55643

Алгебраїчні рівняння та нерівності вищих порядків, які зводяться до квадратних

Практическая работа

Педагогика и дидактика

Основні методи розв’язання рівнянь Розкладання лівої частини рівняння на множники А Спосіб групування 1 Розв’язання 2 Відповідь: Б Застосування схеми Горнера 1 Розв’язання Дільниками вільного члена є числа Серед них знаходимо корені рівняння...

Украинкский

2014-03-27

2.48 MB

13 чел.

МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

Управління освіти Шосткинської міської ради Сумської ОБЛАСТІ

ШОСКИНКИНСЬКА ЗАГАЛЬНООСВІТНЯ ШКОЛА І-ІІІ СТУПЕНІВ №11

Алгебраїчні рівняння

та нерівності вищих порядків,

які зводяться до квадратних

Учителя математики

вищої категорії ШЗШ №11

Нікітіної Н.В.

Шостка, 2011

Зміст

Розділ I. Основні методи розв’язання рівняння:

  1.  Розкладання лівої частини рівняння на множини:
    а) Спосіб групування;
    b) Застосування схеми Горнера;
  2.  Метод введення нової змінної:
    а) Основні підстановки.

Розділ II. Розв’язання нерівностей методом інтервалів.

Розділ III. Розв’язання рівнянь з параметром.


У роботі розглянуті алгебраїчні рівняння та нерівності вищих степенів, які зводяться до квадратних. Даються короткі теоретичні відомості, наведено приклади для їх розв’язання, надано вправи для самостійної роботи, пропонуються завдання для контрольної роботи по даній темі. Складені з урахуванням досвіду викладання математики у профільних класах.

Розраховані на учнів середніх навчальних закладів, абітурієнтів, які поступають у вузи з підвищеними вимогами з математики.

Розділ І. Основні методи розвязання рівнянь

  1.  Розкладання лівої частини рівняння на множники

А) Спосіб групування

1)  

Розвязання

2)

Відповідь:

Б) Застосування схеми Горнера

1)

Розвязання

Дільниками вільного члена є числа  Серед них знаходимо корені рівняння. Це число -2. Розділимо ліву частину рівняння на (х+2), застосовуючи схему Горнера.

2

3

-8

-9

6

-2

2

-1

-6

3

0

Маємо:

             

             

або          або

                                      

Відповідь:  

  1.  Метод введення нової змінної

А) Основні підстановки:

1) біквадратне рішення

Заміною  зводиться до квадратного

а)         Відповідь:  

2) Зворотне рівняння

За умови   зводиться до квадратного:

Після ділення обох його частин на

       заміни

  1.  ;       Якщо

То ділимо дві частини розвязування на .

Нехай           

Тоді

  1.  

Відповідь: 1; ; .

  1.  

Відповідь:

  1.  Симетричне рівняння:

   

За умови: a=e, b=d зводиться до квадратного після ділення обох його частин на

    і заміни  чи

  1.  

Розв’язання

Ділимо обидві частини рівняння на

Нехай

То

А)  


Б)

Відповідь:

  1.  Якщо в рівнянні

То після обєднання співмножників

Та заміни   воно зводиться до квадратного.

1)

Розвязання

Тоді

   

  

     

    

Відповідь:

Відповідь:

5) Якщо в рівнянні

то внаслідок об’єднання співмножників

Ділення обох частин на і заміни

воно зводиться до квадратного

Розв’язання

тоді

Ділимо обидві частини рівняння на

то

Нехай

то

                                     

  1.  

б)

Відповідь:

  1.  Рівняння вигляду

Де  -  деякі функції називається однорідним. Після ділення обох його частин на  і заміни  воно зводиться до квадратного.

  1.  

Розвязання

Розділимо обидві частини рівняння на

Нехай , маємо

a)

б)

 

Відповідь:

  1.  
  2.  Рівняння

Заміною  зводиться до біквадратного.

  1.  

Розвязання

Нехай: , тоді  

При розвязанні квадратного рівняння відносно ab, маємо:

  1.  
  2.  

Система (b) не має розвязку. Розвязком системи (а) є пари чисел ,

Тоді

Відповідь: 0;1

  1.  

8) Рівняння вигляду

Після ділення чисельника і знаменника кожного дробу на

і заміни зводиться до квадратного

Розділимо чисельник і знаменник кожного дробу на .

Нехай , тоді

  при

 

 

, Рівняння немає коренів;

Відповідь: -4; -1

Відповідь:

9) Розвязання інших видів рівняння

a)

б)

1)

Розвязання


Заміною

 зводиться до квадратного

a) 

б) 

Відповідь:

2)

Розв’язання

Введемо заміну   .  Піднесемо обидві частини рівняння до квадрату:

a)

б)

 

Відповідь:

С-1

І В. Розвязати рівняння

1.

2.

3.

ІІ В. Розв’язати рівняння

1.

2.

3.

Розділ ІІ. Розв’язання нерівностей методом інтервалів

Схема:

1.Привести нерівність до виду

2.Розглянути функцію .

3.Знайти область визначення функції

4.Знайти нулі функції

5.Нанести нулі на область визначення і дослідити функцію на знак.

6.Піддати особливому контролю кінці проміжка.

1)

0

Нулі функції:

Нанесемо нулі на область визначення:

Відповідь:

Завдання для самостійного розвязання

1.                                      

Відповідь:

2.                              

Відповідь:

3.                                                             

Відповідь:

  

                Відповідь:       

C-2

I B.

Розв’язати нерівність:

1.                                                           

Відповідь:       

2.                       

Відповідь:

3.                                 

Відповідь:

II B.

1.                                                           

Відповідь:       

2.                      

Відповідь:

3.                                                   

Відповідь:


Розділ ІІІ. Розв’язання рівнянь з параметром

1.

Розв’язання

Розглянемо дане рівняння як квадратне відносно «а»

 то рівняння має два корені:

Тобто  

Відповідь:

Розв’язання.

Розглянемо рівняння як квадратне відносно а.

Маємо:  

Задаємо дискримінант:

Якщо , то рівняння має два корені:

Розглянемо рівняння:

. Знайдемо дискримінант і визначимо його знак.

Якщо

Якщо .

Розглянемо рівняння:

. Знайдемо дискримінант і визначимо його знак.

Якщо

Якщо

Розглянемо схему,яка дає можливість записати відповідь.

          

Відповідь:

якщо

якщо

якщо .


С-3

І В.

1.Розвязати рівняння:

Відповідь:

2. Розвязати нерівність:

Відповідь: 

3. Розвязати рівняння з параметром:

Відповідь: 2, якщо а=0

                   

1.Розвязати рівняння:

Відповідь:

2. Розвязати нерівність:

Відповідь: 

3. Розвязати рівняння з параметром:

Відповідь: 0, якщо а=0

                   

                   


K-I

I B.

1.Розвязати рівняння:

a.        

Відповідь:

б.               

Відповідь:

в.                                         

Відповідь:

2. Розвязати нерівність:

                                        

Відповідь:   

3. Розвязати рівняння з параметром:

      

Відповідь:         

1.Розвязати рівняння:

a.        

Відповідь:

б.                 

Відповідь:

в.                                                     

Відповідь:

2. Розвязати нерівність:

                                           

Відповідь:   

3. Розвязати рівняння з параметром:

                          

Відповідь:        

Література

1). В.В.Ясінський. Алгебра. Функції та їх графіки. Задачі з параметрами.

Київ 2000 р.

2). В.В.Ясінський. Вибрані конкурсні задачі з параметрами. Київ 2003 р.

3). К.І.Мазур, О.К. Мазур. Текстові задачі з математики з параметрами. Київ. 2002 р.

4). Г.В.Барановська. Практикум з математики. Тригонометрія з параметрами. Київ. 2000р.

5). В.В.Ясінський. Вибрані конкурсні задачі. Показникова та логарифмічна функції в параметрах. Київ. 2000 р.

6) Є.П.Нелін. Експрес-підготовка до незалежного тестування. Київ. 2008 р.

7) М.І.Бурда. Збірник завдань для державної підсумкової атестації з математики (4частина). 2008 р.

8).Г.В.Апостолова, В.В.Ясінський. Перші зустрічі з параметром. «Факт», 2008 р.

9) В.В.Ясінський. Математика. Навчальний посібник для слухачів ІДП НТУУ «КПІ». Київ 2004.


 

А также другие работы, которые могут Вас заинтересовать

805. Экоинформационные системы как инструмент комплексного маниторинга окружающей среды 284.5 KB
  История возникновения экоинформатики. Задачи решаемые экоинформационной системой. Информационное обеспечение подготовки и принятия управленческих решений по охране природы и здоровья человека. Обмен информации о состоянии окружающей среды об других экоинформационных системах.
806. Радиальная скорость 234.5 KB
  Несущая частота сигнала наземного передающего пункта. Релятивистские частотно-фазовые соотношения между параметрами сигналов. Геоцентрические радиус-векторы передающего пункта, космического аппарата и приемного пункта .
807. Зоогигиена с проектированием и строительством животноводческой фермы 230.5 KB
  Роль конструктивных решений животноводческих помещений в формировании оптимального микроклимата и комфортных условий для животных. Характеристика площадки для строительства. Состав основных производственных зданий. Взаимное расположение построек на участке.
808. Исследование линейного четырехполюсника 222.5 KB
  Измерение Z-параметров линейного пассивного четырехполюсника и экспериментальные исследования по косвенной проверке результатов измерений. Схема подключения приборов для измерения параметров Z21 и Z12.
809. Проектирование механического привода конвейера для транспортирования сухих сыпучих материалов 182 KB
  Определение мощности и выбор электродвигателя. Определение общего передаточного отношения привода и разбивка передаточного числа редуктора по ступеням. Определение вращающих моментов на валах редуктора. Проверочный расчет передач на контактную прочность. Уточненный расчет промежуточного вала.
810. ППП Евфрат 231.5 KB
  Удобный инструмент для адаптирования системы конкретно под нужды и структуры организации, позволяет создать полный маршрут движения определенного типа документа, что в процессе работы позволяет экономить время и ресуры, затрачиваемые на обработку документа.
811. Сравнительный анализ требований зарубежных (национальных) и отечественных нормативных и технических документов 300.5 KB
  Сравнительный анализ методов контроля обсадных труб по ГОСТ 632-80, документам API. Попробуем сравнить российские национальные стандарты со стандартами Американского института нефти (API) на примере стандартов API 5CT/ISO 11960:2001 и ГОСТ 632-80.
812. База данных 250.5 KB
  Совокупность сведений о реальных объектах, процессах, событиях или явлениях, относящихся к определённой теме или задаче. Создание базы данных Продажи книг. Описание структуры базы данных, обработка данных и управление данными.
813. Особенности использование кодов 170 KB
  Создать алфавит А, используемый при форматировании Ф.И.О., которые будут являться исходным текстом. Построить прямые двоичные коды постоянной длины и закодировать ими исходный текст. Коды, учитывающие частоту символов. Коды Грея. Построение кода для обнаружения и исправления ошибок.