирования экономики стран.

 Понятие информации. В настоящее время нет общепринятого и однозначного понимания термина "Информация". Спектр бытующих понятий весьма широк, от общего философского - информация есть отражение реального мира, до узко практического - информация есть сведения, являющиеся объектом хранения, передачи и преобразования. Расхождения существуют и по вопросу места информации в материальном мире. Это свойство индивидуальных объектов или результат их взаимодействия? Присуща ли информация всем видам материи или лишь определенным образом организованной материи?

В информатике под информацией понимается, как правило, совокупность сведений смыслового содержания, которые можно собирать, обрабатывать, передавать и т.п. Причем именно сведений в изначальном смысле латинского слова informatio, а не данных или сигналов, которые являются носителями этих сведений. В таком понимании процессы извлечения сведений из данных и их интерпретации неразрывно связаны с разумом, а конечным результатом обработки и восприятия информации с помощью разума является раскрытие неопределенности знаний о каком-либо объекте, явлении или процессе. Но при таком подходе размывается само понятие разума.

С одной стороны, существование любого живого существа поддерживается до тех пор, пока действуют его органы чувств (датчики), преобразующие физические воздействия окружающего мира в определенным образом организованные сигналы, которые в материальной форме отображают данные об этих воздействиях. Данные собираются и интерпретируются определенной системой, которую в самой общей форме мы называем "разумом", из общей суммы данных извлекаются определенные сведения, степень неопределенности сведений об окружающей обстановке снижается, и ... лиса распутывает заячий след. Живое существо существует до тех пор, пока способно воспринимать и обрабатывать внешние и внутренние воздействия. Нет сомнений и в том, что в коллективных сообществах его члены не только способны собирать и обрабатывать информацию, но и передавать ее другим членам сообщества, как, например, в пчелиной семье точный путь до продуктивного цветочного массива. Информационный танец пчелы в этом отношении по компактности содержания ничем не уступает телеграфному сообщению. Естественно, в принятой у пчел символьной форме.

С другой стороны, если информация неразрывно связана с "разумом", то в этом случае нельзя отказать в "разуме" и электронной вычислительной машине, обыгрывающей в шахматы чемпиона мира, а равно и любым устройствам технической кибернетики любого уровня, так как все они имеют определенные системы сбора, передачи, накопления, хранения и обработки информации той или иной степени сложности, и на основе этой информации способны формировать сигналы обратной связи для управления определенными процессами.

В технических отраслях знаний, где вопросы соотношения информации с разумом не стоят на первом месте, преобладает понимание информации в виде отображения такого всеобщего свойства материи, как разнообразие, как характеристики внутренней организованности материальных систем, процессов или явлений по множеству состояний, которые для них возможны. В такой трактовке информация существует независимо от того, воспринимается она каким-либо "разумом" или нет, и является одним из свойств материальных объектов. "Информация есть информация, а не материя и не энергия" (Норберт Винер). Это свойство в какой-то мере имеет потенциальный характер. Информация может проявлять себя только при взаимодействии объектов или процессов, может возникать (создаваться) и исчезать (уничтожаться).

Но и в такой трактовке возникает очень много вопросов, на которые трудно дать однозначные ответы. Насекомое третичного периода, неизвестное в настоящее время ученым, прилипло к капле смолы хвойного дерева. Новый слой смолы закрыл насекомое. Дерево упало, и его занесло песком. Смола превратилась в янтарь. Янтарь в потенциале содержит полную информацию о насекомом, потому как в нем десятки тысяч фрагментов ДНК - информация, достаточная для восстановления ДНК и воспроизводства насекомого, если не в настоящее время, то в ближайшем будущем. Но когда она возникла? В момент появления насекомого с его ДНК? В момент прилипания к смоле? В момент окаменения? Можно ли говорить о появлении информации, если еще не существовал субъект, способный извлечь и использовать эту информацию?  Наконец, янтарь с насекомым найден и попал на глаза палеонтолога. Определен новый вид насекомого. Появилась первая частичная информация? Так может быть, информация появляется только при активном и целенаправленном воздействии на объект исследований? А если янтарь оказался непрозрачным, и его переплавили? Исчезла ли информация? И можно ли считать, что она вообще была?

Ответы на эти и подобные им вопросы тяготеют к двум полюсам, а по существу, к двум диаметрально противоположным философским позициям.

Сторонники первой позиции считают, что информация присуща только определенным образом организованным объектам или процессам, и понимают под информацией только то, что может восприниматься, обрабатываться, осмысливаться и использоваться, т.е. является продуктом целенаправленного процесса сбора, организации,  систематизации и использования сведений о материальных объектах и процессах.

Противоположная позиция, это понятие информации как свойства объектов и процессов воспринимать и перерабатывать внутреннее состояние и внешнее воздействие окружающей среды, сохранять его результаты и передавать их другим объектам. С этой позиции все материальные объекты и процессы являются источниками, носителями и потребителями информации, на основе которой и идет развитие реального мира. По существу, это соответствует принятию материальности информации и информационной основы мироздания.

При неопределенности самого понятия информации можно достаточно обоснованно считать, что информация проявляется, хранится и передается от одного объекта к другому в материально - энергетической форме в виде сигналов. Сигналом, как материальным носителем информации, может быть любой физический процесс (электрический, магнитный, оптический, акустический и пр.), определенные параметры которого (амплитуда, частота, энергия, интенсивность и др.) однозначно отображают информационные данные (сообщения).

Количественная мера информации. Теория любого явления начинается с появления количественных взаимоотношений между объектами исследований, т.е. при установлении принципов измеряемости каких-либо свойств объектов. Единицу количественной меры информации - БИТ (сокращение binary digit - двоичная цифра), впервые предложил Р. Хартли в 1928 году. 1 бит - это информация о двух возможных равновероятных состояниях объекта, неопределенность выбора из двух равновероятных событий. Математически это отображается состоянием 1 или 0 одного разряда двоичной системы счисления. Количество информации Н (в битах), необходимое и достаточное для полного снятия неопределенности состояния объекта, который имеет N равновозможных состояний, измеряется как логарифм по основанию 2 из числа возможных состояний:

H = log 2 N.                                                    (1.4.1)

Соответственно, двоичный числовой информационный код одного из N возможных состояний объекта занимает Н двоичных разрядов.

Пример. Необходимо поднять груз на определенный этаж 16 -ти этажного здания (нумерация этажей 0-15, N = 16). Сколько бит информации полностью определяют задание?

H = log2 N = log2 16 = 4.

Следовательно, 4 бита информации необходимы и достаточны для полного снятия неопределенности выбора. В этом можно убедиться применением логики исчисления с последовательным делением пополам интервалов состояний. Например, для 9-го этажа:

1. Выше 7-го этажа?     Да = 1.       2. Выше 11-го этажа?     Нет = 0.

3. Выше 9-го этажа?     Нет = 0.     4. Выше 8-го этажа?       Да = 1.

Итог: этаж номер 9 или 1001 в двоичном исчислении, четыре двоичных разряда.

Если в приведенном примере на этажах имеется по 4 квартиры с нумерацией на каждом этаже 0-3 (М=4), то при адресации груза в квартиру потребуется еще 2 бита информации. Такой же результат получим, если вместо  независимой нумерации этажей и квартир на этажах (два источника неопределенности) мы будем иметь только сквозную нумерацию квартир (один обобщенный источник):

H = log 2 N + log 2 M = log 2 16 + log 2 4 = 6 log 2 (N  M) = log 2 64 = 6,

т.е. количество информации отвечает требованию аддитивности: неопределенность объединенного источника равна сумме неопределенностей исходных источников, что соответствует интуитивному требованию к информации: она должна быть однозначной, а ее количество должно быть одним и тем же независимо от способа задания.

Основание логарифма не имеет принципиального значения и определяет только масштаб или единицу неопределенности. Так, если за единицу неопределенности принять три равновероятных состояния, то для определения, например, одной фальшивой золотой монеты (более легкой) из 27 внешне неотличимых монет потребуется только H = log 3 27 = 3, т.е. три взвешивания на равноплечных весах. Логику исчисления взвешиваний предлагается определить самостоятельно.

Двоичная мера информации получила общее признание в связи с простотой реализации информационной техники на элементах с двумя устойчивыми состояниями. В десятичном исчислении единицей информации является один десятичный разряд - ДИТ.

Энтропия источника информации. Степень неопределенности состояния объекта (или так называемого источника информации) зависит не только от числа его возможных состояний, но и от вероятности этих состояний. При неравновероятных состояниях свобода выбора для источника ограничивается. Так, если из двух возможных состояний вероятность одного из них равна 0.999, то вероятность другого состояния соответственно равна 1-0.999 = 0.001, и при взаимодействии с таким источником результат практически предрешен.

В общем случае, в соответствии с теорией вероятностей, источник информации однозначно и полно  характеризуется ансамблем состояний U = {u1, u2,..., uN} с вероятностями состояний соответственно {р(u1), р(u2),..., р(uN)} при условии, что сумма вероятностей всех состояний равна 1. Мера количества информации, как неопределенности выбора дискретным источником состояния из ансамбля U, предложена К. Шенноном в 1946 году и получила название энтропии дискретного источника информации или энтропии конечного ансамбля:

H(U) = -pn log2 pn.                                             (1.4.2)

Выражение Шеннона совпадает с выражением Больцмана для энтропии физических систем при оценке степени разнообразия их состояний. Мера энтропии Шеннона является обобщением меры Хартли на случай ансамблей с неравновероятными состояниями, в чем нетрудно убедиться, если в выражении (1.4.2) значение pn заменить значением p=1/N для ансамбля равновероятных состояний. Энтропия конечного ансамбля H(U) характеризует неопределенность, приходящуюся в среднем на одно состояние ансамбля.

Учитывая, что в дальнейшем во всех математических выражениях, касающихся энтропии, мы будем использовать только двоичное основание логарифма, индекс 2 основания логарифма в формулах будем подразумевать по умолчанию.

 

ui

pi

ui

pi

ui

pi

ui

pi

ui

pi

а

.064

з

.015

о

.096

х

.009

э

.003

б

.015

и

.064

п

.024

ц

.004

ю

.007

в

.039

й

.010

р

.041

ч

.013

я

.019

г

.014

к

.029

с

.047

ш

.006

-

.124

д

.026

л

.036

т

.056

щ

.003

е,ё

.074

м

.026

у

.021

ъ,ь

.015

ж

.008

н

.056

ф

.020

ы

.016

Пример. Вычислить энтропию ансамбля 32 букв русского алфавита. Вероятности использования букв приведены в таблице. Сравнить энтропию с неопределенностью, которая была бы у алфавита при равновероятном их использовании.

Неопределенность на одну букву при равновероятности использования:

               H(u) = log  32 = 5

Энтропия алфавита по ансамблю таблицы:

H(u) = - 0.064 log 0.064 - 0.015 log 0.015 - . . . . . . . . . . . . . . . . . .  - 0.143 log  0.143 4.42.

Таким образом, неравновероятность состояний снижает энтропию источника.

Основные свойства энтропии:

1. Энтропия является величиной вещественной и неотрицательной, т.к. значения вероятностей pn находятся в интервале 0-1, значения log pn всегда отрицательны, а значения -pn log pn в (1.4.2) соответственно положительны.

2. Энтропия - величина ограниченная, т.к. при pn  0 значение -pnlog pn также стремится к нулю, а при 0 < pn   1 ограниченность суммы всех слагаемых очевидна.

3. Энтропия равна 0, если вероятность одного из состояний источника информации равна 1, и тем самым состояние источника полностью определено (вероятности остальных состояний источника равны нулю, т.к. сумма вероятностей должна быть равна 1).

4. Энтропия максимальна при равной вероятности всех состояний источника информации:

Hmax(U) = -(1/N) log (1/N) = log  N.

Рис. 1.4.1.

5. Энтропия источника с двумя состояниями u1 и u2 при изменении соотношения их вероятностей p(u1)=p и p(u2)=1-p определяется выражением:

H(U) = -[p log p + (1-p) log (1-p)],

и изменяется от 0 до 1, достигая максимума при равенстве вероятностей. График изменения энтропии приведен на рис. 1.4.1.

6. Энтропия объединенных статистически независимых источников информации равна сумме их энтропий.

Рассмотрим это свойство на двух источниках информации u и v. При объединении источников получаем обобщенный источник информации (u,v), который описывается вероятностями p(unvm) всех возможных комбинаций состояний un источника u и vm источника v. Энтропия объединенного источника при N возможных состояниях источника u и М возможных состояниях источника v:

H(UV) = -p(unvm) log p(unvm),

 Источники статистически независимы друг от друга, если выполняется условие:

p(unvm) = p(un)p(vm).

 С использованием этого условия соответственно имеем:

H(UV) = -p(un)p(vm) log [p(un)p(vm)] =

= -p(un) log p(un)p(vm) -p(vm) log p(vm)p(um).

 С учетом того, что p(un) = 1 иp(vm) = 1, получаем:

H(UV) = H(U) + H(V).                                            (1.4.3)

7. Энтропия характеризует среднюю неопределенность выбора одного состояния из ансамбля, полностью игнорируя содержательную сторону ансамбля. С одной стороны, это расширяет возможности использования энтропии при анализе самых различных явлений, но, с другой стороны, требует определенной дополнительной оценки возникающих ситуаций. Как это следует из рис. 1.4.1, энтропия состояний может быть неоднозначной, и если в каком-либо экономическом начинании действие u с вероятностью pu=p приводит к успеху, а действие v с вероятностью pv=1-p к банкротству, то выбор действий по оценке энтропии может оказаться и прямо противоположным, т.к. энтропия при pv=p равна энтропии при pu=p.   

Энтропия непрерывного источника информации должна быть бесконечна, т. к. неопределенность выбора из бесконечно большого числа возможных состояний бесконечно велика.

Разобьем диапазон изменения непрерывной случайной величины U на конечное число n малых интервалов Du. При реализации значений u в интервале (un, un+Du) будем считать, что реализовалось значение un дискретной случайной величины U', вероятность реализации которой:

p(un<u<un+Du) =p(u) du p(un) Du.

 Энтропия дискретной величины U':

H(U') = -p(un) Du log (p(un) Du).

 Заменяем log (p(un) Du) = log p(un)+log Du, принимаем во внимание, что сумма p(un)Du по всем возможным значениям un равна 1, и получаем:

H(U') = -p(un) Du log p(un) – log Du.                          (1.4.4)

В пределе, при Du  0, получаем выражение энтропии для непрерывного источника:

H(U) = -p(u) log p(u) du –.                       (1.4.5)

Значение энтропии в (1.4.5), как и ожидалось, стремится к бесконечности за счет второго члена выражения. Для получения конечной характеристики информационных свойств непрерывных сигналов используют только первый член выражения (1.4.5), получивший название дифференциальной энтропии. Ее можно трактовать, как среднюю неопределенность выбора произвольной случайной величины по сравнению со средней неопределенностью выбора случайной величины U', имеющей равномерное распределение в диапазоне (0-1). Действительно, для такого распределения p(un) = 1/N, Du = 1/N, и при N   из (1.4.4) следует:

H(U') = - (log N)/N - log Du -.

 Соответственно, разность энтропий дает дифференциальную энтропию:

h(U) = H(U) – H(U') = -p(u) log p(u) du.                       (1.4.6)

Дифференциальная энтропия не зависит от конкретных значений величины U:

h(U+a) = h(U),   a = const,

но зависит от масштаба ее представления:

h(kU) = h(U) + log k.

Практика анализа и обработки сигналов обычно имеет дело с сигналами в определенном интервале [a, b] их значений, при этом максимальной дифференциальной энтропией обладает равномерное распределение значений сигналов:

h(U) = -p(u) log p(u) du = log (b-a).

 По мере сужения плотности распределения значение h(U) уменьшается, и в пределе при p(u)  d(u-c), a<c<b стремится к нулю.

 Информационная емкость сигналов существенно зависит от типа сигналов и определяет требования к каналам передачи данных, равно как и технические характеристики каналов связи ограничивают информационную емкость сигналов, передаваемых по этим каналам.

Для каналов передачи дискретных сигналов (дискретные канала связи) используют понятия технической и информационной скорости передачи данных.

Под технической скоростью передачи подразумевают число элементарных сигналов (символов), передаваемых по каналу в единицу времени. Простейший элементарный символ – однополярный электрический импульс длительностью t на тактовом интервале T. В дискретных каналах используют, как правило, двуполярные импульсы, положительные на первой половине интервала Т и отрицательные на второй половине. Это позволяет поддерживать нулевой потенциал кабеля и выполнять тактовую синхронизацию приемо-передачи сигналов. Единицей измерения технической скорости Vt = 1/T служит БОД – один символ в секунду. Полоса пропускания канала связи ограничивается предельной частотой Fпред по уровню затухания сигнала до уровня статистических помех, при этом значение технической скорости передачи данных не может быть выше Fпред без специальных устройств выделения информационных сигналов.  

При известной технической скорости Vt скорость передачи информации измеряется в битах в секунду и задается соотношением:

Vh = Vt H(s),

где H(s) – энтропия символа. Для двоичных дискретных символов [0, 1] при постоянной амплитуде импульсов значение H(s) равно 1. При числе L возможных равновероятных уровней амплитуды импульсов (уровень помех меньше разности уровней амплитуд импульсов) значение H(s) равно log L.

Информационная емкость сигнала или полное количество информации в сигнале S (сообщении, кодовой последовательности/слове) определяется полным количеством N = t/T энтропии символов в битах на интервале задания сигнала t:

It(S) = N log L = (t/T) log L.                                  (1.4.7)

Увеличение числа уровней L  увеличивает пропускную способность каналов связи, но усложняет аппаратуру кодирования данных и снижает помехоустойчивость связи.

Для непрерывных сигналов передача по каналам связи возможна только при условии, что максимальная информационная частота в сигнале Fmax не превышает предельной частоты Fпред передачи сигналов каналом связи. Для оценки информационной емкости непрерывного сигнала выполним его дискретизацию с интервалом Dt = 1/2Fmax. Как установлено Котельниковым и Шенноном, по мгновенным отсчетам непрерывного сигнала с таким интервалом дискретизации аналоговый сигнал может быть восстановлен без потери информации. При полной длительности сигнала Ts число отсчетов:

N = Ts/Dt = 2Fmax Ts.

Определим максимально возможное число выборок в каждом отсчете при наличии шума в канале со средней мощностью Рш = d2. При средней мощности сигнала  Ps = s2:

L = =.

Информационная емкость сигнала:

I(S) = 2Fmax Ts log L.                                             (1.4.8)

Информационные возможности сигнала возрастают с расширением его спектра и превышением его уровня над уровнем помех.

литература

1. Баскаков С.И. Радиотехнические цепи и сигналы Учебник для вузов. - М. Высшая школа, 1988.

9. Даджион Д., Мерсеро Р. Цифровая обработка многомерных сигналов. – М.: Мир, 1988. – 488 с.

10. Дмитриев В.И. Прикладная теория информации: Учебник для вузов. - М.: Высшая школа, 1989.

12. Игнатов В.А. Теория информации и передачи сигналов. - М.: Советское радио, 1979.

14. Купер Дж., Макгиллем А. Вероятностные методы анализа сигналов и систем. – М.: Мир, 1989.

15. Лосев А.К. Линейные радиотехнические цепи: Учебник для вузов. - М.: Высшая школа, 1971.

18. Оппенгейм А.В., Шафер Р.В. Цифровая обработка сигналов. – М.: Связь, 1979. – 416 с.

25. Сергиенко А.Б. Цифровая обработка сигналов. / Учебник для вузов. – СПб.: Питер, 203. – 608 с.

28.  Колесник В.Д., Полтырев Г.Ш. Курс теории информации. – М.: Наука, 1982. – 416 с.


Лекция 4.  ПРОСТРАНСТВО и МЕТРОЛОГИЯ  СИГНАЛОВ

Содержание

1. Пространство сигналов. Множества сигналов. Линейное пространство сигналов. Норма сигналов. Метрика сигналов. Скалярное произведение сигналов. Коэффициент корреляции сигналов. Координатный базис пространства.

2. Мощность и энергия сигналов. Понятия мощности и энергии сигналов.

3. Пространства функций. Нормирование метрических параметров. Ортогональные сигналы. Ортонормированный базис пространства. Разложение сигнала в ряд. Ортонормированные системы функций. Разложение энергии сигнала.  

4. Функции  корреляции  сигналов. Корреляционные функции сигналов.  Взаимная корреляционная функция.

5. Математическое описание шумов и помех. Шумы и помехи. Природа помех. Характеристики помех. 

ВВЕДЕНИЕ

В данной теме метрология сигналов рассматривается, в основном, на уровне понятий и базовых определений, предваряя их более подробное изучение в дальнейших темах курса. Это объясняется тем, что при детальном изучении каких-либо характеристик или свойств сигналов их рассмотрение не может выполняться в отрыве от других метрологических характеристик сигналов и требует определенной ориентировки в общей метрологии сигналов, хотя бы на уровне понятий.

2.1.  Пространство сигналов  [1,3,16,29].

Важнейшее свойство аналоговых и дискретных сигналов заключается в том, что их линейные комбинации также являются аналоговыми или дискретными сигналами. Линейные комбинации цифровых сигналов, в силу их ограничения по разрядности, в принципе относятся к разряду нелинейных операций, однако последним фактором можно пренебречь, если ошибки, которые вносятся в результаты наблюдений при квантовании отсчетов, достаточно малы по сравнению с шумами зарегистрированной информации.  При дискретизации и квантовании данных непосредственно на входах в ЭВМ это условие выполняется практически всегда, поскольку ошибки определяются разрядностью ЭВМ и программными системами обработки данных, которые обычно не ниже 6-12 десятичных разрядов.

Множества сигналов. Сигналы обычно рассматриваются в составе определенных множеств L, объединенных каким-либо свойством Р, характерным для всех и каждого из сигналов данного множества.  Условное отображение множества:  L = {s; P} – множество всех s, для которых справедливо свойство Р. Определив свойство Р, мы тем самым можем ограничивать сигналы, действующие в каких-либо системах, определенными типами, условиями, границами по параметрам и т.п.

Пример 1.  Множество гармонических сигналов.

L = {s; s(t) = A·cos (wt+j),   - < t < }.

Множество содержит гармонические сигналы с произвольными значениями амплитуд, частот и фаз.   

Пример 2.  Множество периодических сигналов.

L(Т) = {s; s(t) = s(t+kT),   - < t < ,  k  I}.

Пример 3.  Множество сигналов, ограниченных по амплитуде и длительности.

L(K,T) = {s; |s(t)| ≤ K,  s(t)=0 при |t| > T}.

 Терминология операций с множествами сигналов. Множества сигналов могут образовываться из других (ранее определенных) множеств логическими операциями объединения (индекс объединения - ) и пересечения (индекс - ):

L = S1  S2 = {s; s S1 или s S2},

L = S1  S2 = {s; s S1 и s S2}.

Возможно также разбиение множества сигналов на непересекающиеся подмножества, более удобные для обработки, при этом для множества S, разбитого на совокупность подмножеств {S1, S2, S3, …, SN}, должны выполняться условия:

S = S1  S2 S3  SN,

Sn  Sm =  для  n ≠ m.

 Запись S1  S означает, что множество S1 входит в состав множества S, т.е. является подмножеством в составе S.

Преобразование элементов vi множества V в элементы gi множества G называется отображением (трансформацией, преобразованием) V в G (символьные записи: g = T[v] или  v → g), при этом элементы v называют прообразом множества g, а элементы g – образом множества v.

Если преобразование выполняется над числами одного множества R (например, x = T[y]), то такое преобразование порождает функциональную зависимость x = f(y).

Если преобразование выполняется над функциями одного и того же множества L (например, f(t) = T[g(t)]), то алгоритм преобразования T[..] называют оператором преобразования  f(t) в g(t).

Преобразование g = T[f(t)] функций f(t) множества F называют функционалом, если результатом преобразования являются числовые значения g множества G. Примерами функционалов являются интегралы функций в определенных пределах.

Преобразование может выполняться функциональными операторами с переводом функций одной переменной, например t, в функции по другой переменной, например w, Типичным примером функционального оператора является преобразование Фурье. В комплексной форме:

S(w) = s(t) exp(-jwt) dt.

Пространство сигналов.  Для анализа и обработки информации, которая может быть заключена в сигналах, требуется выделять из множества сигналов сигналы с определенными параметрами, сравнивать сигналы друг с другом, оценивать изменение сигналов при их прохождении через системы обработки данных, и т.п. Это может выполняться только при "помещении" множества сигналов в определенные метрические пространства с заранее оговоренными свойствами и единицами измерений. Так, "квартирное пространство" любого города включает, как минимум, три структурных единицы: названия улиц, номера домов, номера квартир, что и определяет пространство "квартирных сигналов". Но это пространство не является метрическим, так как оно не имеет нулевой точки и единиц измерений, по нему нельзя определить расстояние между двумя "квартирными сигналами". Положение на поверхности Земли любого объекта однозначно определяется по "координатному сигналу" в заранее сформированных метрических координатных пространствах с нулевыми точками и принятыми единицами измерений. Для практического использования определенными структурными ограничениями сформированы также различные пространства картографических проекций, жестко установленная метрология которых позволяет трансформировать информацию из одного пространства в другое, например, более удобное для обработки определенными программами.

Главным условием превращения множество сигналов L{s1(t), s2(t), …}, которые имеют какие-то общие свойства, в функциональное пространство сигналов является выполнение условия однозначной реализации. Если пространство значений независимой переменной t задано выражением R:=(-,+), то пространство сигналов LP[R] определяет множество сигналов в этом пространстве, для которых условие однозначной реализации записывается в следующей форме:

|s(t)|p dt < .

Для анализа сигналов наиболее часто используется гильбертово пространство, сигналы в котором должны удовлетворять условию интегрирования с квадратом:

|s(t)|2 dt < .

Периодические сигналы обычно рассматриваются в пространстве L2 [0, 2p] одного периода:

|s(t)|2 dt < .

Интуитивно понятно, что метрические пространства должны иметь определенную систему координат, что позволяет рассматривать любые произвольные сигналы х и у, принадлежащие пространству, в виде векторов, соединяющих начало координат с определенными точками этого пространства, и определять расстояние между этими точками r(x,y). Так как расстояние между точками должно быть числовым, а сигналы х и у представляют собой функции, то r(x,y) представляет собой функционал, для которого в метрическом пространстве должны быть справедливы следующие аксиомы:

  •  r(x,y) ≥ 0;  r(x,y) = 0 при х = у,
  •  r(x,y) =  r(y,x),
  •  r(x,z) ≤ r(x,y) + r(y,z)  - неравенство треугольника.

Каждый элемент векторного пространства может отображаться проекциями на координатные оси, а для обработки и преобразований сигналов могут использоваться операции векторной алгебры. Достаточно простые алгебраические взаимосвязи между сигналами характерны для линейных пространств.

Линейное пространство сигналов.  Множество сигналов L образует линейное пространство сигналов,  если для него справедливы следующие аксиомы

  1.  Множество содержит такой нулевой элемент , что для всех сигналов u(t) L выполняется равенство u(t) + = u(t).
  2.  Для любых  сигналов u(t) L и v(t) L  существует их сумма s(t) = u(t)+v(t), которая также содержится в L. При этом операция суммирования должна быть

- коммутативна:  u(t)+v(t) = v(t)+u(t),

- ассоциативна:  u(t)+(v(t)+x(t)) = (u(t)+v(t))+x(t),

- однородна:  u(t) + (-u(t)) = .

  1.  Существует множество скалярных элементов a, на которые может выполняться умножение любого сигнала  s(t) L, при этом результат умножения является новым сигналом y(t) = s(t) в том же пространстве, у(t) L. Операция умножения должна быть

- ассоциативна:  a(b·s(t)) = ab·s(t),

- дистрибутивна:  a(u(t)+s(t)) = au(t)+as(t),  (a+b)s(t) = as(t)+bs(t),

- пропорциональна:  1·s(t) = s(t),  0·s(t) = 0.

Пример.  Множество сигналов L состоит из импульсных сигналов произвольной формы с амплитудой не более 10 вольт. Образуют ли эти сигналы линейное пространство?

Нет, не образуют, так как не выполняется, по крайней мере, вторая аксиома линейного пространства (сумма двух сигналов с амплитудой более 5 вольт превышает 10 вольт). Требуются дополнительные структурные ограничения по параметрам сигналов.

Сигналы могут описываться как вещественными, так и комплексными функциями, и линейные пространства также могут быть вещественными или комплексными. Скалярные множества обычно отождествляются с множествами действительных или комплексных чисел, но на них также могут накладываться определенные ограничения. Так, например, в теории связи широко применяется бинарное скалярное множество {0, 1}.

Множество L, для которого выполняются приведенные выше аксиомы, при анализе сигналов и систем может рассматриваться как специальным образом сконструированное многомерное (в пределе – бесконечномерное) геометрическое пространство. Рассмотрим это на конкретном примере.

Имеем произвольный сигнал s(t), заданный на интервале [a, b]. Дискретизируем сигнал с равномерным шагом дискретизации и переведем в цифровую форму (представим сигнал N последовательными выборками):

s = (s1, s2, … , sN).

В таком отображении величина s может рассматриваться в виде N-мерного вектора в N-мерном пространстве, в котором значения sn представляют собой проекции s-вектора на координатные оси данного пространства. Двумерный вектор в двумерном пространстве – это точка с координатами s1 и s2 на рис. 2.1.1. Соответственно, в трехмерном пространстве сигнал s представлен точкой в трехмерном пространстве. Представить себе N-мерное пространство при N>3 можно только абстрактно, но с математических позиций такое пространство вполне реально и N-мерный сигнал s отображается вполне определенной точкой в этом пространстве с координатами sn по осям пространства. При уменьшении интервала дискретизации сигнала до бесконечно малой величины значение N стремится к бесконечности, и пространство сигналов превращается в бесконечномерное пространство аналоговых сигналов. Следовательно, и аналоговые сигналы могут рассматриваться как предельный случай бесконечномерных векторов.

Рис. 2.1.1. Пространства сигналов и функций.

С учетом вышеизложенного, для математического анализа систем и сигналов в линейном пространстве может использоваться математика векторов.

В линейном пространстве L{uk; k=0,1,2,…,K} всегда можно выделить множество векторов {xk; k=0,1,2,…,K}, для которых выполняется равенство нулю их линейной комбинации

ak xk = 0                                               (2.1.1)

только при условии равенства нулю всех значений ak. Такое множество векторов называется линейно независимым. Ни один вектор этого линейно независимого множества не может быть выражен в виде какой-либо линейной комбинации других векторов этого пространства. Такое множество векторов называется базисом К-мерного пространства L{uk; K}. Линейные пространства сигналов имеют, как правило, не единственный базис. Выбор базиса определяется простотой и удобством его использования при обработке сигналов.

Пример.  Имеем множество сигналов в виде числовых последовательностей, каждая из которых состоит из N чисел (N-мерные вектор-строки). Для сигналов задано скалярное пространство чисел R = {a, 0 ≤ a ≤ 10}. При этом пространство сигналов N-мерно и может быть определено линейной комбинацией:

L = {y; y =an xn, 0 ≤ a ≤ 10, xn – базис пространства}.

x0 = {1,0,0,0,…,0},

x1= {0,1,0,0,…,0},

x2= {0,0,1,0,…,0},

………………….

xN= {0,0,0,0,…,1},

Любой сигнал в этом пространстве определен точкой с N - координатами в базисе xn.

Основными метрическими параметрами линейного пространства являются норма, метрика и скалярное произведение сигналов.

Норма сигналов в линейном пространстве является аналогом длины векторов, и обозначается индексом ||s(t)|| - норма (norm). В математике существуют различные формы норм. При анализе сигналов обычно используются квадратичные нормы

||s(t)|| =.                                    (2.1.2)

Соответственно, для дискретных сигналов:

||s(n)|| =.                                   (2.1.2')

Для комплексных сигналов

||s(t)|| =,                               (2.1.2'')

где s*(t) – величины, комплексно сопряженные с s(t).

Линейное пространство сигналов L является нормированным, если каждому сигналу пространства s(t) однозначно сопоставлена его числовая норма ||s(t)||, и выполняются следующие аксиомы:

  1.  Норма неотрицательна (||s(t)|| ≥ 0) и равна нулю тогда и только тогда, когда сигнал равен нулю (||s(t)|| = , при s(t) = ).
  2.  Для любого числа b должно быть справедливо равенство ||bs(t)|| = |b| ||s(t)||.
  3.  Если v(t) и u(t) – сигналы из пространства L, то должно выполняться неравенство треугольника ||v(t)+u(t)|| ||v(t)|| + ||u(t)||.

Пример норм для двумерных цифровых сигналов приведен на рис. 2.1.2.

Метрика сигналов. Линейное пространство сигналов L является метрическим, если каждой паре сигналов s(t) L и v(t) L однозначно сопоставляется неотрицательное число (s(t), v(t)) –  метрика (metric) или расстояние между векторами. Пример метрики для двух векторов в двумерном пространстве приведен на рис. 2.1.2.

Рис. 2.1.2. Норма и метрика сигналов.

Для метрик сигналов в метрическом пространстве любой размерности должны выполняться аксиомы:

  1.  (s(t),v(t)) = (v(t),s(t)) – рефлексивность метрики.
  2.  (s(t),s(t)) = 0  для любых  s(t) L.
  3.  (s(t),v(t))  (s(t),a) + (a,v(t)) для любых  a L.

Метрика определяется нормой разности двух сигналов (см. рис. 2.1.2)

(s(t),v(t)) = || s(t) – v(t) ||.                                    (2.1.3)

В свою очередь норму можно отождествлять с расстоянием от выбранного элемента пространства до нулевого  ||s(t)|| = (s(t),).

По метрике сигналов можно судить, например, о том, насколько точно один сигнал может быть аппроксимирован другим сигналом, или насколько изменяется выходной сигнал относительно входного при прохождении через какое-либо устройство.

Рис. 2.1.3.

Пример.  Сигнал на интервале (0,Т) представляет собой половину периода синусоиды амплитудой A:  s(t) = Asin(t/T),  0 t T. Требуется аппроксимировать сигнал прямоугольным импульсом  п(t) (см. рис. 2.1.3).

Если принять амплитуду импульса п(t) равной В, то квадрат расстояния между сигналами:  2(s,п) =(A sin(t/T)-В)2 dt = A2T/2 - 4ABT/ + B2T.

Для решения задачи требуется найти минимум выражения 2(s,п). Дифференцируем полученное выражение по В, приравниваем нулю и, решая относительно В, находим значение экстремума: В = 2A/  0.64А. Это искомое значение минимума функции 2(s,п) (вторая производная функции по В положительна). При этом минимальное значение метрики: min  0.31A. Вычислим нормы сигналов при А = 1:

Еs = А2 sin2 (t/T) dt = A2 T/2 = 10.  Норма:  ||s(t)|| == 0.707 A 3.16.

Еп = B2 dt = B2 T 8.1.  Норма:  ||п(t)|| = = B 2.85.

Скалярное произведение произвольных сигналов u(t) и v(t) отражает степень их связи (сходства) по форме и положению в пространстве сигналов, и обозначается как u(t), v(t).

u(t), v(t) = ||u(t)||||v(t)|| cos ,                                     (2.1.4)

Физическую сущность скалярного произведения векторов в двумерном пространстве можно видеть достаточно наглядно (рис. 2.1.4). Это произведение "длины" (нормы) одного вектора на проекцию второго вектора по "направлению" первого вектора.

Рис. 2.1.4. Скалярное произведение сигналов в двумерном пространстве.

При кажущейся абстрактности скалярного произведения сигналов оно может приобретать вполне конкретный физический смысл для конкретных физических процессов, которые отображаются этими сигналами. Так, например, если v = F – сила, приложенная к телу, а u = s – перемещение тела под действием этой силы, то скалярное произведение W = F·s определяет выполненную работу, при условии совпадения силы с направлением перемещения. В противном случае, при наличии угла j между векторами силы и перемещения, работа будет определяться проекцией силы в направлении перемещения, т.е. W = s·F·cos j.

Вычисление скалярного произведения обычно производится непосредственно по сигнальным функциям. Поясним это на примере двумерных сигналов с использованием рисунка 2.1.2. Для квадрата метрики сигналов s и v имеем:

||s-v||2 = ||s||2 + ||v||2 – 2 ||s|| ||v|| cos j = ||s||2 + ||v||2 – 2 s, v.

2 s,v = ||s||2 + ||v||2 - ||s-v||2 = (s12+s22)+(v12+v22)–{(s1-v1)2+(s2-v2)2} = 2 (s1v1+s2v2).

s,v = s1v1+s2v2.

Обобщая полученное выражение на аналоговые сигналы:

s(t), v(t) = s(t)v(t) dt.                                      (2.1.5)

Соответственно, для дискретных сигналов в N-мерном пространстве:

sn, vn =sn vn.                                          (2.1.5')

Скалярное произведение обладает следующими свойствами

  1.  s,v  0;
  2.  s,v = v,s;
  3.  as,v = as,v,  где а – вещественное число;
  4.  s+v, a = s,a + v,a.

Линейное пространство аналоговых сигналов с таким скалярным произведением называется гильбертовым пространством Н (второе распространенное обозначение - L2). Линейное пространство дискретных и цифровых сигналов - пространством Евклида (обозначение пространства - R2). В этих пространствах справедливо фундаментальное неравенство Коши-Буняковского (модуль косинуса в (2.1.4) может быть только равным или меньше 1)

|s,v| ||s||||v||.                                            (2.1.6)

Для комплексного гильбертова пространства скалярное произведение вычисляется по формуле

s(t), v(t) =s(t)v*(t) dt.                                  (2.1.7)

При определении функций в пространстве L2[a,b] вычисление скалярного произведения производится соответственно с пределами интегрирования от а до b.

Из выражения (2.1.4) следует косинус угла между сигналами:

cos = s(t),v(t) /(||s||||v||).                                (2.1.8)

Пример.   Имеется два смещенных во времени прямоугольных импульса с одинаковой амплитудой и длительностью:  s1(t) = 2 при 0 t 5, s1(t) = 0 при других t; и s2(t) = 2 при 4 t 9, s2(t) = 0 при других t.

Квадраты норм сигналов:  ||s1||2 = s12(t)dt = 20.   ||s2||2 = s22(t)dt = 20

Скалярное произведение:  s1,s2 =  s1(t) s2(t) dt = 8.

Отсюда имеем:  cos = (s1,s2)/ (||s1||||s2||) = 8/20 = 0.4  и   1.16 радиан 66о 

При полном совмещении сигналов: s1,s2 =s1(t) s2(t) dt = 20,  cos = 1,  j = 0.

При отсутствии перекрытия сигналов;  s1,s2 = 0,  cos = 0,  j = 90о.

Физическое понятие "угла" между многомерными сигналами довольно абстрактно. Однако при рассмотрении выражения (2.1.8) совместно с выражением для квадрата метрики сигналов

r2(s,v) =[s(t)-v(t)]2 dt = ||s||2 + ||v||2 - 2||s||||v|| cos .

можно отметить следующие закономерности. При j = 0 (cos j = 1) сигналы "совпадают по направлению" и расстояние между ними минимально. При j = p/2 (cos j = 0) сигналы "перпендикулярны друг другу" (иначе говоря – ортогональны), и проекции сигналов друг на друга равны 0. При j = p (cos j = -1) сигналы "противоположны по направлению" и расстояние между сигналами максимально. Фактор расстояния между сигналами играет существенную роль при их селекции в многоканальных системах.

Коэффициент корреляции сигналов.  Одновременно заметим, что значение косинуса в (2.1.8) изменяется от 1 до -1, и не зависит от нормы сигналов ("длины" векторов). Максимальное значение cos j = 1 соответствует полной тождественности относительной динамики сигналов, минимальное значение cos j = -1 наблюдается при полной противоположности значений относительной динамики сигналов. По существу, коэффициент r = cos j является интегральным коэффициентом степени сходства формы сигналов по пространству их задания. С учетом этого он и получил название коэффициента корреляции сигналов. На рис. 2.1.5 можно наглядно видеть значения коэффициента корреляции двух сигналов в зависимости от их формы и сдвига по независимой переменной.

Рис. 2.1.5. Коэффициент корреляции сигналов.

Рис. 2.1.6.

Однако количественные значения коэффициентов корреляции существенно зависят от выбора нулевой точки сигнального пространства. Рассмотрим это более детально на конкретном примере.

На рис. 2.1.6 приведено изменение средней месячной температуры воздуха в трех городах земного шара в течение одного календарного года. Характер корреляции между изменениями температур в городах достаточно хорошо виден на графиках. Вычислим (см. пример ниже) значения  коэффициентов корреляции для шкалы температур по Цельсию.

Пример.  Среднемесячная температура воздуха в городах по Цельсию:

Екатеринбург:  Ek = {-12,-10,-4,5,11,19,23,21,15,5,-3,-8}.   Дели:   Dk = {15,18,22,28,33,35,33,32,30,28,21,17}.

Буэнос-Айрес:  Bk = {26,24,21,18,14,11,10,10,12,15,20,23}.   Нумерация месяцев:  k = 1, 2, 3, …, 12.

Норма сигналов:   ||E|| = = 45.39,  ||D|| = = 93.05,   ||B|| = = 61.9.

Скалярные произведения:    E, D = = 2542,   E, B = 268,   B, D = 4876.

Коэффициенты корреляции:    Екатеринбург – Дели:  rED = E, D / (||E|| ||D||) = 0.602.

                             Екатеринбург – Буэнос-Айрес: rEB = 0.095,   Дели – Буэнос-Айрес: rDB = 0.847,

Как следует из вычислений, полученные коэффициенты корреляции маловыразительны. Практически не регистрируется разнонаправленная корреляция Екатеринбург - Буэнос-Айрес, и не различаются одно- (Екатеринбург – Дели) и разнонаправленные (Дели – Буэнос-Айрес) типы корреляции.

Повторим вычисления в шкале Фаренгейта (0оF = -17,8oC,  100oF = +37,8oC), и в абсолютной шкале температур Кельвина. Дополнительно вычислим значения коэффициентов корреляции в шкале Цельсия и Фаренгейта для центрированных сигналов. Центрированный сигнал вычисляется путем определения среднего значения сигнала по интервалу его задания и вычитания этого среднего значения из исходных значений сигнала, т.е. среднее значение центрированного сигнала равно нулю. Сводные результаты вычислений приведены в таблице.

Таблица 2.1.1.

Коэффициенты корреляции сигналов

Пары городов

Нецентрированные сигналы

Центрированные сигналы

Цельсий

Фаренгейт

Кельвин

Цельсий

Фаренгейт

Екатеринбург – Дели

Екатеринбург – Буэнос-Айрес

Дели – Буэнос-Айрес

0.602

0.095

0.847

0.943

0.803

0.953

1

0.998

0.999

0.954

-0.988

-0.960

0.954

-0.988

-0.960

Как видно из таблицы, значения коэффициента корреляции нецентрированных сигналов существенно зависят от положения сигналов относительно нулевой точки пространства. При одностороннем смещении сигналов относительно нуля (шкала Фаренгейта) значение коэффициента корреляции может быть только положительным, и тем ближе к 1, чем дальше от сигналов нулевая точка (шкала Кельвина), т.к. при больших значениях сигналов-векторов значение скалярного произведения сигналов стремится к значению произведения норм сигналов.

Для получения значений коэффициентов корреляции, независимых от нуля сигнального пространства и от масштаба единиц измерений, необходимо вычислять коэффициент по центрированным сигналам, при этом в оценках коэффициента, как это видно из результатов, приведенных в таблице, появляется знаковый параметр совпадения (или несовпадения) по "направлению" корреляции и исчезает зависимость от масштаба представления сигналов. Это позволяет вычислять коэффициенты корреляции различных сигналов вне зависимости от физической природы сигналов и их величины.

Координатный базис пространства.  Для измерения и отображения одномерных величин достаточно одного нормированного параметра – стандарта величины или единицы ее измерения (для измерения длины – сантиметр, для измерения тока – ампер, и т.п.).

В пространстве сигналов роль такого метрологического стандарта выполняет координатный базис пространства - подмножество векторов {е1, е2, е3, …} со свойствами ортогональных координатных осей с определенной единицей измерений, по которым можно разложить любой произвольный сигнал, принадлежащий этому линейному пространству.

Число базисных векторов определяет размерность векторного пространства. Так, для двумерных векторов в качестве ортогонального базиса пространства могут быть приняты векторы {v1, v2}, если выполняется условие их взаимной перпендикулярности – нулевое значение скалярного произведения v1, v2 = 0. При ||v1|| = ||v2|| = 1 эта пара векторов является ортонормированным базисом с единичными векторами координатных осей в качестве стандарта (единицы измерения) пространства.

  Пример. Могут ли быть приняты в качестве координатного базиса двумерного пространства векторы

 v1 = (/2, 1/2),  v2 = (-1/2, /2).

 v1, v2 = (/2)·(-1/2) + (1/2)·(/2) = 0.   Векторы ортогональны.

 ||v1|| = = 1.  ||v2|| = = 1.   Векторы нормированы.   Векторы могут быть ортонормированным базисом пространства.

 Разложение произвольного двумерного вектора - сигнала s в двумерном пространстве, по координатным осям v1 и v2 элементарно:

s = c1v1 + c2v2,                                               (2.1.9)

где коэффициенты с1 и с2 выражают значения составляющих вектора s по направлениям векторов v1 и v2, т.е. являются проекциями вектора s на координатный базис пространства {v1, v2}. Значения проекций определяются скалярными произведениями:

c1 = s, v1,   c2 = s, v2.

В этом нетрудно убедиться, если вычислить скалярные произведения левой и правой части выражения (2.1.9) сначала с вектором v1:

s, v1 = (c1v1+c2v2), v1 = с1v1, v1 + с2v2, v1 = с1v1, v1 + с2v2, v1.

При ортонормированности базиса {v1, v2} имеем:

v1, v1 = ||v1||2 = 1,     v2, v1 = 0.

Отсюда следует: s, v1 = с1.  Аналогичным образом можно получить и выражение для значения  c2 = s, v2.

  Пример.  Разложить вектор s = (/2, 5/2) по базису, представленному  векторами

v1 = (/2, 1/2)  и  v2 = (-1/2, /2) из предыдущего примера.

  s = c1v1 + c2v2.

  с1 = s, v1 = (/2)·(/2) + (5/2)·(1/2) = 2.

  с2 = s, v2 = (/2)·(-1/2) + (5/2)·(/2) = .

  Результат:    В пространстве с базисом {v1, v2} вектор s однозначно определяется двумя векторами v1 и  v2:  s = 2v1 + v2.  

Множество векторов {vk, k = 1, 2, …, N} может быть принято в качестве ортонормированного координатного базиса N-мерного пространства, если их совокупность является линейно независимой, равенство aivi =  выполняется только в случае одновременного обращения в нуль всех числовых коэффициентов ai, и для всех векторов этого множества при единичной норме выполняется условие взаимной ортогональности:

vm, vn =                                             (2.1.10)

Выражение (2.1.10) обычно записывается в следующей форме:

vm, vn = dmn,

где dmn – импульс Кронекера.

С использованием ортонормированного базиса любой произвольный сигнал можно представить в виде линейной комбинации взвешенных базисных векторов:

s = c1v1 + c2v2 + … + cNvN = civi,

где весовое значение сk представляет собой проекцию вектора s на соответствующее координатное направление и определяется скалярным произведением:

ck = s, vk.

Коэффициенты ck называют коэффициентами Фурье в базисе {vk}. Базисную систему {vk} называют полной, если ее размерность (и размерность соответствующего пространства) равна размерности представляемых в этой системе сигналов.

Комплексное линейное пространство, векторам которого также может быть поставлено в соответствие комплексное число скалярного произведения s, vk, называют унитарным. Для него действительны все свойства скалярного произведения с учетом сопряжения:

  1.  s, v = v, s*;
  2.  s, аv = аv, s* = a*s,v,  где а – комплексное число.

2.2.  Мощность и энергия сигналов [1, 3, 16].

Понятия мощности и энергии в теории сигналов не относятся к характеристикам каких-либо физических величин сигналов, а являются их количественными характеристиками, отражающими определенные свойства сигналов и динамику изменения их значений (отсчетов) во времени, в пространстве или по любым другим аргументам.

Для произвольного, в общем случае комплексного,  сигнала s(t) = a(t)+jb(t), где а(t) и b(t) - вещественные функции, мгновенная мощность (instantaneous power) сигнала по определению задается выражением:

w(t) = s(t) s*(t) = [a(t)+jb(t)] [a(t)-jb(t)] = a2(t)+b2(t) = |s(t)|2,           (2.2.1)

т.е. функция распределения мгновенной мощности по аргументу сигнала равна квадрату функции его модуля, для вещественных сигналов - квадрату функции амплитуд.

Аналогично для дискретных сигналов:

wn = sn s*n = [an+jbn] [an-jbn] = an2 + bn2 = |sn|2,                     (2.2.1')

Энергия сигнала (также по определению) равна интегралу от мощности по всему интервалу существования или задания сигнала. В пределе:

Еs =w(t)dt =|s(t)|2dt.                                      (2.2.2)

Es =wn =|sn|2.                                      (2.2.2')

Мгновенная мощность w(t) является плотностью мощности сигнала, так как измерения мощности возможны только через энергию на интервалах ненулевой длины:

w(t) = (1/Dt)|s(t)|2dt.

Энергия сигналов может быть конечной или бесконечной. Конечную энергию имеют финитные сигналы и сигналы, затухающие по своим значениям в пределах конечной длительности, которые не содержат дельта-функций и особых точек (разрывов второго рода и ветвей, уходящих в бесконечность). В противном случае их энергия равна бесконечности. Бесконечна также энергия периодических сигналов.

Как правило, сигналы изучаются на определенном интервале Т, для периодических сигналов - в пределах одного периода Т, при этом средняя мощность (average power) сигнала:

WT(t) = (1/T)w(t) dt = (1/T)|s(t)|2 dt.                    (2.2.3)

Понятие средней мощности может быть распространено и на незатухающие сигналы, энергия которых бесконечно велика. В случае неограниченного интервала Т строго корректное определение средней мощности сигнала должно производиться по формуле:

Ws = w(t) dt.                                    (2.2.3')

Квадратный корень из значения средней мощности характеризует действующее (среднеквадратическое) значение сигнала (root mean sqare, RMS).

Применительно к электрофизическим системам, данным понятиям мощности и энергии соответствуют вполне конкретные физические величины. Допустим, что функцией s(t) отображается электрическое напряжение на резисторе, сопротивление которого равно R Ом. Тогда рассеиваемая в резисторе мощность, как известно, равна (в вольт-амперах):

w(t) = |s(t)|2/R,

а полная выделенная на резисторе тепловая энергия определяется соответствующим интегрированием мгновенной мощности w(t) по интервалу задания напряжения s(t) на резисторе R. Физическая размерность мощности и энергии в этом случае определяется соответствующей физической размерностью функции напряжения s(t) и сопротивления резистора R. Для безразмерной величины s(t) при R=1 это полностью соответствует выражению (2.2.1). В теории сигналов в общем случае сигнальные функции s(t) не имеют физической размерности, и могут быть формализованным отображением  любого процесса или распределения какой-либо физической величины, при этом понятия энергии и мощности сигналов используются в более широком смысле, чем в физике. Они представляют собой специфические метрологические характеристики сигналов.

Из сравнения выражений (2.1.2) и (2.2.2) следует, что энергия и норма сигнала связаны соотношениями:  

Es = ||s(t)||2,         ||s(t)|| =                                 (2.2.4)

Пример.   Цифровой сигнал задан функцией  s(n) = {0,1,2,3,4,5,4,3,2,1,0,0,0,0....}.

Энергия сигнала:  Es = s2(n) = 1+4+9+16+25+16+9+4+1 = 85.    Норма:  ||s(n)|| = 9.22

Вычислим энергию суммы двух произвольных сигналов u(t) и v(t)

E =[u(t)+v(t)]2 dt = Eu + Ev + 2u(t)v(t) dt.                    (2.2.5)

Как следует из этого выражения, энергии сигналов (а равно и их мощности), в отличие от самих сигналов, в общем случае не обладают свойством аддитивности. Энергия суммарного сигнала u(t)+v(t), кроме суммы энергий составляющих сигналов, содержит в себе и так называемую энергию взаимодействия сигналов или взаимную энергию

Euv = 2u(t)v(t) dt.                                          (2.2.6)

Нетрудно заметить, что энергия взаимодействия сигналов равна их удвоенному скалярному произведению 

Euv = 2 u(t), v(t).                                           (2.2.6')

При обработке данных используются также понятия мощности взаимодействия двух сигналов x(t) и y(t):

wxy(t) = x(t) y*(t),                                            (2.2.7)

wyx(t) = y(t) x*(t),

wxy(t) = w*yx(t).

Для вещественных сигналов:

wxy(t) = wyx(t) = x(t) y(t).                                 (2.2.8)

С использованием выражений (2.2.7-2.2.8) интегрированием по соответствующим интервалам вычисляются значения средней мощности взаимодействия сигналов на определенных интервалах Т и энергия взаимодействия сигналов.

2.3.  пространства функций [1,3,11,16,29].

Пространства функций можно считать обобщением пространства N-мерных сигналов – векторов на аналоговые сигналы, как бесконечномерные векторы, с некоторыми чисто практическими уточнениями.

 Нормирование метрических параметров. Норма функций в пространстве L2[a, b] определяется выражением:

||s(t)|| =.

Нетрудно заключить, что чем больше интервал [a, b] в этой формуле, тем больше (при прочих равных условиях) будет значение нормы. При анализе и сравнении сигналов (как аналоговых, так и многомерных дискретных) такое понятие не всегда удобно, и вместо него очень часто используют понятие нормы, нормированной относительно длины интервала[a, b]. Для символьного обозначения нормирования будем применять знак :

||s(t)|| =,    ||sn|| =.

Метрика сигналов (расстояние между сигналами) при аналогичном нормировании:

r(s(t), v(t)) =,   r(sn, vn) =

Эти выражения применяются для вычисления среднеквадратического расхождения сигналов или среднеквадратической погрешности (стандартный индекс погрешности в абсолютных единицах измерений - s) выполнения какой-либо операции при сравнении ее результата с теоретически ожидаемым или априорно известным.

Нормированное скалярное произведение сигналов:

s(t), v(t) = s(t)v(t) dt = ||s(t)|| ||v(t)|| cos j.

sn, vn =(1/N)sn vn = ||sn||||sn|| cos j.

Косинус угла (коэффициент корреляции) между сигналами (функциями) не изменяет своих значений при вычислении как по нормированным, так и по ненормированным значениям скалярного произведения и нормы сигналов (значения нормировки в числителе и знаменателе выражения (2.1.8) сокращаются). Взаимная перпендикулярность функций определяется аналогично взаимной перпендикулярности векторов условием нулевого значения скалярного произведения.

Норма, метрика и скалярное произведение периодических функций обычно нормируются на длину одного периода Т.

Ортогональные сигналы. Два сигнала называются ортогональными (orthogonal), если имеют нулевое скалярное произведение

u(t), v(t) =u(t)v(t) dt = 0.

Соответственно, два таких сигнала в своем функциональном пространстве являются взаимно перпендикулярными (угол между сигналами равен j = 90о), полностью независимыми друг от друга (некоррелированными, r = cos j = 0), и имеют нулевую энергию взаимодействия (Euv = 0).

На рисунке 2.3.1 приведены примеры взаимно ортогональных сигналов. Нулевое скалярное произведение двух левых сигналов обеспечивается их формой (равна нулю сумма положительных и отрицательных значений произведения сигналов), а двух правых - взаимным расположением (ненулевые значения сигналов не имеют общих координат).

Рис. 2.3.1. Ортогональные сигналы.

Попутно заметим, что энергия и мощность суммы ортогональных сигналов обладают свойством аддитивности, т.к. имеют нулевое значение скалярного произведения и, соответственно, нулевую энергию взаимодействия.

Ортонормированный базис пространства. При распространении положений векторного базисного пространства на функциональное пространство L2[a, b], в качестве координатного базиса пространства мы должны использовать совокупность функций {u0(t), u1(t), u2(t), …}, в пределе - бесконечную, которая должна быть системой ортогональных функций {uk(t), k=0, 1, 2, …}, т.е. все функции на этом отрезке должны быть взаимно ортогональны:

um(t), un(t) =um(t) un(t) dt = 0,   m = 1, 2, ... ;   n = 1, 2, ... ;  m  n.

Система ортогональных функций на интервале [a, b] будет ортонормированной (orthonormal functions), если все функции системы при  m=n имеют единичную норму, т.е. выполняются условия:

um(t), um(t) = ||um(t)||2 =(um(t))2 dt = 1,    ||um(t)|| = 1,        m = 1, 2, ....

Эти условия можно записать в следующей обобщенной форме:

um(t)·un*(t) dt = dm,n.

 Система ортогональных функций всегда может быть превращена в ортонормированную путем нормировки, т.е. деления всех функций на их норму.

Разложение сигнала в ряд.  Произвольный сигнал s(t) H (пространство Гильберта), заданный на интервале [a, b], может быть разложен в ряд по упорядоченной системе ортонормированных базисных функций uk(t)

s(t) =ckuk(t).                                            (2.3.2)

Для нахождения значений коэффициентов сk умножим обе части данного выражения на базисную функцию um(t) с произвольным номером m и проинтегрируем результаты по переменной t, при этом получим

s(t)um(t) dt =ck umuk dt.

 С учетом ортонормированности функций ui(t), в правой части этого равенства остается только один член суммы с номером m = k при ukuk dt =1, который, по левой части уравнения, представляет собой скалярное произведение сигнала и соответствующего m = k базисного вектора, т.е. проекцию сигнала на соответствующее базисное направление

ck =s(t)uk(t) dt.                                            (2.3.2)

Таким образом, в геометрической интерпретации коэффициенты сk представляют собой проекции вектор - сигнала s(t) на соответствующие базисные направления uk(t), т.е. координаты вектора s(t) по координатному базису, образованному системой ортогональных функций u(t), в пределе - бесконечномерной. При практическом использовании количество членов ряда (2.3.2) ограничивается определенным значением N, при этом для любого значения N совокупность коэффициентов ck обеспечивают наименьшее по средней квадратической погрешности приближение к заданному сигналу.

Соответственно, энергия взаимодействия двух сигналов x(t) и y(t) может вычисляться по скалярному произведению их координатных проекций, которое, с учетом взаимной ортогональности всех проекций, будет равно:

x(t), y(t) =x(t)y(t) dt =[anun(t)] [bmum(t)] dt =anbn.        (2.3.3)

Косинус угла между векторами x(t) и y(t) с использованием выражения (2.3.3):

cos =anbn /(||x(t)||||y(t)||).

Возможность разложения непрерывных сигналов и функций в обобщенные ряды по системам ортогональных функций имеет огромное принципиальное значение, так как позволяет вместо изучения несчетного множества точек сигнала ограничиться счетной системой коэффициентов ряда.

К системам базисных функций, которые используются при разложении сигналов, предъявляют следующие основные требования:

- для любого сигнала ряд разложения должен сходиться;

- при ограничении ряда по уровню остаточной погрешности расхождения с заданным сигналом количество членов ряда должно быть минимальным;

- базисные функции должны иметь достаточно простую аналитическую форму;

- коэффициенты разложения в ряд должны вычисляться относительно просто.

Согласно теореме Дирехле, любой сигнал s(t), имеющий конечное число точек нарушения непрерывности первого рода, и конечный по энергии на интервале [a, b], может быть разложен по системе ортонормальных функций, если существуют интегралы модуля сигнала и модуля его первой производной, т.е.:

|s(t)| dt < ,    |s'(t)| dt < .

Ортонормированные системы функций хорошо известны в математике. Это полиномы Эрмита, Лежандра, Чебышева, функции Бесселя, Лагерра и целый ряд других. Выбор типа функций в качестве координатного базиса сигнального пространства, как и координатных осей для обычного трехмерного пространства (декартовы, цилиндрические, сферические и пр.), определяется удобством и простотой последующего использования при математической обработке сигналов. При спектральном анализе сигналов используются, в основном, два вида ортонормированных функций гармонические функции и функции Уолша.

На интервале [-p, p] рассмотрим систему следующих гармонических функций:

{1, sin t, sin 2t, …, sin kt},     k = 1, 2, 3, …                      (2.3.4)

Вычислим нормированные на интервал скалярные произведения системы:

1, sin kt =(1/2p)sin kt dt = (1/2kp) [cos kp - cos(-kp)] = 0,    k = 1, 2, 3, …

sin mt, sin nt =(1/2p)sin mt sin nt dt =(1/4p){cos (m+n)t – cos (m-n)t} dt =

=  = 0,    при m n.

Следовательно, система (2.3.4) является системой взаимно ортогональных функций. Норма функций:

||sin kt||2=(1/2p)sin2 kt dt= (1/4p)(1-cos 2kt) dt==1/2.

||sin kt|| = 1/,   k = 1, 2, 3, …

Соответственно, для превращения системы (2.3.4) в ортонормированную следует разделить все функции системы на значение нормы (рис. 2.3.2):

{1, uk(t) =sin kt},     k = 1, 2, 3, …                          (2.3.4')

Рис. 2.3.2. Ортонормированный базис гармонических функций.

Аналогичным образом можно убедиться в ортонормированности косинусной системы гармонических функций:

{1, uk(t) =cos kt},     k = 1, 2, 3, …,                          (2.3.5)

и объединенной синус-косинусной системы:

{1, uk(t) =sin kt, uk(t) =cos kt},     k = 1, 2, 3, …            (2.3.6)

Наибольшее распространение в качестве базисных функций частотного разложения нашли комплексные экспоненциальные функции exp(pt) при p = jf (преобразование Фурье) и p =  s+jf (преобразование Лапласа), от которых с использованием формул Эйлера

exp(jwt) = cos(wt) + j sin(wt),        exp(-jwt) = cos(wt) - j sin(wt),

cos(wt) = [ехр(jwt)+exp(-jwt)]/2,      sin(wt) = [ехр(jwt)-exp(-jwt)]/2j

всегда можно перейти к вещественным синус-косинусным функциям. Термин "частотное разложение" обязан своим происхождением независимой переменной частотного представления сигналов, которая измеряется в единицах, обратных единицам времени, т.е. в единицах частоты f = 1/|t|. Однако понятие частотного преобразования не следует связывать только с временным представлением сигналов, т.к. математический аппарат преобразования не зависит от физического смысла переменных. Так, например, при переменной "х", как единице длины, значение f будет представлять собой пространственную частоту - число периодических изменений сигнала на единице длины с размерностью 1/|х|.

Рис. 2.3.3. Функции Уолша.

Ортонормированная система функций Уолша, по существу, является предельной модификацией системы периодических функций с кратными частотами, при этом функции принимают значения только 1. Пример четырех первых функций Уолша на интервале Т от –0,5 до 0,5 приведен на рис. 2.3.3. Ортогональность и нормированность функций следует из принципа их построения. Стандартное математическое обозначение функций Уолша  wal(k,х), где k = 0,1,2, … – порядковый номер функции, х = t/T – безразмерная координата (нормированная на интервал Т независимая переменная).

Наряду с функциями Уолша применяются также две связанные с ними системы четные и нечетные функции cal(n,х) = wal(2n,х),  – аналогичные косинусам, и sal(n,х) = wal (2n-1,х), – аналогичные синусам.

При разложении сигналов форма спектров Уолша практически тождественна спектрам гармонических функций.

Разложение энергии сигнала. Допустим, что сигнал s(t) разложен в обобщенный ряд Фурье по гармоническим функциям. Вычислим энергию сигнала непосредственной подстановкой выражения (2.3.2) в выражение (2.2.2)

Es =s2(t) dt =cmcnumun dt =cmcn umun dt.         (2.3.7)

В этом выражении, в силу ортонормированности базисной системы, отличны от нуля только члены с номерами m = n. Отсюда

Es =s2(t) dt =cn2,                                      (2.3.8)

т.е. при корректном разложении сигнала в обобщенный ряд Фурье энергия сигнала не изменяется, и равна сумме энергии всех составляющих ряда. Это соотношение называют равенством Парсеваля.

2.4.  Функции  корреляции  сигналов [1, 25, 29].

Функции корреляции сигналов применяются для интегральных количественных оценок формы сигналов и степени их сходства друг с другом.

Автокорреляционные функции (АКФ) сигналов (correlation function, CF). Применительно к детерминированным сигналам с конечной энергией АКФ является количественной интегральной характеристикой формы сигнала, и представляет собой интеграл от произведения двух копий сигнала s(t), сдвинутых относительно друг друга на время t:

Bs(t) = s(t) s(t+t) dt.                                      (2.4.1)

Как следует из этого выражения, АКФ является скалярным произведением сигнала и его копии в функциональной зависимости от переменной величины значения сдвига t. Соответственно, АКФ имеет физическую размерность энергии, а при t = 0 значение АКФ непосредственно равно энергии сигнала:

Bs(0) =s(t)2 dt = Es.

Функция АКФ является непрерывной и четной. В последнем нетрудно убедиться заменой переменной t = t-t в выражении (2.4.1):

Bs(t) =s(t-t) s(t) dt = s(t) s(t-t ) dt = Bs(-t).                (2.4.1')

С учетом четности, графическое представление АКФ обычно производится только для положительных значений t. На практике сигналы обычно задаются на интервале положительных значений аргументов от 0-Т. Знак +t в выражении (2.4.1) означает, что при увеличении значений t копия сигнала s(t+t) сдвигается влево по оси t и уходит за 0, что требует соответствующего продления сигнала в область отрицательных значений аргумента. А так как при вычислениях интервал задания t обычно много меньше интервала задания сигнала, то более практичным является сдвиг копии сигнала влево по оси аргументов, т.е. применение в выражении (2.4.1) функции s(t-t) вместо s(t+t ).

По мере увеличения значения величины сдвига t для финитных сигналов временное перекрытие сигнала с его копией уменьшается и скалярное произведение в целом стремятся к нулю.

Пример.   На интервале (0,Т) задан прямоугольный импульс с амплитудным значением, равным А. Вычислить автокорреляционную функцию импульса.

При сдвиге копии импульса по оси t вправо, при 0≤t≤T сигналы перекрываются на интервале от t до Т. Скалярное произведение:

Bs(t) =A2 dt = A2(T-t).

При сдвиге копии импульса влево, при -T≤t<0 сигналы перекрываются на интервале от 0 до Т-t. Скалярное произведение:    

Bs(t) = A2 dt = A2(T+t).

При |t| > T сигнал и его копия не имеют точек пересечения и скалярное произведение сигналов равно нулю (сигнал и его сдвинутая копия становятся ортогональными).

Обобщая вычисления, можем записать:

Bs(t) =.

В случае периодических сигналов АКФ вычисляется по одному периоду Т, с усреднением скалярного произведения и его сдвинутой копии в пределах периода:

Bs(t) = (1/Т)s(t) s(t-t) dt.

Рис. 2.4.1.

При t=0 значение АКФ в этом случае равно не энергии, а средней мощности сигналов в пределах интервала Т.  АКФ периодических сигналов при этом также является периодической функцией с тем же периодом Т.  Для однотонального гармонического сигнала это очевидно. Первое максимальное значение АКФ будет соответствовать t=0. При сдвиге копии сигнала на четверть периода относительно оригинала подынтегральные функции становятся ортогональными друг другу (cos wo(t-t) = cos (wot-p/2) sin wot) и дают нулевое значение АКФ. При сдвиге на t=T/2 копия сигнала по направлению становится противоположной самому сигналу и скалярное произведение достигает минимального значения. При дальнейшем увеличении сдвига начинается обратный процесс увеличения значений скалярного произведения с пересечением нуля при t=3T/2 и повторением максимального значения при t=T=2p/wo (cos wot-2p копии cos wot сигнала). Аналогичный процесс имеет место и для периодических сигналов произвольной формы (рис. 2.4.1).

Отметим, что полученный результат не зависит от начальной фазы гармонического сигнала, что характерно для любых периодических сигналов и является одним из свойств АКФ.

Для сигналов, заданных на определенном интервале [a, b], вычисление АКФ производится с нормировкой на длину интервала [a, b]:

Bs(t) =s(t) s(t+t) dt.                                      (2.4.2)

Автокорреляция сигнала может оцениваться и коэффициентом автокорреляции, вычисление которого производится по формуле (по центрированным сигналам):

 rs(t) = cos (t) = s(t), s(t+t) /||s(t)||2.

 Взаимная корреляционная функция (ВКФ) сигналов (cross-correlation function, CCF) показывает как степень сходства формы двух сигналов, так и их взаимное расположение друг относительно друга по координате (независимой переменной), для чего используется та же формула (2.4.1), что и для АКФ, но под интегралом стоит произведение двух разных сигналов, один из которых сдвинут на время t:

B12(t) = s1(t) s2(t+t) dt.                                    (2.4.3)

При замене переменной t = t-t в формуле (2.4.3), получаем:

B12(t) =s1(t-t) s2(t) dt = s2(t) s1(t-t) dt = B21(-t)

Рис. 2.4.2. Сигналы и ВКФ.

Отсюда следует, что для ВКФ не выполняется условие четности, а значения ВКФ не обязаны иметь максимум при t = 0. Это можно наглядно видеть на рис. 2.4.2, где заданы два одинаковых сигнала с центрами на точках 0.5 и 1.5. Вычисление по формуле (2.4.3) с постепенным увеличением значений t означает последовательные сдвиги сигнала s2(t) влево по оси времени (для каждого значения s1(t) для подынтегрального умножения берутся значения s2(t+t)).

При t=0 сигналы ортогональны и значение B12(t)=0. Максимум В12(t) будет наблюдаться при сдвиге сигнала s2(t) влево на значение t=1, при котором происходит полное совмещение сигналов s1(t) и s2(t+t). При вычислении значений B21(-t) аналогичный процесс выполняется последовательным сдвигом сигнала s1(t) вправо по временной оси с постепенным увеличением отрицательных значений t, а соответственно значения B21(-t) являются зеркальным (относительно оси t=0) отображением значений B12(t), и наоборот. На рис. 2.4.3 это можно видеть наглядно.

Рис. 2.4.3. Сигналы и ВКФ.

Таким образом, для вычисления полной формы ВКФ числовая ось t должна включать отрицательные значения, а изменение знака t в формуле  (2.4.3) равносильно перестановке сигналов.

Для периодических сигналов понятие ВКФ обычно не применяется, за исключением сигналов с одинаковым периодом, например, сигналов входа и выхода систем при изучении характеристик систем.

Коэффициент взаимной корреляции двух сигналов вычисляется по формуле (по центрированным сигналам):

rsv(t) = cos (t) = s(t), v(t+t) /||s(t)|| ||v(t)||.                           (2.4.4)

Значение коэффициента взаимной корреляции может изменяться от -1 до 1.

2.5.  математическое описание шумов и помех [1, 30].

Шумы и помехи (noise). При детектировании сигналов в сумме с основным информационным сигналом одновременно регистрируются и мешающие сигналы - шумы и помехи самой различной природы. К помехам относят также искажения информационных сигналов при влиянии различных дестабилизирующих факторов на процессы измерений, как, например, влияние микрокаверн в стенках скважины на измерения в рентгенорадиометрических методах каротажа, грозовых разрядов на электроразведочные методы измерений и т.п. Выделение информационных составляющих из зарегистрированных сигналов или максимальное подавление шумов и помех в информационном сигнале при сохранении его полезных составляющих является одной из основных задач первичной обработки сигналов (результатов наблюдений).

Если помехи известны и регулярны, как например, фон переменного тока, то борьба с ними особых затруднений не представляет. Наибольшие трудности представляет борьба со случайными (непредсказуемыми) помехами. В общей форме влияние помех на регистрируемый сигнал записывается в следующем виде:

y(t) = V(s(t), q(t)),                                             (2.5.1)

где s(t) – информационная (полезная) часть сигнала, q(t) – помеха.

Помеха называется аддитивной, и обычно именуется шумом, если выражение (2.5.1) представляет собой простую сумму сигнала и помехи:

y(t) = s(t) + q(t).                                               (2.5.2)

Если случайный процесс v(t), оказывающий влияние на сигнал, является неотрицательным, а его влияние выражается в форме:

y(t) = v(t)·s(t),                                                 (2.5.3)

то помеху v(t) называют мультипликативной.

В общем случае в сигнале могут присутствовать оба вида помех:

y(t) = v(t) s(t) + q(t).                                             (2.5.4)

 Природа помех. Как правило, случайные шумовые помехи (аддитивные) порождаются различного рода физическими флюктуациями – случайными отклонениями тех или иных физических величин от своих средних значений. Природа флюктуаций обычно определяется статистической природой физических процессов. Многие физические величины представляют собой результаты усреднения определенных параметров физических процессов, дискретных и случайных по своей природе. Так, например, тепловой шум регистрируемого напряжения на резисторах электрических цепей обуславливается флюктуациями теплового движения носителей зарядов - случайностью процесса дрейфа отдельных электронов по резистору, по суммарной интенсивности движения которых и формируется падение напряжения на резисторе. Дискретной является природа электромагнитных видов излучения – дискретный квант энергии излучения (фотон) определен значением hn, где h – постоянная Планка, n - частота. Флюктуации физических величин, дискретных и случайных по своей природе, принципиально неустранимы, и речь может идти только о том, чтобы уменьшать их относительную величину имеющимися в нашем распоряжении средствами.

Природа мультипликативных помех обычно связана с изменениями условий измерений, параметров каналов передачи данных и систем их обработки, т.е. когда случайные помехи накладываются не на сам сигнал непосредственно, а на системы, в которых этот сигнал формируется и обращается, вызывая опосредствованные искажения сигнала, как линейные, так и нелинейные.

 Характеристики помех. В математическом описании помехи представляются случайными функциями времени. Случайную функцию непрерывного времени обычно называют случайным процессом, ее дискретный аналог – случайной последовательностью. Как правило, помехи относятся к классу стационарных случайных процессов, и характеризуются своими распределениями и моментами распределений, как их числовыми параметрами. Основное распределение большинства шумовых сигналов – нормальное (гауссов процесс). Это объясняется тем, что распределение сумм независимых случайных величин, из которых складываются случайные помехи, сходится к нормальному, вне зависимости от характера распределения слагаемых (теорема Ляпунова).

Момент первого порядка выражает среднее значение (постоянную составляющую) случайного процесса:

M{q} =  =q·p(q) dq.                                      (2.5.5)

где p(q) – плотность вероятностей значений q.

Центральный момент второго порядка определяет дисперсию процесса:

D{q} = s2 =(q-)2·p(q) dq = - 2.                           (2.5.6)

Дисперсия выражает мощность переменной составляющей процесса. Корень квадратный из значения дисперсии, т.е. значение s, является средним квадратическим значением разброса случайных значений q относительно среднего значения .

Смешанный момент второго порядка называется функцией автокорреляции случайного процесса q(t):

M{q(t)q(t+t)} =x1x2·p(x1,x2) dx1 dx2 = B(t).                 (2.5.7)

Величина B(t) при t = 0 равна общей мощности случайного процесса q(t).

На практике большинство случайных процессов обладают свойством эргодичности. Оно заключается в том, что средние значения по множеству реализаций (математические ожидания, вычисляемые по плотностям распределений (2.5.5-2.5.7)) совпадают со средними значениями по времени Т одной реализации процесса при Т  . Это позволяет производить оценку числовых значений параметров помех непосредственно по произвольным интервалам [a, b] задания сигналов:

=  q(t) dt.                             (2.5.8)

s2= (q(t)-)2 dt (q(t)-)2 dt.                   (2.5.9)

B(t) = q(t)q(t+t) dt q(t)q(t+t) dt.               (2.5.10)

Спектральная плотность мощности случайного процесса (распределение мощности помех и шумов по частоте) связана с функцией автокорреляции преобразованием Фурье. В одностороннем (физическом) представлении спектра:

B(f) = 4B(t) cos 2pft dt.                                 (2.5.11)

B(t) =B(f) cos 2pft dt.                                    (2.5.12)

Аддитивную помеху с равномерным спектром B(f) = B0 = const называют белым шумом. Мощность белого шума в полосе частот 0-F пропорциональна ширине полосы:

WF =B(f) df = BoF.

При белом шуме полоса частот всегда полагается конечной, т.к. в противном случае мы получим бесконечную мощность шумов.

Сигнал с аддитивной помехой обычно характеризуют не абсолютной мощностью помехи, а отношением средних мощностей сигнала и помехи, которое кратко называют отношением сигнал/помеха:

r = Wc/Wq.

Значения случайных процессов являются некоррелированными только при неограниченной полосе частот. Любое ограничение частотной полосы вносит определенную корреляцию в процесс и независимыми друг от друга можно считать только значения процесса, отстоящие друг от друга как минимум на интервал корреляции to:

to = (2/WF)B(t) dt = 1/2F.

литература

1. Баскаков С.И.  Радиотехнические цепи и сигналы Учебник для вузов. - М. Высшая школа, 1988.

3. Васильев Д.В. Радиотехнические цепи и сигналы: Учебное пособие для вузов. - М.: Радио и связь, 1982. - 528 с.

11. Зиновьев А.Л., Филиппов Л.И. Введение в теорию сигналов и цепей: Учебное пособие для вузов. - М.: Высшая школа, 1975. - 264 с.

16. Макс Ж.  Методы и техника обработки сигналов при физических измерениях: В 2-х томах.- М.: Мир, 1983.

25. Сергиенко А.Б. Цифровая обработка сигналов. / Учебник для вузов. – СПб.: Питер, 203. – 608 с.

29. Сато Ю. Обработка сигналов. Первое знакомство. – Изд.: ДОДЭКА, 2002.

30. Харкевич А.А. Борьба с помехами. – М.: Наука, 1965.


Лекция 5.  ДИНАМИЧЕСКАЯ  ФОРМА  ОТОБРАЖЕНИЯ СИГНАЛОВ

Содержание

1. Разложение сигналов по единичным импульсам. Единичные импульсы. Разложение сигнала. Импульсный отклик линейной системы.

2. Свертка (конволюция) сигналов. Интеграл Дюамеля. Интеграл свертки. Техника свертки. Свойства свертки. Системы свертки. Начальные условия свертки. 

Введение

Динамическая форма представления сигналов соответствует естественному и привычному для нас математическому описанию в виде функций независимых переменных (аргументов) в реальном (текущем) масштабе времени. Динамические модели сигналов позволяют определять текущие значения сигналов в любых системах по заданным априори математическим функциям описания физических процессов в реальных физических системах или системных операций в программных системах. Достоинством динамических моделей является их универсальность, основные математические инструменты реализации - дифференциальные уравнения и интеграл Дюамеля, для цифровых сигналов - разностные уравнения и операция свертки.

Основной задачей динамической модели является математическое описание реакции системы (выходного сигнала системы) на определенное входное воздействие (входной сигнал). Моделирование и анализ линейных стационарных систем обработки сигналов произвольной формы в динамическом представлении базируется на разложении сигналов по единичным импульсам простейшей формы.

3.1.  Разложение  сигналов  по  единичным  импульсам [1, 11].

Единичные импульсы. В качестве математической модели единичного импульса при анализе аналоговых сигналов используют дельта-функцию.

Дельта-функция или функция Дирака. По определению, дельта-функция описывается следующими математическими выражениями (в совокупности):

d(t-t) = 0   при t ¹ t,   d(t-t) dt = 1.

Функция d(t-t) не является дифференцируемой, и имеет размерность, обратную размерности ее аргумента, что непосредственно следует из безразмерности результата интегрирования. Значение дельта-функции равно нулю везде за исключением точки t, где она представляет собой бесконечно узкий импульс с бесконечно большой амплитудой, при этом площадь импульса равна 1.

Дельта-функция является полезной математической абстракцией. На практике такие функции не могут быть реализованы с абсолютной точностью, так как невозможно реализовать значение, равное бесконечности, в точке t = t на аналоговой временной шкале, т.е. определенной по времени также с бесконечной точностью. Но во всех случаях, когда площадь импульса равна 1, длительность импульса достаточно мала, а за время его действия на входе какой-либо системы сигнал на ее выходе практически не изменяется (реакция системы на импульс во много раз больше длительности самого импульса), входной сигнал можно считать единичной импульсной функцией со свойствами дельта - функции.

Функция Кронекера. Для дискретных и цифровых систем в качестве единичного импульса используется дискретный интегральный аналог дельта-функции - функция единичного отсчета d(kDt-nDt), которая равна 1 в координатной точке k = n и нулю во всех остальных точках, при этом функция d(kDt-nDt) определена только для целых значений координат k и n.

Математические выражения d(t-t) и d(kDt-nDt) называют также импульсами Дирака и Кронекера. Однако, применяя такую терминологию, не следует забывать, что это не просто единичные импульсы в координатных точках t и nDt, а импульсные функции, определяющие как значения импульсов в определенных координатных точках, так и нулевые значения по всем остальным координатам, в пределе от - до  .  

Разложение сигнала по единичным импульсам. Импульсы Дирака и Кронекера используются для разложения, соответственно, произвольных аналоговых сигналов s(t) и дискретных сигналов s(kDt) в непрерывную последовательность неперекрывающихся  (ортогональных) импульсов:

Рис. 3.1.1.

s(t) =s(t)d(t-t) dt.               (3.1.1)

s(kDt) =s(nDt)d(kDt-nDt).                  (3.1.1')

Для аналоговых сигналов разложение (3.1.1) в физическом представлении эквивалентно сканированию значений сигнала s(t) в моменты времени t = t бесконечно узкой щелью, бегущей вдоль оси t. Для цифровых сигналов эта щель равна одному отсчету. Пример разложения дискретного сигнала приведен на рис. 3.1.1.

Единичные импульсные функции d(t-t), -<t< , и d(kDt-nDt), -<n<, образуют в бесконечномерных пространствах системы координатных базисов {d(t-t)} и {d(kDt-nDt)}, т.к. они не перекрываются и, соответственно, взаимно ортогональны. По этим координатным системам и производится разложение сигналов s(t) и s(kDt). Совокупности проекций сигналов на координатные базисы представляют собой векторные описания сигналов.

Импульсный отклик линейной системы. Если на вход линейной системы в момент времени t = 0 подать единичный импульс (Дирака или Кронекера, в зависимости от типа системы), то на выходе мы получим реакцию системы на единичный входной сигнал. Эта реакция называется функцией импульсного отклика системы или импульсной характеристикой. Она однозначно определяется оператором преобразования h(..):

y(t) = T[d(t-0)] = h(t).                                         (3.1.2)

y(kDt) = T[d(kDt-0)] = h(kDt).                                 (3.1.2')

Импульсный отклик аналоговой системы на входную дельта-функцию также в определенной степени представляет собой математическую абстракцию идеального преобразования. С практической точки зрения под импульсным откликом можно понимать отображение реакции системы на импульсный входной сигнал произвольной формы с единичной площадью, если длительность этого сигнала пренебрежимо мала по сравнению с временной (координатной) разрешающей способностью системы. Для цифровых систем импульсный отклик однозначно определяется реакцией системы на импульс Кронекера. Функцию импульсного отклика называют также весовой функцией системы.

Очевидно, что в линейных и инвариантных к сдвигу системах форма импульсного отклика не зависит от времени прихода входного сигнала и определяет только его положение на временной оси. Так, если входной импульс задержан (относительно 0) на время to, то соответствующий выходной сигнал будет определяться выражением:

y(t) = T[d(t-to)] = h(t-to).

 В любой системе, работающей в реальном масштабе времени, сигнала на выходе системы не может быть, если нет сигнала на ее входе. Отсюда следует односторонность импульсного отклика физических систем:

h(t-t) = 0   при   t<t.

Для программных систем, работающих с зарегистрированными массивами цифровых данных, импульсный отклик может быть и двусторонним, так как при обработке сигналов в любой текущей точке kDt системе доступны как "прошлые" отсчеты kDt-nDt, так и "будущие" отсчеты kDt+nDt. Это резко расширяет возможности программной обработки сигналов по сравнению с физическими системами.

На рисунке 3.1.2 приведен пример импульсного отклика h(t) элементарной физической системы преобразования электрических сигналов – динамической интегрирующей RC-цепи. Подобные схемы очень часто применяются в полевых геофизических приборах (например, в радиометрах) в качестве интенсиметров - измерителей средней скорости счета импульсных потоков сигналов.

Рис. 3.1.2.

При подаче на вход RC-цепи единичного и очень короткого (Dt << RC) импульса заряда Dq емкость С заряжается до напряжения Vо = Dq/C, и начинает разряжаться через сопротивление R, при этом напряжение на емкости изменяется по закону v(t) = Voexp(-t/RC) = (Dq/C)exp(-t/RC). Отсюда, импульсный отклик RC-цепи на единичный входной сигнал с единичным значением заряда Dq = 1 равен:  h(t) = (1/C)exp(-t/RC), где форма отклика определяется функцией экспоненты, а множитель (1/С) является масштабным преобразователем сигнала (заряда в напряжение). По существу, импульсным откликом системы определяется доля входного сигнала, которая действует на выходе системы по истечении времени t после поступления сигнала на вход (запаздывающая реакция системы).

Если функция импульсного отклика системы известна, то, с учетом принципа суперпозиции сигналов в линейной системе, можно выполнить расчет реакции системы в любой произвольный момент времени на любое количество входных сигналов в любые моменты времени их прихода путем суммирования запаздывающих реакций системы на эти входные сигналы. На рис. 3.1.2 приведен пример входного сигнала s(t) для RC-цепи в виде последовательности импульсов и  реакция системы y(t) на такой входной сигнал, образованная суммированием реакций системы на каждый импульс.

Допустим, что на вход RC-цепи в моменты времени t1=1 и t2=2 поступили очень короткие (по сравнению со значением RC) импульсы заряда величиной A и В. Математически это можно отобразить сигналом s(t) = q1(t)+q2(t), где q1(t) = Ad(t-t1) и q2 = Bd(t-t2). Выходной сигнал системы при известном импульсном отклике h(t) отобразится формулой:

y(t) = T[q1(t)+q2(t)] = T[Ad(t-t1)]+T[Bd(t-t2)] = AT[d(t-t1)]+BT[d(t-t2)] = Ah(t-t1)+Bh(t-t2).

При расчете значений выходного сигнала в произвольный момент времени t после прихода на вход системы сигналов q1 и q2, например, для t = 5, для каждого из сигналов вычисляются значения их запаздывающих реакций: y1 = Ah(5-1) = Ah(4) и y2 = Bh(5-2) = Bh(3), после чего значения запаздывающих реакций суммируются у = у1+у2. Пример этой операции можно видеть на рис. 3.1.3, где для удобства графического представления приняты значения А=1 и В=1. Сущность операции не изменяется при любых значениях А и В, а в общем случае и для любого количества импульсов.

Рис. 3.1.3.

Однако эту же операцию можно рассматривать и с другой позиции. Развернем импульсный отклик h(t) системы на 1800 и поместим его начало h(0) непосредственно в точку, для которой нужно выполнить расчет выходного сигнала, т.е. в точку t=5 для нашего примера. Если теперь отсчет координат для функции h(t) повести назад от точки расчета по аргументу t, т.е. перейти на вычисление h(t), где значение t изменяется от 0 и далее (в пределе до  ), то нетрудно убедиться (на рисунке это наглядно видно), что функция h(t) пересечет входные импульсы на тех же значениях у1 и у2. Для этих точек пересечения первого и второго импульсов соответственно имеет место t1 = t-t1 и t2 = t-t2, как и при прямом методе расчета запаздывающих реакций при расчете значений h(t-t1) и h(t-t2). После умножения полученных значений h(t1) и h(t2) на значения входного сигнала А и В, получаем полную аналогию: y1 = Ah(t1) = Ah(t-t1) и y2 = Bh(t2) = Bh(t-t2), и соответственно суммарный сигнал у = у1+у2.

Такое, чисто математическое представление расчета более удобно для составления математических алгоритмов вычислений. Условно этот процесс для коротких входных импульсных сигналов может быть представлен в следующем виде. Для любой точки расчета ti выходного сигнала инвертированная по координатному направлению функция импульсного отклика h(t) помещается в эту точку ti и просматривается по своей координате t с одновременным синхронным просмотром входного сигнала s(t) назад от точки расчета (прошлые значения входного сигнала) по координатам ti-t. Значения всех встреченных при просмотре импульсов s(ti-t) перемножаются со значениями h(t) и суммируются. Тем самым, для каждой текущей точки расчета ti в аналоговой системе выполняется операция:

y(ti) =h(t)s(ti-t) dt.                                       (3.1.3) 

Соответственно в цифровых системах для произвольной точки k:

y(kDt) =h(nDt)s(kDt-nDt).                                (3.1.3')

Полученная сумма значений и будет представлять собой запаздывающую реакцию системы на все импульсы, поступившие на вход системы до текущей точки расчета выходного сигнала.

Таким образом, для линейных и стационарных систем легко определить их реакцию на любой входной сигнал, если известен импульсный отклик систем на единичный входной сигнал.

3.2. Свертка (конволюция) сигналов [1, 11].

Интеграл Дюамеля позволяет определять реакцию системы на воздействие s(t) в текущем времени по ее переходной функции g(t) на единичный скачок входного воздействия:

y(t)= y(0)+g(t)s(t-t) dt,                                     (3.2.1)

Рис. 3.2.1.

где y(0) – начальное значение выходного сигнала системы.

Пример расчета выходного сигнала системы на ступенчатый входной сигнал приведен на рис. 3.2.1. Ступенчатая форма сигнала принята для более наглядного представления процесса формирования выходного сигнала. В общем случае, форма входного воздействия может быть произвольной.

 Интеграл свертки – это вариант интеграла Дюамеля. Произвольный сигнал на входе системы с использованием выражений разложения сигнала может быть представлен в виде последовательной линейной комбинации взвешенных единичных импульсов:

y(t) = T[s(t)] = T[s(t) d(t-t) dt].

 На основании принципа суперпозиции линейный оператор Т может быть внесен под знак интеграла, т.к. последний представляет собой предельное значение суммы. При этом операция преобразования действует только по переменной t. Отсюда следует:

y(t) = s(t) Т[d(t-t)] dt = s(t) h(t-t) dt.                       (3.2.2)

Это выражение и представляет собой интеграл свертки (конволюции) входного сигнала с импульсной характеристикой системы. Заменой переменных t-t = t можно убедиться в том, что свертка коммутативна:

s(t) h(t-t) dt h(t) s(t-t) dt.                              (3.2.2')

Функция h(t) называется ядром свертки (kernel) или импульсной характеристикой линейной системы.

Смысл интеграла свертки состоит в том, что входной сигнал представляется сомкнутой последовательностью следующих друг за другом коротких импульсов, площади которых равны значению сигнала в моменты их следования при длительности импульсов, стремящейся к нулевой. Такая последовательность импульсов условно может рассматриваться в виде последовательности дельта-функций с площадями, равными площадям соответствующих импульсов. Реакция системы (3.2.2) находится как сумма реакций на каждый импульс, составляющий входное воздействие.

Аналогично, для дискретных сигналов, где значение Dt, как правило,  принимается равным 1, а индексы k и n выполняют роль номеров отсчетов числовых рядов:

y(k) =h(n) s(k-n).                                    (3.2.2'')

В цифровых методах обработки сигналов функцию h(n) обычно называют оператором свертки, а его размер по числу отсчетов – окном оператора свертки.

Выражения (3.2.2) имеют специальную форму упрощенной математической записи в символическом виде:

y(t) = s(t-t) * h()  s(t) * h(t). 

Сравнением выражений (3.2.2' и 3.2.2'') с выражениями (3.1.3) нетрудно убедиться в их полной идентичности, за исключением нижнего предела интегрирования (суммирования). Это и понятно, так как выражения (3.1.3) были получены при рассмотрении реальной физической системы, работающей в реальном масштабе времени, импульсный отклик которых является односторонним (равен нулю при t<0). Для таких систем интегрирование (и суммирование) от - до 0 не имеет смысла. Кроме того, в реальных физических системах импульсный отклик, как правило, отличен от нуля только на определенном интервале, и, соответственно, пределы интегрирования (суммирования) в выражениях (3.2.2' и 3.2.3'') ограничиваются значениями, на которых функции h(t) и h(n) существует или имеет значимые значения.

Сигналы, обрабатываемые на компьютере, имеют конечную продолжительность. Допустим, сигнал s(k) отличен от нуля только на отрезке от 0 до K включительно ("имеет длину K+1"). Пусть окно оператора свертки h(n) отлично от нуля на отрезке от – N до N (2N+1 отсчет). При подстановке этих сигналов в уравнение свертки, мы получим сигнал y(k), который отличен от нуля на отрезке от − N до K+N включительно. Таким образом, длина выходного сигнала равна 2N+K+1, т.е. сумме длин исходного сигнала и ядра свертки минус один.

Рис. 3.2.2.

Техника свертки. Для вычисления свертки по выражению (3.2.2') функция импульсного отклика реверсируется по своей координате, т.е. строится в режиме обратного времени, и движется относительно функции входного сигнала в сторону возрастания значений t. В каждый текущий момент времени значения обеих функций перемножаются, а произведение интегрируется в пределах окна импульсного отклика. Полученный результат относится к той координатной точке, против которой находится значение импульсного отклика h(0).

На рис. 3.2.2. приведен пример выполнения свертки прямоугольного импульса  с импульсным откликом RC-цепи, площадь которого нормирована к 1. Если площадь импульсного отклика h(t) равна 1, то площадь выходного сигнала свертки всегда должна быть равна площади входного сигнала, что можно видеть на верхнем графике рисунка, при этом одномасштабное сравнение  входного и выходного сигналов наглядно демонстрирует характер преобразования сигнала в данной системе. На последующих графиках рисунка демонстрируется вычисление результатов свертки в ряде последовательных точек ti = {3.5, 4, 5, 6, 7} временной оси. В силу отрицательного знака t в аргументах функции s(t-t) интегрирование произведения h(t)s(t-t) выполняется назад по времени и может ограничиваться только определенной длиной значимых значений импульсного отклика (которая в данном случае установлена равной r = 4), а результат относится к начальной точке h(0) импульсного отклика. Так как входной сигнал, рассмотренный на рисунке, представляет собой прямоугольный импульс с амплитудой 1, то интеграл свертки в каждой текущей точке расчета равен площади импульсного отклика в пределах границ входного прямоугольного импульса (заполнено точками).

Рис. 3.2.3.

Еще более наглядна техника выполнения цифровой свертки, приведенная на рис. 3.2.3. Для вычисления свертки массив одной из функций (sk - входного или свертываемого сигнала) располагается по ходу возрастания номеров. Массив второй функции (hn - более короткой), строится параллельно первому массиву в обратном порядке (по ходу уменьшения номеров первого массива или в режиме обратного времени). Для вычисления yk значение h0 располагается против sk, все значения sk-n  перемножаются с расположенными против них значениями hn и суммируются. Результаты суммирования являются выходным значением функции yk, после чего оператор hn сдвигается на один номер k вперед (или функция sk сдвигается ему навстречу) и вычисление повторяется для номера k+1 и т.д.

Свойства свертки. Для свертки характерны следующие свойства:

  •  1. Дистрибутивность:     h(t) * [a(t)+b(t)] = h(t) * a(t)+h(t) * b(t).
  •  2. Коммутативность:     h(t) * a(t) * b(t) = a(t) * b(t) * h(t).
  •  3. Ассоциативность:     [a(t) * b(t)] * h(t) = h(t) * a(t) * b(t).

Преобразование свертки однозначно определяет выходной сигнал y(t) для установленного значения входного сигнала s(t) при известном значении функции импульсного отклика системы h(t). Обратная задача деконволюции - определение функции s(t) по функциям y(t) и h(t), относится к разряду некорректных, и имеет решение только при вполне определенных условиях. Это объясняется тем, что свертка может существенно изменить частотный спектр сигнала y(t) относительно s(t) и восстановление функции s(t) становится невозможным, если определенные частоты ее спектра в сигнале y(t) полностью утрачены.

Любая практическая система должна быть устойчивой, т.е. для сигналов, конечных по энергии или средней мощности, выходные сигналы также должны быть конечными по этим параметрам. Устойчивость обеспечивается при выполнении условия абсолютной интегрируемости импульсного отклика системы:

|h(t)| dt < .

Для систем с m входами и n выходами аналогично определяются парциальные импульсные отклики hij(t),  i = {1,2, ... ,n},  j = {1,2, ... ,m}, каждым из которых отображается сигнал на i-м выходе при поступлении сигнала d(t) на j-й вход. Полная совокупность импульсных откликов образует матрицу:

,

а выражение свертки приобретает вид:

(t) = (t)(t-t) dt.

 Здесь (и в дальнейшем тексте) жирным шрифтом с "крышкой" выделяются векторные величины.

Системы свертки. Свертка выполняется системой (физическим или программным устройством). Физические системы, работающие в реальном времени, вычисляют текущее значение выходного сигнала по всем прошлым значениям входного сигнала, и не могут иметь в своем распоряжении будущих значений входного сигнала. Операторы таких систем являются односторонними (каузальными). Вышеприведенная, нормированная к 1 по площади, функция RC-цепи h(t) = (1/RC)exp(-t/RC), принятая в качестве системного оператора на рис. 3.2.2, является именно таким односторонним каузальным оператором. При сравнении выходного сигнала такой системы с входным нетрудно заметить, что выходной сигнал сдвигается относительно входного сигнала. Для каузальных систем такой "сдвиг по фазе" существует всегда и не может быть исключен (сигнал на выходе системы не может быть раньше сигнала на ее входе).

Входным сигналом программных систем является сигнал в целом, записанный в память вычислительного устройства. При обработке таких данных в распоряжении системы при вычислении любой текущей точки выходного сигнала имеются как "прошлые" для данной точки, так и "будущие" значения входного сигнала. Это позволяет создавать системы без сдвига фазы выходного сигнала относительно входного. Для создания таких систем может использоваться два способа:

Рис. 3.2.4.

1. Первый способ иллюстрирует рис. 3.2.4. Задается система с односторонним каузальным оператором h(t). Входной сигнал s(t) пропускается через систему в обычном порядке, и выполняется свертка g(t) = h(t)*s(t). Затем выходной сигнал g(t) реверсируется (g(t)=>g(-t), конец сигнала становится его началом в порядке возрастания t) и повторно пропускается через систему, т.е. выполняется свертка y(-t) = h(t)*g(-t) . Полученный сигнал снова реверсируется  y(-t) => y(t), и результат является окончательным выходным сигналом y(t) системы.

Три последние операции (реверс g(t) свертка c h(t) реверс выходного сигнала) эквивалентны свертке сигнала g(t) с реверсированным откликом системы h(-t), и сдвиг по фазе при свертке реверсированного сигнала компенсирует сдвиг по фазе сигнала, полученный при первой свертке. Общий результат операции  y(t) = h(t)*h(-t)*s(t) не имеет сдвига по фазе выходного сигнала относительно входного. Такую операцию приходится выполнять для исключения сдвига фазы при применении рекурсивных фильтров, которые всегда являются односторонними.

Рис. 3.2.5.

2. Выходной результат y(t) = h(t)*h(-t)*s(t) предыдущей операции позволяет, используя свойство коммутативности свертки, сначала выполнить свертку h(t)*h(-t) = h(t) и получить один системный оператор h(t) (см. рис. 3.2.5), обеспечивающий свертку без сдвига фазы. Этот системный оператор является двусторонним и симметричным относительно t = 0. Но использование его возможно только для предварительно записанных сигналов, т.к. при выполнении свертки y(t)= h(t)*s(t-t) для отрицательных значений t требуются "будущие" значения входного сигнала s(t+t). Результат свертки с симметричным оператором полностью аналогичен первой операции (сигнал y(t) на рис. 3.2.4).

Приведенное выше формирование двустороннего симметричного оператора свертки имеет чисто познавательный характер. На практике вполне естественным является расчет непосредственно симметричных двусторонних операторов под требуемые задачи обработки числовых данных (сигналов, зарегистрированных в дискретной числовой форме).

Начальные условия свертки. В начальный момент свертки, при вычислении значений y(ti) для значений ti < tmax оператора h(t), функция оператора, построенная в режиме обратного времени, при t>ti "зависает" для значений ti-t против отсутствующих значений входной функции.

Рис. 3.2.6.

Пример такого зависания оператора дискретной свертки  против несуществующих отсчетов  s-1 и s-2 входного массива данных при вычислении отсчета у0 приведен на рис. 3.2.6. Зависание исключают либо заданием начальных условий - дополнительных отсчетов, чаще всего нулевых или равных первому отсчету входной функции, либо началом свертки с отсчета входной функции ki = nmax с соответствующим сокращением интервала выходной функции на интервал задания системного оператора. Для симметричных операторов со значениями -n (вперед по времени) такой же момент наступает и в конце входного массива, и требует задания конечных условий или сокращения размера выходного сигнала.

литература

1. Баскаков С.И.  Радиотехнические цепи и сигналы Учебник для вузов. - М. Высшая школа, 1988.

11. Зиновьев А.Л., Филиппов Л.И. Введение в теорию сигналов и цепей: Учебное пособие для вузов. - М.: Высшая школа, 1975. - 264 с.


Лекция 6.   ЭНЕРГЕТИЧЕСКИЕ  СПЕКТРЫ  СИГНАЛОВ

Содержание

1. Мощность и энергия сигналов.  

2. Энергетические спектры сигналов. Скалярное произведение сигналов. Взаимный энергетический спектр. Энергетический спектр сигнала. 

введение

Понятия мощности и энергии в теории сигналов не относятся к характеристикам каких-либо физических величин сигналов, а являются их количественными характеристиками, отражающими определенные свойства сигналов и динамику изменения их значений во времени, в пространстве или по любым другим аргументам.

Для произвольного, в общем случае комплексного, сигнала мгновенная мощность по определению равна квадрату функции его модуля, для вещественных сигналов - квадрату функции амплитуд. Энергия сигнала, также по определению, равна интегралу от мощности по всему интервалу существования или задания сигнала.

Энергия сигналов может быть конечной или бесконечной. Конечную энергию имеют финитные сигналы и сигналы, затухающие по своим значениям в пределах конечной длительности, которые не содержат дельта-функций и особых точек (разрывов второго рода и ветвей, уходящих в бесконечность). В противном случае их энергия равна бесконечности. Бесконечна также энергия периодических сигналов.

5.1.  Мощность и энергия сигналов   [1,3,16].

Частотное представление применяется не только для спектрального анализа сигналов, но и для упрощения вычислений энергии сигналов и их корреляционных характеристик.

Как уже рассматривалось ранее, для произвольного сигнала s(t) = a(t)+jb(t), где а(t) и b(t) - вещественные функции, мгновенная мощность сигнала (плотность распределения энергии) определяется выражением:

w(t) = s(t)s*(t) = a2(t)+b2(t) = |s(t)|2.

Энергия сигнала равна интегралу от мощности по всему интервалу существования сигнала. В пределе:

Еs =w(t)dt =|s(t)|2dt.

По существу, мгновенная мощность является плотностью мощности сигнала, так как измерения мощности возможны только через энергию, выделяемую на определенных интервалах ненулевой длины:

w(t) = (1/Dt)|s(t)|2dt.

Сигнал s(t) изучается, как правило, на определенном интервале Т (для периодических сигналов - в пределах одного периода Т), при этом средняя мощность сигнала:

WT(t) = (1/T)w(t) dt = (1/T)|s(t)|2 dt.

Понятие средней мощности может быть распространено и на незатухающие сигналы, энергия которых бесконечно велика. В случае неограниченного интервала Т строго корректное определение средней мощности сигнала производится по формуле:

Ws = w(t) dt.

Энергия и норма сигналов связаны соотношениями:  

Es = ||s(t)||2,         ||s|| = .

5.2.  Энергетические спектры сигналов   [1].

Скалярное произведение сигналов. Энергия суммы двух произвольных сигналов u(t) и v(t) определяется выражением

E = [u(t)+v(t)]2 dt = Eu + Ev + 2u(t)v(t) dt.                   (5.2.1)

Как следует из этого выражения, энергии сигналов, в отличие от самих сигналов, в общем случае не обладают свойством аддитивности. Энергия суммарного сигнала u(t)+v(t), кроме суммы энергий составляющих сигналов, содержит в себе и так называемую энергию взаимодействия сигналов или взаимную энергию

Euv = 2u(t)v(t) dt.                                          (5.2.2)

Интеграл выражения (5.2.2) для двух вещественных сигналов является фундаментальной характеристикой, пропорциональной взаимной энергии сигналов. Его называют скалярным произведением сигналов 

Пuv = u(t), v(t) =u(t)v(t) dt = ||u||||v|| cos ,                  (5.2.3)

Скалярное произведение обладает следующими свойствами

  1.  u, v  0;
  2.  u, v = v, u;
  3.  au, v = au, v, где а – вещественное число;
  4.  u+v, a = u, a + v, a.

Линейное пространство сигналов с таким скалярным произведением называется гильбертовым пространством Н. С учетом того, что cos j  1, в гильбертовом пространстве справедливо неравенство Коши-Буняковского

uv| ||u||||v||.                                               (5.2.4)

Для комплексного гильбертова пространства скалярное произведение также представляет собой вещественное число и вычисляется по формуле

Пuv =u(t)v*(t) dt u*(t)v(t) dt.                        (5.2.3')

Из выражения (5.2.3) следует, что косинус угла между сигналами

cos = Пuv/(||u||||v||).                                         (5.2.5)

При полной тождественности сигналов (равенстве амплитуд и временных координат)  имеем j = 0, cos j = 1, и скалярное произведение становится равным энергии сигналов:

Пuv = u(t)2 dt v(t)2 dt ||u||2  ||v||2 .

Дискретные сигналы обычно рассматриваются в пространстве Евклида (обозначение пространства - R2). Скалярное произведение двух сигналов в пространстве Евклида:

Пuv = (uk,vk) =ukvk,

где n - размерность пространства.

Взаимный энергетический спектр. Из очевидной однозначности энергии взаимодействия сигналов независимо от формы их математического представления (в динамической и частотной модели) следует выражение для скалярного произведения произвольных вещественных сигналов u(t) и v(t) через спектральные плотности сигналов U(w) и V(w) в комплексном гильбертовом пространстве:

Пuv = (1/2p)U(w)V*(w) dw  (1/2p)U*(w)V(w) dw.          (5.2.6)

Функции

Wuv(w) = U(w)V*(w),  Wvu(w) = U*(w)V(w),   Wuv(w) = Wvu*(w),     (5.2.7)

для которых справедливо выражение (5.2.6), называется взаимными энергетическими спектрами вещественных сигналов, и являются функциями распределения плотности энергии взаимодействия сигналов (мощности взаимодействия) по частоте.

В общем случае, за исключением спектров четных функций, взаимные энергетические спектры также являются комплексными функциями:

U(w) = Au(w) + j Bu(w),     V(w) = Av(w) + j Bv(w).

Wuv = AuAv+BuBv+j (BuAv - AuBv) = Re Wuv(w) + j Im Wuv(w).       (5.2.7')

С учетом четности реальной части и нечетности мнимой части энергетических спектров, интеграл мнимой части выражения (5.2.7') равен нулю, а, следовательно, скалярное произведение сигналов всегда является вещественным и неотрицательным, как и энергия сигналов:

Пuv = (1/2p)Wuv(w) dw  (1/p)Re Wuv(w) dw.                 (5.2.8)

Рис. 5.2.1. Форма и энергетические спектры сигналов.

На рис. 5.2.1 приведена форма двух одинаковых сдвинутых во времени и частично перекрывающихся лапласовских импульсов u(t) и v(t), а также суммарный импульс z(t)=u(t)+v(t). Плотности энергии сигналов W(f) приведены в относительных единицах плотности энергии суммарного сигнала Wz(f) на нулевой частоте.

Как видно из графиков, плотности энергии сигналов являются вещественными неотрицательными функциями и содержат только реальные части. В отличие от них, плотность взаимной энергии сигналов является комплексной функцией, при этом модуль плотности по своим значениям на шкале частот соизмерим со средними значениями плотности энергии сигналов на этих частотах и не зависит от их взаимного расположения на временной оси. Для сигналов, одинаковых по форме, модуль взаимной плотности равен значениям плотности энергии сигналов.  

Рис. 5.2.2. Взаимные энергетические спектры сигналов.

На рис. 5.2.2 приведены плотности взаимной энергии тех же сигналов при разной величине временного сдвига Dt между сигналами. Однако при постоянном значении модуля взаимной энергии сигналов действительная и мнимая функции спектра мощности существенно изменяются при изменении сдвига между сигналами. При незначительной величине временного перекрытия сигналов частота осцилляций реальной и мнимой части плотности взаимной энергии достаточно велика, а относительный коэффициент затухания колебаний (уменьшение амплитудных значений от периода к периоду) достаточно мал. Соответственно, при вычислении скалярного произведения по формуле (5.2.8) положительные амплитудные значения осцилляций Re(Wuv) практически полностью компенсируются отрицательными значениями и результирующий интеграл, а равно и энергия взаимодействия сигналов (удвоенное значение скалярного произведения), близка к нулевой (стремится к нулю по мере увеличения сдвига между сигналами).

При увеличении степени взаимного перекрытия сигналов частота осцилляций плотности взаимной энергии уменьшается (Dt = 50 mkc на рис. 5.2.2) и основным по энергии реальной части спектра становится центральный низкочастотный пик, площадь которого не компенсируется площадью последующей отрицательной полуволны осцилляции. Соответственно, возрастает и энергия взаимодействия сигналов. При полном перекрытии сигналов (при нулевом фазовом угле между сигналами) осцилляции исчезают, и энергия взаимодействия сигналов максимальна.

Энергетический спектр сигнала. Если функция s(t) имеет фурье-образ S(w), то  плотность мощности сигнала (спектральная плотность энергии сигнала) определяется выражением:

w(t) = s(t)s*(t) = |s(t)|2  |S(w)|2 = S(w)S*(w) = W(w).                 (5.2.9)

Спектр мощности W(w) - вещественная неотрицательная четная функция, которую обычно называют энергетическим спектром. Спектр мощности, как квадрат модуля спектральной плотности сигнала, не содержит фазовой информации о его частотных составляющих, а, следовательно, восстановление сигнала по спектру мощности невозможно. Это означает также, что сигналы с различными фазовыми характеристиками могут иметь одинаковые спектры мощности. В частности, сдвиг сигнала не отражается на его спектре мощности. Последнее позволяет получить выражение для энергетического спектра непосредственно из выражений (5.2.7). В пределе, для одинаковых сигналов u(t) и v(t) при сдвиге Dt 0, мнимая часть спектра Wuv(w) стремится к нулевым значениям, а реальная часть – к значениям модуля спектра. При полном временном совмещении сигналов имеем:

Wuv(w) = U(w)V*(w) = U(w)U*(w) = |U(w)|2 = Wu(w).              (5.2.10)

Соответственно, полная энергия сигнала:

Еu =u(t)2dt = (1/2p)Wu(t)dt = (1/2p)|U(w)|2 dw,          (5.2.11)

т.е. энергия сигнала равна интегралу квадрата модуля его частотного спектра - сумме энергии его частотных составляющих, и всегда является вещественной величиной.

Для произвольного сигнала s(t) равенство

|s(t)|2 dt =|S(f)|2 df

обычно называют равенством Парсеваля (в математике – теоремой Планшереля, в физике – формулой Релея). Равенство очевидно, так как координатное и частотное представления по существу только разные математические отображения одного и того же сигнала. Аналогично для энергии взаимодействия двух сигналов:

u(t) v*(t) dt =U(f) V*(f) df.

Из равенства Парсеваля следует инвариантность скалярного произведения сигналов и нормы относительно преобразования Фурье:

u(t), v(t) = U(f),V(f),     ||s(t)||2 = ||S(f)||2.

В целом ряде чисто практических задач регистрации и передачи сигналов энергетический спектр сигнала имеет весьма существенное значение.

Периодические сигналы переводятся в спектральную область в виде рядов Фурье. Запишем периодический сигнал с периодом Т в виде ряда Фурье в комплексной форме:

s(t) =Sk exp(j2pkt/T),

и вычислим среднюю мощность сигнала за один период:

WT = (1/T)s2(t) dt = (1/T)Sk Smexp(j2p(k+m)t/T) dt.

 Интервал 0-Т содержит целое число периодов всех подынтегральных экспонент, и равен нулю, за исключением экспоненты при k = -m, для которой интеграл равен Т. Соответственно, средняя мощность периодического сигнала равна сумме квадратов модулей коэффициентов его ряда Фурье:

WT =|Sk|2.

Рис. 5.2.3. Энергетический спектр

прямоугольного импульса.

Как правило, спектры сигналов с крутыми фронтами (например, кодовых сигналов при передаче цифровых данных) являются многолепестковыми с постепенным затуханием энергии в последовательных лепестках. Пример нормированного энергетического спектра прямоугольного импульса длительностью tи приведен на рис. 5.2.3. Спектры выполнены в линейном (сплошная линия) и логарифмическом (пунктир) масштабе по оси значений. Для четкого разделения лепестков функции спектров  приведены по безразмерной частотной переменной ftи.

Интегрированием энергетического спектра по интервалам лепестков спектра нетрудно вычислить, что в пределах первого лепестка сосредоточено 90.2% энергии всего сигнала, в пределах второго – 4.8%, в пределах третьего – 1.7%, и т.д. Если форма сигналов в пункте их приема (детектирования) существенного значения не имеет, а регистрация сигналов идет на уровне статистических шумов, равномерно распределенных по всему частотному диапазону,  то такие сигналы целесообразно пропускать через фильтр нижних частот с выделением только первого энергетического лепестка сигнала. Естественно, что при этом фронты регистрируемого сигнала будут сглажены. Но при расширении полосы пропускания фильтра на два или три лепестка энергия принимаемого сигнала будет увеличена соответственно на 4.8 или 6.5%, в то время как энергия шумов в 2 или 3 раза.

литература

1. Баскаков С.И.  Радиотехнические цепи и сигналы Учебник для вузов. - М. Высшая школа, 1988.

3. Васильев Д.В. Радиотехнические цепи и сигналы: Учебное пособие для вузов. - М.: Радио и связь, 1982. - 528 с.

16. Макс Ж.  Методы и техника обработки сигналов при физических измерениях. - М.: Мир, 1983.


Лекция 7.  КОРРЕЛЯЦИЯ  СИГНАЛОВ

Содержание

1. Автокорреляционные функции сигналов. Понятие автокорреляционных функций (АКФ). АКФ сигналов, ограниченных во времени. АКФ периодических сигналов. Функции автоковариации (ФАК). АКФ дискретных сигналов. АКФ зашумленных сигналов. АКФ кодовых сигналов.

2. Взаимнокорреляционные функции сигналов (ВКФ). Взаимная корреляционная функция (ВКФ). Взаимная корреляция зашумленных сигналов. ВКФ дискретных сигналов. Оценка периодических сигналов в шуме. Функция взаимных корреляционных коэффициентов.

3. Спектральные плотности корреляционных функций. Спектральная плотность АКФ. Интервал корреляции сигнала. Спектральная плотность ВКФ. Вычисление корреляционных функций при помощи БПФ.

введение

Корреляция (correlation), и ее частный случай для центрированных сигналов – ковариация, является методом анализа сигналов. Приведем один из вариантов использования метода. Допустим, что имеется сигнал s(t), в котором может быть (а может и не быть) некоторая последовательность x(t) конечной длины Т, временное положение которой нас интересует. Для поиска этой последовательности в скользящем по сигналу s(t) временном окне длиной Т вычисляются скалярные произведения сигналов s(t) и x(t). Тем самым мы "прикладываем" искомый сигнал x(t) к сигналу s(t), скользя по его аргументу, и по величине скалярного произведения оцениваем степень сходства сигналов в точках сравнения.

Корреляционный анализ дает возможность установить в сигналах (или в рядах цифровых данных сигналов) наличие определенной связи изменения значений сигналов по независимой переменной, то есть, когда большие значения одного сигнала (относительно средних значений сигнала) связаны с большими значениями другого сигнала (положительная корреляция), или, наоборот, малые значения одного сигнала связаны с большими значениями другого (отрицательная корреляция), или данные двух сигналов никак не связаны (нулевая корреляция).

В функциональном пространстве сигналов эта степень связи может выражаться в нормированных единицах коэффициента корреляции, т.е. в косинусе угла между векторами сигналов, и, соответственно, будет принимать значения от 1 (полное совпадение сигналов) до -1 (полная противоположность) и не зависит от значения (масштаба) единиц измерений.

В варианте автокорреляции (autocorrelation) по аналогичной методике производится определение скалярного произведения сигнала s(t) с собственной копией, скользящей по аргументу. Автокорреляция позволяет оценить среднестатистическую зависимость текущих отсчетов сигнала от своих предыдущих и последующих значений (так называемый радиус корреляции значений сигнала), а также выявить в сигнале наличие периодически повторяющихся элементов.   

Особое значение методы корреляции имеют при анализе случайных процессов для выявления неслучайных составляющих и оценки неслучайных параметров этих процессов.

Заметим, что в терминах "корреляция" и "ковариация" существует некоторая путаница. В математической литературе термин "ковариация" применяется к центрированным функциям, а "корреляция" – к произвольным. В технической литературе, и особенно в литературе по сигналам и методам их обработки, часто применяется прямо противоположная терминология. Принципиального значения это не имеет, но при знакомстве с литературными источниками стоит обращать внимание на принятое назначение данных терминов.  

6.1.   Автокорреляционные функции  сигналов   [1,25].

Понятие автокорреляционных функций сигналов.  Автокорреляционная функция (АКФ, CF - correlation function) сигнала s(t), конечного по энергии, является количественной интегральной характеристикой формы сигнала, выявления в сигнале характера и параметров взаимной временной связи отсчетов, что всегда имеет место для периодических сигналов, а также интервала и степени зависимости значений отсчетов в текущие моменты времени от предыстории текущего момента. АКФ определяется интегралом от произведения двух копий сигнала s(t), сдвинутых относительно друг друга на время t:

Bs(t) =s(t) s(t+t) dt = ás(t), s(t+t)ñ = ||s(t)|| ||s(t+t)|| cos j(t).         (6.1.1)

Как следует из этого выражения, АКФ является скалярным произведением сигнала и его копии в функциональной зависимости от переменной величины значения сдвига t. Соответственно, АКФ имеет физическую размерность энергии, а при t = 0 значение АКФ непосредственно равно энергии сигнала и является максимально возможным (косинус угла взаимодействия сигнала с самим собой равен 1):

Bs(0) =s(t)2 dt = Es.

АКФ относится к четным функциям, в чем нетрудно убедиться заменой переменной t = t-t в выражении (6.1.1):

Bs(t) = s(t-t) s(t) dt = Bs(-t).

 Максимум АКФ, равный энергии сигнала при t=0, всегда положителен, а модуль АКФ при любом значении временного сдвига не превосходит энергии сигнала. Последнее прямо вытекает из свойств скалярного произведения (как и неравенство Коши-Буняковского):

ás(t), s(t+t)ñ = ||s(t)||||s(t+t)||cos j(t),

cos j(t) = 1 при t = 0,   ás(t), s(t+t)ñ = ||s(t)||||s(t)|| = Es,

cos j(t) < 1 при t  0,   ás(t), s(t+t)ñ = ||s(t)||||s(t+t)||cos j(t) < Es.

Рис.  6.1.1.

В качестве примера на рис. 6.1.1 приведены два сигнала – прямоугольный импульс и радиоимпульс одинаковой длительности Т, и соответствующие данным сигналам формы их АКФ. Амплитуда колебаний радиоимпульса установлена равной  амплитуды прямоугольного импульса, при этом энергии сигналов также будут одинаковыми, что подтверждается равными значениями центральных максимумов АКФ. При конечной длительности импульсов длительности АКФ также конечны, и равны удвоенным значениям длительности импульсов (при сдвиге копии конечного импульса на интервал его длительности как влево, так и вправо, произведение импульса со своей копией становится равным нулю). Частота колебаний АКФ радиоимпульса равна частоте колебаний заполнения радиоимпульса (боковые минимумы и максимумы АКФ возникают каждый раз при последовательных сдвигах копии радиоимпульса на половину периода колебаний его заполнения).

С учетом четности, графическое представление АКФ обычно производится только для положительных значений t. На практике сигналы обычно задаются на интервале положительных значений аргументов от 0-Т. Знак +t в выражении (6.1.1) означает, что при увеличении значений t копия сигнала s(t+t) сдвигается влево по оси t и уходит за 0. Для цифровых сигналов это требует соответствующего продления данных в область отрицательных значений аргумента. А так как при вычислениях интервал задания t обычно много меньше интервала задания сигнала, то более практичным является сдвиг копии сигнала влево по оси аргументов, т.е. применение в выражении (6.1.1) функции s(t-t) вместо s(t+t).

Bs(t) = s(t) s(t-t) dt.                                        (6.1.1')

Для финитных сигналов по мере увеличения значения величины сдвига t временное перекрытие сигнала с его копией уменьшается, а, соответственно, косинус угла взаимодействия и скалярное произведение в целом стремятся к нулю:

= 0.

АКФ, вычисленная по центрированному значению сигнала s(t), представляет собой автоковариационную функцию сигнала:

Cs(t) =[s(t)-ms][s(t+t)-ms] dt,                                (6.1.2)

где ms – среднее значение сигнала. Ковариационные функции связаны с корреляционным функциями достаточно простым соотношением:

Cs(t) = Bs(t) - ms2.

 АКФ сигналов, ограниченных во времени.  На практике обычно исследуются и анализируются сигналы, заданные на определенном интервале. Для сравнения АКФ сигналов, заданных на различных временных интервалах, практическое применение находит модификация АКФ с нормировкой на длину интервала. Так, например, при задании сигнала на интервале [a, b]:

Bs(t) =s(t) s(t+t) dt.                                      (6.1.3)

АКФ может быть вычислена и для слабозатухающих сигналов с бесконечной энергией, как среднее значение скалярного произведения сигнала и его копии при устремлении интервала задания сигнала к бесконечности:

Bs(t) =.                                (6.1.4)

АКФ по данным выражениям имеет физическую размерность мощности, и равна средней взаимной мощности сигнала и его копии в функциональной зависимости от сдвига копии.

АКФ периодических сигналов. Энергия периодических сигналов бесконечна, поэтому АКФ периодических сигналов вычисляется по одному периоду Т, с усреднением скалярного произведения сигнала и его сдвинутой копии в пределах периода:

Bs(t) = (1/Т)s(t) s(t-t) dt.                                     (6.1.5)

Математически более строгое выражение:

Bs(t) =.

При t=0 значение нормированной на период АКФ равно средней мощности сигналов в пределах периода. При этом АКФ периодических сигналов является периодической функцией с тем же периодом Т.  Так, для сигнала s(t) = A cos(w0t+j0) при T=2p/w0 имеем:

Bs(t) = A cos(w0t+j0) A cos(w0(t-t)+j0) = (A2/2) cos(w0t).      (6.1.6)

Рис. 6.1.2.

Полученный результат не зависит от начальной фазы гармонического сигнала, что характерно для любых периодических сигналов и является одним из свойств АКФ. С помощью функций автокорреляции можно проверять наличие периодических свойств в любых произвольных сигналах. Пример автокорреляционной функции периодического сигнала приведен на рис. 6.1.2.

Функции автоковариации (ФАК) вычисляются аналогично, по центрированным значениям сигнала. Замечательной особенностью этих функций являются их простые соотношения с дисперсией ss2 сигналов (квадратом стандарта - среднего квадратического отклонения значений сигнала от среднего значения). Как известно, значение дисперсии равно средней мощности сигналов, откуда следует:

|Cs(t)| ≤ ss2,     Cs(0) = ss2  ||s(t)||2.                               (6.1.7)

Значения ФАК, нормированные на значение дисперсии, представляют собой функцию автокорреляционных коэффициентов:

rs(t) = Cs(t)/Cs(0) = Cs(t)/ss2  cos j(t).                          (6.1.8)

Иногда эту функцию называют "истинной" автокорреляционной функцией. В силу нормировки ее значения не зависят от единиц (масштаба) представления значений сигнала s(t) и характеризуют степень линейной связи между значениями сигнала в зависимости от величины сдвига t между отсчетами сигнала. Значения rs(t)  cos j(t)  могут изменяться от 1 (полная прямая корреляция отсчетов) до -1 (обратная корреляция).

Рис. 6.1.3.

На рис. 6.1.3 приведен пример сигналов s(k) и s1(k) = s(k)+шум с соответствующими этим сигналам коэффициентами ФАК - rs и rs1. Как видно на графиках, ФАК уверенно выявила наличие периодических колебаний в сигналах. Шум в сигнале s1(k) понизил амплитуду периодических колебаний без изменения периода. Это подтверждает график кривой Cs/ss1, т.е. ФАК сигнала s(k) с нормировкой (для сопоставления) на значение дисперсии сигнала s1(k), где наглядно можно видеть, что шумовые импульсы при полной статистической независимости своих отсчетов вызвали увеличение значения Сs1(0) по отношению к значению Cs(0) и несколько "размыли" функцию коэффициентов автоковариации. Это вызвано тем, что значение rs(t) шумовых сигналов стремится к 1 при t  0 и флюктуирует относительно нуля  при t ≠ 0, при этом амплитуды флюктуаций статистически независимы и зависят от количества выборок сигнала (стремятся к нулю при увеличении количества отсчетов).

АКФ дискретных сигналов. При интервале дискретизации данных Dt = const вычисление АКФ выполняется по интервалам Dt = Dt и обычно записывается, как дискретная функция номеров n сдвига отсчетов nDt:

Bs(nDt) = Dtsksk-n.                                    (6.1.9)

Дискретные сигналы обычно задаются в виде числовых массивов определенной длины с нумерацией отсчетов к = 0,1,…К при Dt=1, а вычисление дискретной АКФ в единицах энергии выполняется в одностороннем варианте с учетом длины массивов. Если используется весь массив сигнала и число отсчетов АКФ равно числу отсчетов массива, то вычисление выполняется по формуле:

Bs(n) = sksk-n.                                    (6.1.10)

Множитель K/(K-n) в данной функции является поправочным коэффициентом на постепенное уменьшение числа перемножаемых и суммируемых значений по мере увеличения сдвига n. Без этой поправки для нецентрированных сигналов в значениях АКФ появляется тренд суммирования средних значений. При измерениях в единицах мощности сигнала множитель К/(K-n) заменяется на множитель 1/(K-n).

Формула (6.1.10) применяется довольно редко, в основном для детерминированных сигналов с небольшим числом отсчетов. Для случайных и зашумленных сигналов уменьшение знаменателя (K-n) и числа перемножаемых отсчетов по мере увеличения сдвига приводит к нарастанию статистических флюктуаций вычисления АКФ. Большую достоверность в этих условиях обеспечивает вычисление АКФ в единицах мощности сигнала по формуле:

Bs(n) = sksk-n,   sk-n = 0 при k-n < 0,                     (6.1.11)

т.е. с нормированием на постоянный множитель 1/K и с продлением сигнала нулевыми значениями (в левую сторону при сдвигах k-n или в правую сторону при использовании сдвигов k+n). Эта оценка является смещенной и имеет несколько меньшую дисперсию, чем по формуле (6.1.10). Разницу между нормировками по формулам (6.1.10) и (6.1.11) можно наглядно видеть на рис. 6.1.4.

Рис. 6.1.4.

Формулу (6.1.11) можно рассматривать, как усреднение суммы произведений, т.е. как оценку математического ожидания:

Bs(n) = M{sk sk-n} .                              (6.1.12)

Практически, дискретная АКФ имеет такие же свойства, как и непрерывная АКФ. Она также является четной, а ее значение при n = 0 равно энергии или мощности дискретного сигнала в зависимости от нормировки.

АКФ зашумленных сигналов. Зашумленный сигнал записывается в виде суммы v(k) = s(k)+q(k). В общем случае, шум не обязательно должен иметь нулевое среднее значение, и нормированная по мощности автокорреляционная функция цифрового сигнала, содержащая N – отсчетов, записывается в следующем виде:

Bv(n) = (1/N) s(k)+q(k), s(k-n)+q(k-n) =

= (1/N) [s(k), s(k-n) + s(k), q(k-n) + q(k), s(k-n) + q(k), q(k-n)] =

= Bs(n) + M{sk qk-n} + M{qk sk-n} + M{qk qk-n}.

Bv(n) = Bs(n) +  +  + .                      (6.1.13)

При статистической независимости полезного сигнала s(k) и шума q(k) с учетом разложения математического ожидания

M{sk qk-n} = M{sk} M{qk-n} =

может использоваться следующая формула:

Bv(n) = Bs(n) + 2 + .                                 (6.1.13')

Рис. 6.1.5.

Пример зашумленного сигнала и его АКФ в сопоставлении с незашумленным сигналом приведен на рис. 6.1.5.

Из формул (6.1.13) следует, что АКФ зашумленного сигнала состоит из АКФ сигнальной компоненты полезного сигнала с наложенной затухающей до значения 2+шумовой функцией. При больших значениях K, когда → 0, имеет место Bv(n)  Bs(n). Это дает возможность не только выделять по АКФ периодические сигналы, практически полностью скрытые в шуме (мощность шумов много больше мощности сигнала), но и с высокой точностью определять их период и форму в пределах периода, а для одночастотных гармонических сигналов – и их амплитуду с использованием  выражения (6.1.6).

Таблица 6.1.

M

Сигнал Баркера

АКФ  сигнала

2

1, -1

2, -1

3

1, 1, -1

3, 0, -1

4

1, 1, 1, -1

4, 1, 0, -1

1, 1, -1, 1

4, -1, 0, 1

5

1, 1, 1, -1, 1

5, 0, 1, 0, 1

7

1, 1, 1, -1, -1, 1, -1

7, 0, -1, 0, -1, 0, -1

11

1,1,1,-1,-1,-1,1,-1,-1,1,-1

11,0,-1,0,-1,0,-1,0,-1,0,-1

13

1,1,1,1,1,-1,-1,1,1-1,1,-1,1

13,0,1,0,1,0,1,0,1,0,1,0,1

Кодовые сигналы являются разновидностью дискретных сигналов. На определенном интервале кодового слова МDt они могут иметь только два амплитудных значения: 0 и 1 или 1 и –1. При выделении кодов на существенном уровне шумов форма АКФ кодового слова имеет особое значение. С этой позиции наилучшими считаются такие коды, значения боковых лепестков АКФ которых минимальны по всей длине интервала кодового слова при максимальном значении центрального пика. К числу таких кодов относится код Баркера, приведенный в таблице 6.1. Как видно из таблицы, амплитуда центрального пика кода численно равна значению М, при этом амплитуда боковых осцилляций при n 0 не превышает 1.

6.2.  Взаимные корреляционные функции сигналов   [1,19].

Взаимная корреляционная функция (ВКФ) разных сигналов (cross-correlation function, CCF) описывает как степень сходства формы двух сигналов, так и их взаимное расположение друг относительно друга по координате (независимой переменной). Обобщая формулу (6.1.1) автокорреляционной функции на два различных сигнала s(t) и u(t), получаем  следующее скалярное произведение сигналов:

Bsu(t) =s(t) u(t+t) dt.                                      (6.2.1)

Взаимная корреляция сигналов характеризует определенную корреляцию явлений и физических процессов, отображаемых данными сигналами, и может служить мерой “устойчивости” данной взаимосвязи при раздельной обработке сигналов в различных устройствах. Для конечных по энергии сигналов ВКФ также конечна, при этом:

|Bsu(t)| ||s(t)||||u(t)||,

что следует из неравенства Коши-Буняковского и независимости норм сигналов от сдвига по координатам.

При замене переменной t = t-t в формуле (6.2.1), получаем:

Bsu(t) =s(t-t) u(t) dt = u(t) s(t-t) dt = Bus(-t).

Отсюда следует, что для ВКФ не выполняется условие четности, Bsu(t) Bsu(-t), и значения ВКФ не обязаны иметь максимум при t = 0.

Рис. 6.2.1. Сигналы и ВКФ.

Это можно наглядно видеть на рис. 6.2.1, где заданы два одинаковых сигнала с центрами на точках 0.5 и 1.5. Вычисление по формуле (6.2.1) с постепенным увеличением значений t означает последовательные сдвиги сигнала s2(t) влево по оси времени (для каждого значения s1(t) для подынтегрального умножения берутся значения s2(t+t)). При t=0 сигналы ортогональны и значение B12(t)=0. Максимум В12(t) будет наблюдаться при сдвиге сигнала s2(t) влево на значение t=1, при котором происходит полное совмещение сигналов s1(t) и s2(t+t).

Одни и те же значения ВКФ по формулам (6.2.1) и (6.2.1') наблюдаются при одном и том же взаимном положении сигналов: при сдвиге на интервал t сигнала u(t) относительно s(t) вправо по оси ординат и сигнала s(t) относительно  сигнала u(t) влево, т.е. Bsu(t) = Bus(-t).

Рис. 6.2.2. Взаимноковариационные функции сигналов.

На рис. 6.2.2 приведены примеры ВКФ для прямоугольного сигнала s(t) и двух одинаковых треугольных сигналов u(t) и v(t). Все сигналы имеют одинаковую длительность Т, при этом сигнал v(t) сдвинут вперед на интервал Т/2.

Сигналы s(t) и u(t) одинаковы по временному расположению и площадь "перекрытия" сигналов максимальна при t=0, что и фиксируется функцией Bsu. Вместе с тем функция Bsu резко асимметрична, так как при асимметричной форме сигнала u(t) для симметричной формы s(t) (относительно центра сигналов) площадь "перекрытия" сигналов изменяется по разному в зависимости от направления сдвига (знака t при увеличения значения t от нуля). При смещении исходного положения сигнала u(t) влево по оси ординат (на опережение сигнала s(t) - сигнал v(t)) форма ВКФ остается без изменения и сдвигается вправо на такое же значение величины сдвига – функция Bsv на рис. 6.2.2. Если поменять местами выражения функций в (6.2.1), то новая функция Bvs будет зеркально повернутой относительно t=0 функцией Bsv.

С учетом этих особенностей полное ВКФ вычисляется, как правило, отдельно для положительных и отрицательных запаздываний:

Bsu(t) =s(t) u(t+t) dt.      Bus(t) =u(t) s(t+t) dt.               (6.2.1')

Взаимная корреляция зашумленных сигналов. Для двух зашумленных сигналов u(t) = s1(t)+q1(t) и v(t) = s2(t)+q2(t), применяя методику вывода формул (6.1.13) с заменой копии сигнала s(t) на сигнал s2(t), нетрудно вывести формулу взаимной корреляции в следующем виде:

Buv(t) = Bs1s2(t) + Bs1q2(t) + Bq1s2(t) + Bq1q2(t).                       (6.2.2)

Последние три члена в правой части (6.2.2) затухают до нуля при увеличении t. При больших интервалах задания сигналов выражение может быть записано в следующей форме:

Buv(t) = Bs1s2(t) + + + .             (6.2.3)

При нулевых средних значениях шумов и статистической независимости от сигналов имеет место:

Buv(t) → Bs1s2(t).

ВКФ дискретных сигналов. Все свойства ВКФ аналоговых сигналов действительны и для ВКФ дискретных сигналов, при этом для них действительны и особенности дискретных сигналов, изложенные выше для дискретных АКФ (формулы 6.1.9-6.1.12). В частности, при  Dt = const =1 для сигналов x(k) и y(k) с числом отсчетов К:

Bxy(n) = xk yk-n.                                       (6.2.4)

При нормировании в единицах мощности:

Bxy(n) = xk yk-n  .                                (6.2.5)

Оценка периодических сигналов в шуме. Зашумленный сигнал можно оценить по взаимной корреляции с "эталонным" сигналом методом проб и ошибок с настройкой функции взаимной корреляции до максимального значения.

Для сигнала u(k)=s(k)+q(k) при статистической независимости шума и → 0 функция взаимной корреляции (6.2.2) с шаблоном сигнала p(k) при q2(k)=0 принимает вид:

Bup(k) = Bsp(k) + Bqp(k) = Bsp(k) + .

А поскольку → 0 при увеличении N, то Bup(k) → Bsp(k). Очевидно, что функция Bup(k) будет иметь максимум, когда p(k) = s(k). Меняя форму шаблона p(k) и добиваясь максимизации функции Bup(k), можно получить оценку s(k) в виде оптимальной формы p(k).

Функция взаимных корреляционных коэффициентов (ВКФ) является количественным показателем степени сходства сигналов s(t) и u(t). Аналогично функции автокорреляционных коэффициентов, она вычисляется через центрированные значения функций (для вычисления взаимной ковариации достаточно центрировать только одну из функций), и нормируется на произведение значений стандартов функций s(t) и v(t):

rsu(t) = Csu(t)/sssv.                                          (6.2.6)

Интервал изменения значений корреляционных коэффициентов при сдвигах t может изменяться от –1 (полная обратная корреляция) до 1 (полное сходство или стопроцентная корреляция). При сдвигах t, на которых наблюдаются нулевые значения  rsu(t), сигналы независимы друг от друга (некоррелированны). Коэффициент взаимной корреляции позволяет устанавливать наличие связи между сигналами вне зависимости от физических свойств сигналов и их величины.

При вычислении ВКФ зашумленных дискретных сигналов ограниченной длины с использованием формулы (6.2.4) имеется вероятность появления значений |rsu(n)| > 1.

Для периодических сигналов понятие ВКФ обычно не применяется, за исключением сигналов с одинаковым периодом, например, сигналов входа и выхода при изучении характеристик систем.

6.3.   Спектральные плотности корреляционных функций   [1,25].

Спектральная плотность АКФ может быть определена из следующих простых соображений.

В соответствии с выражением (6.1.1) АКФ представляет собой функцию скалярного произведения сигнала и его копии, сдвинутой на интервал t, при - < t < :

Bs(t) = s(t), s(t-t).

Скалярное произведение может быть определено через спектральные плотности сигнала и его копии, произведение которых представляет собой спектральную плотность взаимной мощности:

s(t), s(t-t) = (1/2p)S(w) St*(w) dw. 

Смещение сигнала по оси абсцисс на интервал t отображается в спектральном представлении умножением спектра сигнала на exp(-jwt), а для сопряженного спектра на множитель exp(jwt):

St*(w) = S*(w) exp(jwt).

С учетом этого получаем:

Bs(t) = (1/2p)S(w) S*(w) exp(jwt) dw =

= (1/2p)|S(w)|2 exp(jwt) dw.                                   (6.3.1)

 Но последнее выражение представляет собой обратное преобразование Фурье энергетического спектра сигнала (спектральной плотности энергии). Следовательно, энергетический спектр сигнала и его автокорреляционная функция связаны преобразованием Фурье:

Bs(t) |S(w)|2 = Ws(w).                                      (6.3.2)

Таким образом, спектральная плотность АКФ есть не что иное, как спектральная плотность мощности сигнала, которая, в свою очередь, может определяться прямым преобразованием Фурье через АКФ:

|S(w)|2 =  Bs(t) exp(-jwt) dt.                                (6.3.3)

Последние выражение накладывает определенные ограничения на форму АКФ и методику их ограничения по длительности.

Рис. 6.3.1. Спектр несуществующей АКФ

Энергетический спектр сигналов всегда положителен, мощность сигналов не может быть отрицательной. Следовательно, АКФ не может иметь формы прямоугольного импульса, т.к. преобразование Фурье прямоугольного импульса – знакопеременный интегральный синус. На АКФ не должно быть и разрывов первого рода (скачков), т.к. с учетом четности АКФ любой симметричный скачек по координате  t порождает “разделение” АКФ на сумму определенной непрерывной функции и прямоугольного импульса длительностью 2t  с соответствующим появлением отрицательных значений в энергетическом спектре. Пример последнего приведен на рис. 6.3.1 (графики функций приведены, как принято для четных функций, только своей правой частью).

АКФ достаточно протяженных сигналов обычно ограничиваются по размерам (исследуются ограниченные интервалы корреляции данных от –Т/2 до Т/2). Однако усечение АКФ, это умножение АКФ на прямоугольный селектирующий импульс длительностью Т, что в частотной области отображается сверткой фактического спектра мощности со знакопеременной функцией интегрального синуса sinc(wT/2). С одной стороны, это вызывает определенное сглаживание спектра мощности, что зачастую бывает полезным, например, при исследовании сигналов на значительном уровне шумов. Но, с другой стороны, может происходить и существенное занижение величины энергетических пиков, если в сигнале имеются какие-либо гармонические составляющие, а также появление отрицательных значений мощности на краевых частях пиков и скачков. Пример проявления данных факторов приведен на рис. 6.3.2.

Рис. 6.3.2. Вычисление энергетического спектра сигнала по АКФ разной длины.

Как известно, спектры мощности сигналов не имеют фазовой характеристики и по ним невозможно восстановление сигналов. Следовательно, АКФ сигналов, как временное представление спектров мощности, также не имеет информации о фазовых характеристиках сигналов и восстановление сигналов по АКФ невозможно. Сигналы одной формы, сдвинутые во времени, имеют одинаковые АКФ. Больше того, сигналы разной формы могут иметь сходные АКФ, если имеют близкие спектры мощности.

Перепишем уравнение (6.3.1) в следующей форме

s(t) s(t-t) dt = (1/2p)S(w) S*(w) exp(jwt) dw,

и подставим в это выражение значение t=0. Полученное равенство хорошо известно и называется равенством Парсеваля

s2(t) dt = (1/2p)|S(w)|2 dw.

Оно позволяет вычислять энергию сигнала, как по временной, так и по частотной области описания сигналов.

 Интервал корреляции сигнала является числовым параметром оценки ширины  АКФ и степени значимой корреляции значений сигнала по аргументу.

Рис. 6.3.3.

Если допустить, что сигнал s(t) имеет примерно равномерный энергетический спектр со значением W0 и с верхней граничной частотой до wв (форма центрированного прямоугольного импульса, как, например, сигнал 1 на рис. 6.3.3 с fв=50 Гц в одностороннем представлении), то АКФ сигнала определится выражением:

Bs(t) = (Wo/p)cos(wt) dw = (Wowв/p) sin(wвt)/(wвt).

Интервалом корреляции сигнала tк считается величина ширины центрального пика АКФ от максимума до первого пересечения нулевой линии. В данном случае для прямоугольного спектра с верхней граничной частотой wв первое пересечение нуля соответствует sinc(wвt) = 0 при wвt = p, откуда:

tк = p/wв =1/2fв.                                              (6.3.4)

Интервал корреляции тем меньше, чем выше верхняя граничная частота спектра сигнала. Для сигналов с плавным срезом по верхней граничной частоте роль параметра wв играет средняя ширина спектра (сигнал 2 на рис. 6.3.3).

Спектральная плотность мощности статистических шумов при единичном измерении представляет собой случайную функцию Wq(w) со средним значением Wq(w)  sq2, где sq2 – дисперсия шумов. В пределе, при равномерном спектральном распределении шумов от 0 до , АКФ шумов стремится к значению Bq(t)  sq2 при t  0, Bq(t) 0 при t  0, т.е. статистические шумы не коррелированны (tк  0).

Практические вычисления АКФ финитных сигналов обычно ограничиваются интервалом сдвигов t = {0, (3-5)tk}, в котором, как правило,  сосредоточена основная информация по автокорреляции сигналов.

Спектральная плотность ВКФ может быть получена на основании тех же соображений, что и для АФК, или непосредственно из формулы (6.3.1) заменой спектральной плотности сигнала S(w) на спектральную плотность второго сигнала U(w):

Bsu(t) = (1/2p)S*(w) U(w) exp(jwt) dw.                       (6.3.5)

Или, при смене порядка сигналов:

Bus(t) = (1/2p)U*(w) S(w) exp(jwt) dw.                      (6.3.5')

Произведение S*(w)U(w) представляет собой взаимный энергетический спектр Wsu(w) сигналов s(t) и u(t). Соответственно, U*(w)S(w) = Wus(w). Следовательно, как и АКФ, взаимнокорреляционная функция и спектральная плотность взаимной мощности сигналов связаны между собой преобразованиями Фурье:

Bsu(t)  Wsu(w)  W*us(w).                                     (6.3.6)

Bus(t)  Wus(w)  W*su(w).                                    (6.3.6')

В общем случае, за исключением спектров четных функций, из условия несоблюдения четности для функций ВКФ следует, что взаимные энергетические спектры являются комплексными функциями:

U(w) = Au(w) + j Bu(w),     V(w) = Av(w) + j Bv(w).

Wuv = AuAv+BuBv+j(BuAv - AuBv) = Re Wuv(w) + j Im Wuv(w),

и содержат определенную фазовую характеристику гармонических составляющих ВКФ, которой и формируется сдвиг максимума ВКФ.

На рис. 6.3.4 можно наглядно видеть особенности формирования ВКФ на примере двух одинаковых по форме сигналов, сдвинутых относительно друг друга.

Рис. 6.3.4. Формирование ВКФ.

Форма сигналов и их взаимное расположение приведены на виде А. Модуль и аргумент спектра сигнала s(t) приведены на виде В. Модуль спектра u(t) тождественен модулю S(w). На этом же виде приведен модуль спектра взаимной мощности сигналов S(w)U*(w). Как известно, при перемножении комплексных спектров модули спектров перемножаются, а фазовые углы складываются, при этом для сопряженного спектра U*(w) фазовый угол меняет знак. Если первым в формуле вычисления ВКФ (6.2.1) стоит сигнал s(t), а сигнал u(t-t) на оси ординат стоить впереди s(t), то фазовые углы S(w) по мере увеличения частоты нарастают в сторону отрицательных значений углов (без учета периодического сброса значений на 2p), а фазовые углы U*(w) по абсолютным значениям меньше фазовых углов s(t) и нарастают (за счет сопряжения) в сторону положительных значений. Результатом умножения спектров (как это видно на рис. 6.3.4, вид С) является вычитание из фазовых углов S(w) значений углов U*(w), при этом фазовые углы спектра S(w)U*(w) остаются в области отрицательных значений, что обеспечивает сдвиг всей функции ВКФ (и ее пиковых значений) вправо от нуля по оси t на определенную величину (для одинаковых сигналов – на величину разности между сигналами по оси ординат). При смещении начального положения сигнала u(t) в сторону сигнала s(t) фазовые углы S(w)U*(w) уменьшаются, в пределе до нулевых значений при полном совмещении сигналов, при этом функция Bsu(t) смещается к нулевым значениям t, в пределе до обращения в АКФ (для одинаковых сигналах s(t) и u(t)).

Как известно для детерминированных сигналов, если спектры двух сигналов не перекрываются и, соответственно, взаимная энергия сигналов равна нулю, такие сигналы ортогональны друг другу.  Связь энергетических спектров и корреляционных функций сигналов показывает еще одну сторону взаимодействия сигналов. Если спектры сигналов не перекрываются и их взаимный энергетический спектр равен нулю на всех частотах, то при любых временных сдвигах t друг относительно друга их ВКФ также равна нулю. А это означает, что такие сигналы являются некоррелированными. Это действительно как для детерминированных, так и для случайных сигналов и процессов.

Вычисление корреляционных функций при помощи БПФ является, особенно для длинных числовых рядов,  в десятки и сотни раз более быстрым методом, чем последовательными сдвигами во временной области при больших интервалах корреляции. Суть метода вытекает из формул (6.3.2) для АКФ и (6.3.6) для ВКФ. Учитывая, что АКФ можно рассматривать как частный случай ВКФ при одном и том же сигнале, процесс вычисления рассмотрим на примере ВКФ для сигналов x(k) и y(k) с числом отсчетов К. Он включает:

1. Вычисление БПФ спектров сигналов x(k) → X(k) и y(k) → Y(k). При разном количестве отсчетов более короткий ряд дополняется нулями до размера большего ряда.

2. Вычисление спектров плотности мощности Wxy(k) = X*(k) Y(k).

3. Обратное БПФ Wxy(k) → Bxy(k).

Отм