55426

Арифметическая и геометрическая прогрессии

Конспект урока

Педагогика и дидактика

Цель урока: формировать умения применять полученные знания в нестандартных условиях; учить анализировать и систематизировать знания, полученные на уроках и из дополнительной литературы.

Русский

2014-03-25

69.5 KB

1 чел.

9 класс

Арифметическая и геометрическая

прогрессии

Нестандартные задачи

Цель урока:

формировать умения применять полученные знания в нестандартных условиях;  учить анализировать и систематизировать знания, полученные на уроках и из дополнительной литературы.

Тип урока: повторительно-обобщающий.

Записи на доске:

Математика безмежно різноманітна, як світ, і присутня, міститься в усьому.

М.П. Єругін

Ход урока

I. Актуализация опорных знаний (в форме беседы).

1. Дать определение арифметической прогрессии.

2. Какое число называют разностью арифметической прогрессии?

3. Какой формулой можно задать арифметическую прогрессию?

4. Назвать характерное свойство арифметической прогрессии.

5. Дать определение геометрической прогрессии.

6. Что такое знаменатель геометрической прогрессии?

7. Назвать формулу n-го члена геометрической прогрессии.

8. Назвать характерное свойство геометрической прогрессии.

9. Как найти сумму n первых членов арифметической прогрессии?

10. Записать формулу суммы n первых членов геометрической прогрессии.

11. Если |q|<1, то прогрессия называется …,  и  Sn =…

На парте у каждого:

  1.  вопросы к беседе;
  2.  таблицы формул;
  3.  задания.

Закончился двадцатый век.

Куда стремится человек?

Изучен космос  и моря,

Строение звёзд и вся Земля.

Но математиков зовёт

Известный лозунг:

«Прогрессио – движение вперёд».

Зная эти формулы, можно решать много интересных задач.

… И каждый должен знать:

Познание, упорство, труд

К прогрессу в жизни приведут!

II. Решение задач.

1. Найти сумму 20 первых членов арифметической прогрессии, если а691215=20.

Решение.

Т.к. а120615912, то а69=10

2. При каком значении х1 числа 4х+5, 7х–1, х2+2 будут последовательными членами арифметической прогрессии?

Решение.

По свойству

3. Решить уравнение 4+10+16+…+х=310.

Решение.

4. Найти х из условия: 32·35·38·…·34х-4=275.

Решение.

5. Какие три числа а1,  а2, а3 могут составить одновременно арифметическую и геометрическую прогрессии?

Решение.

По свойству арифметической прогрессии:

По свойству геометрической прогрессии:

Значит, такое возможно, если а1 = а23 .

6. При каком х числа х–1; 1–2х; х+7  будут последовательными членами геометрической прогрессии?

Решение.

7. Решить уравнение 1,(3):2х=0,2(17):45.

Решение.

8. Решить уравнение  

Решение.

9. Сумма трёх чисел, составляющих арифметическую прогрессию, равна 15.  Если к ним прибавить 1, 4, 19 соответственно, то получится три числа, составляющих геометрическую прогрессию. Найти эти числа.

Решение.

III. Итог урока.

1. Работа в классе (оценки, благодарность).

2. Прогрессия вокруг нас (краткие сообщения детей).

IV. Домашнее задание.


EMBED Equation.DSMT4  

EMBED Equation.DSMT4  


 

А также другие работы, которые могут Вас заинтересовать

62384. I AM A STUDENT 97.63 KB
  To ask repeatedly; to ease suffering; to gain firsthand experience; to be a volunteer; to deliver to the emergency room; to intend to become a doctor; obliging and grateful patients; a glamorous job; infirm patients; the cause of his death...
62386. Articles (definite, indefinite), nouns (singular, plural), possessives, pronouns 23.88 KB
  Множественное число существительных Основным способом образования множественного числа имён существительных является прибавление окончания s или es к форме существительного в единственном числе. Ряд существительных образуют форму множественного числа особым образом.
62387. Урок немецкого языка. Введение 79.55 KB
  Sie-личное местоимение 3-го лица множественного числа, используется как форма вежливости (пишется всегда с заглавной буквы). sind-3-е лицо множественного числа от глагола-связки sein быть. ja употребляется при утвердительном ответе на вопрос без вопросительного слова.
62391. Роль измерений в физике. Прямые и косвенные измерения 24.38 KB
  А ведь для измерения всех этих величин необходимы измерительные приборы. Ребята а какие измерительные приборы вы знаете И какие физические величины ими измеряются Правильно для каждой физической величины существует определенный измерительный прибор ее измеряющий.