5586

Строительное материаловедение. Курс лекций

Конспект

Архитектура, проектирование и строительство

Строительное материаловедение Лекция. Строение атома Уважаемые слушатели мы приступаем к изучению курса Строительное материаловедение. Лекции, которые будут прочитаны в течение данного семестра, помогут Вам разобраться в физико-химической сущност...

Русский

2012-12-15

906.5 KB

133 чел.

Строительное материаловедение

Лекция1. Строение атома

Уважаемые слушатели мы приступаем к изучению курса «Строительное материаловедение». Лекции, которые будут прочитаны в течение данного семестра, помогут Вам разобраться в физико-химической сущности  строения и свойств различных материалов. Вы узнаете, почему природные и искусственно созданные материалы имеют различные теплопроводность, механические и эксплуатационные свойства, как связаны эти свойства друг с другом, как и в каких пределах их можно изменять. Одновременно с изучением этих вопросов, вы более глубоко познакомитесь с физическими и химическими свойствами элементов, информация о которых заложена в периодической системе Д.И. Менделеева. Особо отмечу, что строение атомов химических элементов определяет структуру и энергию образуемых ими химических связей, которые, в свою очередь, лежат в основе всего комплекса свойств веществ и материалов. Лишь опираясь на понимание химического взаимодействия атомов, можно управлять процессами, происходящими в веществах, и получать заданные рабочие характеристики.

Однако более важной, чем изучение отдельных проблем, изложенных в лекциях, является предоставляемая вам возможность объединить основные положения физики, химии и прикладных научных направлений (теплофизики, механики) для комплексного понимания взаимодействия веществ и их свойств.

В лекциях главное внимание уделено фундаментальным основам материаловедения в связи с тем, что современное материаловедение направлено на получение материалов с заданными характеристиками и служит базой для наукоемких технологий XXI века.

Материалом называется вещество, обладающее необходимым комплексом свойств, для выполнения заданной функции отдельно или в совокупности с другими веществами.

Современное материаловедение полностью сложилось как наука во второй половине XX века, что было связано с быстрым возрастанием роли материалов в развитии техники, технологии и строительства. Создание принципиально новых материалов с заданными свойствами, а на их основе сложнейших конструкций позволило человечеству достичь за короткое время небывалых успехов в атомной и космической технике, электронике, информационных технологиях, строительстве и т.д. Можно считать, что материаловедение - это раздел научного знания, посвященный свойствам веществ и их направленному изменению с целью получения материалов с заранее заданными рабочими характеристиками. Он опирается на фундаментальную базу всех разделов физики, химии, механики и смежных дисциплин и включает теоретические основы современных наукоемких технологий получения, обработки и применения материалов. Основу материаловедения составляет знание о процессах, протекающих в материалах под воздействием различных факторов, об их влиянии на комплекс свойств материала, о способах контроля и управления ими. Поэтому материаловедение и технология материалов - взаимосвязанные разделы знания.

Курс материаловедения и технологии строительных материалов служит цели познания природы и свойств материалов, методов получения материалов с заданными характеристиками для наиболее эффективного использования в строительстве.

Основные задачи изучения курса:

- дать понимание физико-химической сущности явлений, происходящих в материалах при воздействии на них различных факторов в условиях производства и эксплуатации, и их влияния на свойства материалов;

установить зависимость между химическим составом, строением и свойствами материалов;

изучить теоретические основы и практику реализации различных способов получения и обработки материалов, обеспечивающих высокую надежность и долговечность строительных конструкций;

дать знания об основных группах неметаллических материалов, их свойствах и областях применения.

В лекциях  раскрываются:

основы взаимодействия атомов и молекул, позволяющие в
дальнейшем объяснить влияние на свойства материала его химического состава и процессов направленной обработки;

строение твердого тела, дефекты кристаллической структуры
и их роль в формировании свойств материалов;

явления переноса тепла, массы и заряда, составляющие суть
любого технологического процесса;

теоретические основы получения аморфных структур материалов;

элементы механики упругой и пластической деформации и
разрушения материала, лежащие в основе формирования прочности и надежности современных строительных материалов и конструкций, а также
методы их испытаний;

Итак, задача современного материаловедения - получение материалов с заранее заданными свойствами. Свойства материалов определяются химическим составом и структурой, которые являются результатом получения материала и его дальнейшей обработки. Для разработки материалов и технологий необходимо знание физических и химических явлений и процессов, протекающих в материале на различных стадиях его получения, обработки и эксплуатации, их предсказание, описание и управление ими. Таким образом, знание теории необходимо для создания управляемых технологических процессов, результатом которых будет материал с четко определенными значениями рабочих свойств.

Физико-химические свойства вещества определяются электронным строением его атомов. Взаимодействия атомов связаны, в первую очередь, с взаимодействием их электронных оболочек. Поэтому при разработке материалов и процессов их получения необходимо четко представлять, как различные химические элементы отдают и принимают электроны, как изменение электронного состояния влияет на свойства элементов.

Давайте вспомним электронное строение атома.

1. Электронное строение атома

Около, двух с половиной тысяч лет древнегреческий философ Демокрит высказал мысль о том, что все окружающие нас тела состоят из мельчайших невидимых и неделимых частиц - атомов.

Из атомов, как из своеобразных кирпичиков собираются молекулы: из одинаковых атомов - молекулы простых, веществ, из атомов различного вида -молекулы сложных веществ.

Уже в конце девятнадцатого века наукой установлено, что атомы - частицы далеко не "неделимые", как представляла древняя философия, а, в свою очередь, состоят из ещё более мелких и, если так можно выразиться, ещё более простых частиц. В настоящее время с большей или меньшей достоверностью доказано существование уже около трех сотен элементарных частиц, входящих в состав атомов.

Для изучения химических превращений в большинстве случаев нам достаточно указать три частицы, входящие в атом: протон, электрон и нейтрон.

Протон представляет собой частицу массой условно принятой за единицу (1/12 массы атома углерода) и единичным положительным зарядом. Масса протона – 1,67252 х 10-27 кг

Электрон - частица с практически нулевой массой (в 1836 раз меньшей, чем у протона) и единичным отрицательным зарядом. Масса электрона – 9,1091х10-31 кг.

Нейтрон, представляет собой частицу с массой практически равной массе протона, но не имеющую заряда (нейтрален). Масса нейтрона – 1,67474 х 10-27 кг.

Современная наука представляет атом, устроенным приблизительно, также как утроена наша солнечная система: в центре атома находится ядро (солнце), вокруг которого на относительно большом расстоянии вращаются электроны (как планеты вокруг солнца). Эта "планетарная" модель атома, предложенная в 1911 году Эрнестом Резерфордом и в 1913 году уточнённая постулатами Бора, сохранила своё значение до настоящего времени.

В ядре, состоящим из протонов и нейтронов и занимающем очень малую часть объема атома, сосредоточена основная масса атома (масса электронов в химических расчётах атомных и молекулярных масс обычно не учитывается).

Число протонов в ядре определяет вид атома. Всего сейчас открыто более ста видов атомов, которые и представлены в Таблице элементов под номерами, соответствующими числу протонов в ядре.

Простейший атом содержит в ядре всего один протон: это атом водорода. Более сложный атом гелия имеет в ядре уже два протона, третий (литий) - три и т.д. Определённый вид атома называется элементом.

2. Спектры излучения и поглощения. Главное квантовое число

Согласно планетарной модели строения атома в центре атома находится ядро, содержащее протоны и нейтроны и сосредоточивающее, таким образом, фактически всю массу. Число протонов определяет вид атома а также его порядковый номер в периодической системе элементов Д.И. Менделеева (при записи элемента число протонов указывается перед буквенным символом элемента внизу).

Вокруг положительно заряженного ядра вращаются отрицательно заряженные электроны. Число электронов атома равно числу протонов в ядре, так что в целом атом электронейтрален.

Согласно такой Резерфордовской модели атома электрон, вращаясь вокруг ядра, должен излучать энергию и, с каждым оборотом теряя её, упасть на ядро. Это излучение должно быть непрерывным, т.е. спектр излучения атома должен быть сплошным. Представление о такого рода (сплошном) спектре может дать разложение солнечного света призмой на плавно переходящие друг в друга цвета радуги.

Однако уже в конце Х1Х века было экспериментально доказано, что спектры излучения атомов (в газообразном состоянии) не сплошные, а состоят из ряда чётко фиксированных полос ("полосатый" спектр).

Кроме того, данная простейшая модель не могла объяснить устойчивости (долгоживучести) атома: электрон, теряя энергию в форме электромагнитного излучения, должен был упасть на ядро (согласно простейшим расчётам в течении 10 секунд).

Эти два  основных  противоречия   модели  Резерфорда  были устранены постулатами Бора (1913 год), согласно которым допускалось что:

1. В атоме имеются орбитали, находясь на которых, электрон не излучает и не поглощает энергию (так называемые стационарные орбиты).

2. Поглощение или выделение энергии происходит только как следствие перехода электронов с одной стационарной орбиты на другую стационарную. Поглощение - при переходе с ближайшей к ядру орбиты на более отдалённую; излучение – наоборот, при переходе с отдаленной на ближайшую.

Приравнивая математические выражения для центростремительной силы вращающегося вокруг ядра электрона силе электростатического притяжения электрона к ядру, и, учитывая уже известные положении квантовой механики о том, что энергия излучается не непрерывно, а определенными порциями (квантами), Бор рассчитал для простейшего атома (водорода) радиусы дозволенных такой теорией (стационарных) орбит и величины энергий электрона на каждой из таких электронных орбит (слоев). Радиус ближайшей к ядру стационарной орбиты водорода, согласно расчёта, оказался равным 0,053 нм, т.е. R = 0,053.10-9 м.

Стационарные орбиты расположены вокруг ядра слоями. Для обозначения номера слоя, в котором находится данный электрон, введено первое или главное квантовое число.

Общее буквенное обозначение главного квантового числа - n. Условно принято обозначать стационарные орбиты порядковыми числами от 1 до бесконечности. Таким образом, главное квантовое число обозначает номер электронного слоя, в котором находится интересующий нас электрон.

n = 1, 2, 3, ... ∞.

Для обозначения главного квантового числа используют заглавные латинские буквы: K, L, M, N, O, P, Q.

Если мы говорим, что для данного электрона главное квантовое число равно единице (n = 1), то с физической точки зрения это равносильно утверждению: данный, электрон находится в первом (наиболее близком к ядру) электронном слое.

Естественно, чем дальше тот или иной электронный слой от ядра (больше значение n), тем больше размер (радиус) этого слоя.

Радиусы стационарных орбит атомов оказались пропорциональны квадрату главного квантового числа (номера слоя):

R = An2

Принимая во внимание, что электроны в столь маленьком пространстве движутся с огромной линейной скоростью (около 260 тыс. км/с), близкой к скорости света (300 тыс. км/с), электронный слой можно представить себе в форме электронного облака, то есть размытого электроотрицательного поля.

Согласно постулатам Н. Бора электрон, вращаясь по стационарным орбитам, не излучает и не поглощает энергии и только переход его с одной орбиты на другую вызывает изменение его энергии, т.е. излучение или поглощение. Переход из отдалённого слоя в более близкий к ядру слой вызывает излучение энергии, напротив, получив энергию из вне (поглотив), электрон приобретает возможность перескочить на более удалённый уровень.

Орбитальное квантовое число. Физический смысл, числовое и буквенное обозначения

Более детальное рассмотрение линий спектра показало, что большинство их мультиплётно, то есть они состоят из нескольких близко друг к другу расположенных линий. Это наводит на мысль, что квантовые уровни не однородны, в пределах одного стационарного уровня может быть несколько близких по энергии стационарных подуровней. Для обозначений этих подуровней введено второе квантовое число, которое иногда называют также "побочное", а чаще всего "орбитальное".

Общее буквенное обозначение этих подуровней (другими словами, орбитальных квантовых чисел) -l (малая латинская буква л).

Число таких возможных подуровней зависит от номера уровня, т.е. от главного квантового числа и определяется по формуле:

l = 0, 1, 2, 3, ... n-1.

Другими словами, подуровни условно обозначены также, как и уровни, целыми числами, но начиная с нуля. Их число в каждом уровне зависит от номера уровня.

Для обозначения подуровней чаще используются не цифры, а малые буквы латинского алфавита:

l = s, p, d, f,...

Установлено, что подуровни различаются между собой не только энергией находящихся на них электронов, но и формой орбитали (электронного облака). Так подуровень s имеет шаровую форму электронного облака, подуровень р - форму, напоминающую гантель, формы d электронных облаков получили названия "розетка".

Магнитное и спиновое квантовые числа

Установлено, что при помещении атома во внешнее магнитное или электрическое поле спектры атомов становятся еще более мультиплётными. С физической точки зрения это означает, что различные электронные облака находящиеся даже на одном подуровне, по разному реагируют на внешнее магнитное поле. Для обозначения этих подподуровней введено третье, магнитное квантовое число тl, принимающее значения всех целых чисел от   -l через 0 до +l.

тl = -l,...-2,-1,0,+1.+2,...,+ l

То есть: магнитное квантовое число (тl) показывает реакцию орбит на внешнее магнитное или электрическое поле, зависит, от орбитального квантового числа и обозначается целыми числами от -l до +l.

Электрон помимо движения "вокруг ядра" вращается и вокруг собственной оси. Для обозначения направления этого вращения введено четвёртое квантовое  число – cnuнoвoe (ms). Собственный момент вращения -(спин) имеет два значения, условно обозначенные как +1/2 и -1/2.

Упрощенно иногда указывают: по часовой или против часовой стрелки; или изображают в виде стрелки, направленной остриём вверх или вниз.

Следует помнить, что обозначения и числовые значения всем квантовым числам даны условно. Все квантовые числа являются энергетическими характеристиками электрона, т.е. условным образом указывают на различия в энергетическом состоянии электрона. В целях более удобного восприятия мы и придаём квантовым числам определенный физический смысл.

Периодический закон и электронное строение атома

Все вещества состоят из взаимодействующих химических элементов. Минимальной частицей химического элемента является атом, состоящий из ядра и окружающих его электронов. Периодическая система химических элементов Д.И. Менделеева устанавливает взаимосвязь периодичности свойств химических элементов с электронным строением атома. Важнейшее значение периодического закона заключается в том, что на его основе осуществляется осмысление и обобщение практически необъятного фактического материала о строении и свойствах простых и сложных веществ. На плакате 1 представлен вариант длинной формы периодической системы химических элементов Д.И. Менделеева. В ячейках таблицы приводятся порядковый номер химического элемента, его обозначение, относительная атомная масса и конфигурация внешнего электронного уровня.

Таблица.2 Обозначение уровней электронов в атоме

Уровень

Главное квантовое число п

К

I

L

2

М

3

N

4

О

5

Р

6

Q

7

Горизонтальные ряды таблицы Менделеева называются периодами. Номер периода соответствует главному квантовому числу п. Периоды определяют заполнение электронных уровней (слоев, оболочек) в атоме (табл. 2). Столбцы соответствуют группам и подгруппам. Группы обозначены римскими цифрами, а подгруппы буквами а и b.

Группы соответствуют последовательности заполнения электронных оболочек в каждом периоде согласно орбитальному (азимутальному - l), магнитному (тl) и спиновому (ms) квантовым числам. Подгруппы разделяют заполнение s-, р- и d- подуровней (орбиталей) (табл. 3).

Главное (радиальное) квантовое число п характеризует дискретность изменения энергии и расстояния электрона (радиуса орбиты) от атома, п = 1, 2, 3, 4, 5, 6, 7.

Орбитальное (азимутальное) квантовое число l, или квантовое число углового момента, определяет дискретность изменения величины орбитального углового момента вращения электрона вокруг ядра атома, l = 0, 1, 2, 3, ..., (n - 1).

Таблица3 Обозначение подуровней электронов в атоме

Подуровень

Орбитальное квантовое число l

s

р

d

f

0

1

2

3

Магнитное квантовое число т определяет дискретность пространственной ориентации орбитального углового момента электрона, а следовательно, и атомного магнитного момента, тl = - l, ..., -3, -2, -1,0, 1,2, 3, ..., l.

Спиновое квантовое число ms определяет величину спинового (вращение вокруг собственной оси) углового момента электрона, ms = -1/2, 1/2. Знак «минус» для квантовых чисел т и ms означает существование положительных и отрицательных проекций углового момента на ось вращения.

Поскольку каждый отдельно взятый атом - электрически нейтральная система, то числу электронов в атоме химического элемента соответствует эквивалентное число протонов в атомном ядре, а, следовательно, пропорциональное значение электрического заряда ядра. Номер химического элемента в периодической системе соответствует электрическому заряду его ядра, выраженному в единицах заряда электрона е = 1,60217733 . 10-19 Кл. У атома с номером Z положительный заряд ядра равен +Z.e. Этот заряд несут Z протонов, каждый из которых имеет такую же массу, как ядро атома водорода и заряд +е. Увеличение числа электронов, а, следовательно, и протонов в атоме приводит к росту атомной массы. Однако одному и тому же химическому элементу могут соответствовать атомы с разной величиной массы - изотопы. Это связано с различным содержанием нейтронов в ядре химического элемента.

Примечание. Под изолированной системой понимается система, совершенно не взаимодействующая с окружающей средой.

Любая изолированная система стремится занять состояние с минимальной энергией - основное состояние. Соответственно ведут себя и электроны в атоме. Распределение электронов по орбиталям (по энергетическим уровням) определяется принципом исключения Паули, который гласит, что в атоме не может быть двух электронов, у которых все четыре квантовых числа одинаковы.

Пример:

По периодической таблице легко определить электронную конфигурацию атома каждого элемента, например, для лития Is22s1, углерода Is22s22p2, неона Is22s22p6, кремния Is22s22p63s23p2, ванадия Is22s22p63s23p63d34s2, урана Is22s22p63s23p63d104s24p64d104f145s25p65d105f36s26p66d17s2.

Периодичность свойств химических элементов

Периодичность заполнения электронных оболочек в соответствии с условиями квантования приводит к сходству свойств химических элементов. Выделяют следующие классы (см. табл. I): благородные газы - элементы с полностью заполненными электронными оболочками (Не, Ne, Ar, Kr, Xe, Rn); типичные элементы - элементы, у которых все электронные слои атомов (см. табл. 1, 2, 3), кроме внешнего, заполнены (s- и р-элементы); переходные элементы - элементы, имеющие два незаполненных внешних электронных слоя, в том числе подуровни (п-l)d (d-элементы); внутрирядные переходные элементы (редкоземельные) - элементы, имеющие три незаполненных внешних электронных слоя, в том числе подуровни (п - 2)f (f-элементы). Таким образом, полнота заполнения электронами внешних (валентных) орбиталей имеет важнейшее значение и определяет свойства элементов.

Примечание. Валентными электронами называются электроны внешних электронных орбиталей атома. Число валентных электронов, отдаваемых атомом для образования связей, определяет величину его валентности в конкретном случае взаимодействия.

Рост числа электронов, с одной стороны, и соответствующее экранирование электрического заряда ядра (заряд ядра становится эффективным), с другой стороны, приводят к периодическому изменению атомных радиусов химических элементов, а соответственно, и атомных объемов. Атомный объем имеет существенное значение при взаимодействии атомов различных химических элементов, особенно в твердом состоянии (при образовании твердых растворов).

В процессах межатомного взаимодействия, в частности, в технологии строительных материалов, существенную роль играют окислительно-восстановительные способности элементов — склонность отдавать или принимать электроны. Естественно, чем меньше энергия (потенциал) ионизации, тем легче атом отдает электроны и тем самым может являться более сильным восстановителем. Чем легче атом химического элемента присоединяет электроны, чем выше его сродство к электрону, тем более сильным окислителем он может являться. Понятия окислителя и восстановителя - это понятия относительные и очевидны лишь при образовании чисто ионной связи.

Примечание. Ионы - одноатомные или многоатомные частицы, несущие электрический заряд, например Н+, Li+, Al3+, O22-, SO42-. Положительно заряженные ионы называют катионами, а отрицательно заряженные - анионами.

При взаимодействии атомов разных химических элементов с образованием гетерополярной ковалентной связи полезно использовать понятие электроотрщателъности, которой также свойственна периодичность изменения в зависимости от атомного номера химического элемента.

Нужно помнить, что не только свойства свободных атомов, но и свойства простых веществ, которые они составляют, подчиняются периодической закономерности.

3. Атомные радиусы химических элементов

Понятие атомного радиуса достаточно относительно, так как полностью определяется тем состоянием, в котором находится данный атом: свободном, молекулярном, жидком, кристаллическом, причем надо также учитывать, например, тип химической связи и кристаллической структуры. Радиус связанного атома можно считать либо ионным, либо атомным.

Орбитальные атомные радиусы химических элементов, по Веберу и Кромеру представлены на плакате 2.

В среднем атомный радиус возрастает с ростом порядкового номера элемента (заряда ядра), особенно с переходом к новому периоду. Однако внутри каждого периода с ростом числа электронов величина радиуса падает, что обусловлено ростом заряда атомного ядра, увеличивающую силу притяжения электронов на данной орбите.

При заполнении р-подуровня подобная тенденция слабее, хотя также имеет место. Незначительные искажения, обнаруживаемые для радиусов переходных элементов, обусловлены особенностями заполнения электронами d-орбитали.

4. Энергия ионизации

Энергия ионизации характеризует величину силы связи электрона с ядром, по которой можно судить о стабильности той или иной электронной конфигурации, а также, частично, о легкости или трудностях передачи электрона от одного атома к другому при образовании чисто ионной химической связи в окислительно-восстановительных процессах.

Первая энергия (первый потенциал) ионизации I1 - наименьшее количество энергии, которое необходимо для удаления электрона от свободного атома в его низшем (основном) энергетическом состоянии. Вторая I2 , третья I3 (и т.д.) энергии ионизации представляют собой энергии, необходимые для удаления наиболее слабо связанных электронов от однократно, двукратно (и т.д.) положительно заряженных ионов в их основном состоянии. Очевидно, что I1 < I2 < I3< ... < Iп , где п - общее число электронов в атоме. На энергию ионизации наиболее существенное влияние оказывают следующие факторы:

эффективный заряд ядра;

расстояние от электрона до ядра (точнее, радиус максимума
электронной плотности);

глубина проникновения электрона в облака зарядов внутренних электронов.

Периодичность энергии ионизации представлена на плакате 2.

Глубина проникновения электронов в нижеследующие слои меняется в последовательности s р → df, т.е. наиболее глубоко проникают s-электроны. В результате прочность связи электронов с ядром растет в той же последовательности, а степень экранирования ядра - в обратной. Увеличение энергии связи электронов с ядрами приводит к сжатию электронных оболочек.

Отметим, что по мере увеличения атомного номера Z нижеследующие электронные оболочки снижают энергию связи внешних электронов с ядрами. В то же время энергия связи электронов, заполняющих внешние р-подуровни, растет по мере их накопления с ростом Z и достигает максимума у благородных газов (Не, Ne, Ar, Кг, Хе и Rn).

5. Cродство к электрону

Почти все нейтральные атомы обладают способностью присоединять электрон:

Эл(г) + е(г) - → Эл (г) -,

где Эл - химический элемент; е- - электрон; (г) - газ.

Энергия, которая выделяется при присоединении электрона к свободному нейтральному газовому атому в его основном состоянии с образованием свободного отрицательно заряженного иона, называется сродством к электрону. Следует различать первую энергию сродства, вторую, третью и т.д., хотя добавление более одного электрона всегда требует затраты энергии.

Сродство к электрону, как и потенциал ионизации, определяет способность данного элемента к взаимодействию с другими и с этой точки зрения является характеристикой межатомной связи. Естественно, что и сродство к электрону, и потенциал ионизации определяются электронной конфигурацией атома и, соответственно, положением элемента в периодической таблице.

Средние численные значения сродства к электрону, полученные экспериментально для некоторых элементов, приведены на плакате 3. Максимальным сродством к электрону обладают элементы VI и VII групп. Нулевое сродство к электрону имеют благородные газы. Практически нулевым сродством обладают щелочноземельные металлы, отличающиеся заполненным внешним s -подуровнем. Элементы с наполовину заполненным р-подуровнем обладают пониженным сродством к электрону.

6. Электроотрицательность

Понятие электроотрицательности атомов как количественную характеристику способности атома в молекуле притягивать к себе электроны впервые ввел Л. Полинг в 1932 г.

Однако величина электроотрицательности не является строгой константой элемента, поскольку зависит от степени и знака его ионизации при образовании связи, от конфигурации орбитали и т.п. В настоящее время существует несколько шкал электроотрицательности, которые достаточно существенно по значениям отличаются друг от друга. В то же время большинство различных шкал могут быть пересчитаны друг в друга, что говорит об их взаимосвязи и внутренней согласованности. Понятие электроотрицательности очень полезно при объяснении и понимании ионности и полярности связи, энергии диссоциации, силовой постоянной и др.

А.Л. Оллред и Е. Рохоу предложили определение электроотрицательности как силы, действующей на электрон, удаленный от ядра на расстояние ковалентного радиуса. Это определение наилучшим образом отражает химические свойства элементов:

Ха = e2 Zэфф /r2ков,

где Ха - электроотрицательность; Zэфф = Z – а - эффективный заряд атома; а - постоянная экранирования, определяемая для каждого элемента, исходя из его полной электронной конфигурации; е - заряд электрона; rков - ковалентный радиус. Значения электроотрицательности, вычисленные по данной формуле, приведены на плакате 4.

Если два или более атома с различными электроотрицательностями соединяются, то в молекуле их электроотрицательности выравниваются и приобретают некоторое промежуточное значение, равное среднему геометрическому значению электроотрицательностей атомов до их соединения в молекулу. Это называется принципом выравнивания электроотрицательностей.

Пользуясь данными плаката 4, можно оценивать способность атомов притягивать электроны, т.е. проявлять свойство электроотрицательности, если учитывать конкретные особенности образования межатомной связи. В частности, используя значения электроотрицательности, можно грубо оценивать ионную составляющую связи в соединениях (как разность электроотрицательностей элементов, составляющих бинарное соединение), что позволяет анализировать изменение физико-химических свойств в рядах соединений-аналогов при последовательных анионных и катионных замещениях компонентов.

Лекция 2. ХИМИЧЕСКАЯ СВЯЗЬ И СТРОЕНИЕ МОЛЕКУЛ

Атомы большинства элементов могут взаимодействовать между собой или атомами других элементов, образуя молекулярные частицы. Экспериментальные и теоретические исследования показывают, что при этом получается система частиц, состоящая из атомных ядер и окружающих их внутренних и валентных электронов. Строго говоря, простейшими структурными составляющими химических веществ являются не атомы, а ядра атомов и электроны.

В дальнейшем мы под МОЛЕКУЛЯРНОЙ ЧАСТИЦЕЙ будем понимать наименьшую совокупность атомных частиц, химически связанных в определенном порядке, способную к самостоятельному существованию и обладающую определенной структурой.

1. Краткая история развития представлений о химической связи

Какова природа сил, связывающих атомы в молекуле? Ответ на этот вопрос искали с момента появления атомистической гипотезы строения вещества. Вначале считали, что атомы механически соединяются между собой с помощью крючков и петель. Затем возникла идея, что связь между атомами осуществляется силами всемирного тяготения. В начале девятнадцатого века в трудах Г. Деви и Йёнса Берцелиуса была разработана электрохимическая теория, суть которой сводилась к тому, что химически взаимодействующие частицы при контакте приобретают противоположные электрические заряды, которые обусловливают связь. Однако эта теория не смогла объяснить существование молекул, образованных одинаковыми атомами (Н2, F2 и т. д.).

Дальнейшее развитие теории химической связи стало возможным после открытия электрона. Первым высказал электронную концепцию Дж. Томсон в 1907 году. Он предположил наличие в атомах определенную устойчивость электронных конфигураций, которые могут реализоваться при потере или присоединении к ним электронов.

Эрнестом Розерфордом и Нильсом Бором была создана теория химической связи, осуществляемая путем перераспределения электронов между атомами. Основы этой теории были представлены в работах Вальтера Косселя, Джильберта Льюиса, Ирвина Ленгмюра.

Коссель предложил (1915 г.) статическую электронную теорию строения атомов и молекул, суть которой в следующем:

1. Атомы благородных газов обладают особенно устойчивой двух- или восьмиэлектронной внешней оболочкой.

2. Атомы других элементов во внешней оболочке имеют число электронов меньше двух или восьми. Их электронные оболочки менее устойчивы.

3. Образование молекул происходит вследствие передачи определенного числа электронов от атома одного элемента (металла) к атому другого элемента (неметалла).

В результате такого перераспределения электронов каждый атом должен иметь внешнюю оболочку, аналогичную устойчивой электронной оболочке благородного газа. При этом атом металла приобретает положительный, а атом неметалла — отрицательный заряд. Соединение между ними обусловливается в соответствии с законом Кулона силами электростатического притяжения. Такая химическая связь называется ИОННОЙ.

Эта теория не могла объяснить природу связи между одинаковыми атомами. Кроме того, последующие исследования показали, что практически никогда электроны не переходят полностью от одного атома к другому.

Примерно в то же время (1916 г.) Льюис предпринял попытку объяснить механизм образования химической связи между любыми (в том числе и одинаковыми) атомами. Затем теория Льюиса была развита Ленгмюром.

Теория Льюиса-Ленгмюра также исходит из особой стабильности двух- или восьмиэлектронных внешних оболочек атомов и стремления атомов, участвующих в образовании молекулы, иметь такие оболочки. Химическая связь в данном случае осуществляется посредством образования общей электронной пары, в которую каждый атом дает по одному электрону из своей внешней оболочки. Такую химическую связь Ленгмюр назвал КОВАЛЕНТНОЙ, т. е. совместно действующей. Молекула Фтора, например, по этой теории образуется при обобществлении по одному электрону от каждого атома. В этом случае образуется одна общая электронная пара, связывающая атомы по схеме:

. .     . .

: f :  f :

. .    . .

В схеме символ F условно обозначает ядро атома, окруженное электронами, кроме внешних; они на схеме показаны точками.

Теории Льюиса-Ленгмюра и Косселя были значительным вкладом в развитие электронных представлений о химической связи. Однако опыт показал, что устойчивой может быть не только двух- или восьмиэлектронная внешняя оболочка, но и оболочки, содержащие 6, 10, 12 и 16 электронов, как например, в соединениях СО, А1С13, РС15, SF6, OsF8. Из сказанного видна искусственность представления об особой устойчивости только двух- или восьмиэлектронной конфигурации. Рассмотренные теории носили качественный характер и не устанавливали механизма образования химической связи, не позволяли рассчитывать ее количественные характеристики.

2. Квантово-механическое рассмотрение химической связи.

2.1. Ковалентная связь

Получить ответ, удовлетворительно объясняющий природу и механизм химической связи, оказалось возможным только после появления квантово-механической теории строения атома, так как при образовании связи проявляются специфические для микрообъектов свойства электронов.

С точки зрения квантовой механики при образовании химической связи между атомами их электронные орбитали перекрываются. В результате в межъядерной области создается повышенная электронная плотность по сравнению с электронной плотностью в изолированных атомах,   которая   как   бы стягивает  ядра  в  единую устойчивую систему (рис.1, а). В силу особенностей электронных состояний между ядрами может происходить не повышение электронной плотности, а, наоборот, уменьшение ее до нуля. В этом случае химическая связь не образуется (рис. 1, б). Причины устойчивости многоатомной частицы заключаются в понижении энергии ее образования. Рассмотрим, например, изменение энергии при сближении двух атомов водорода, находящихся на бесконечно большом расстоянии (r = ∞) друг от друга. Потенциальную энергию Е при г = ∞ примем равной нулю.

Рис.1 Взаимодействие между атомами водорода, приводящее к образованию связи (а) и не приводящее к образованию связи (б)

Система состоит из двух протонов и двух электронов. Между частицами возникает два типа сил: силы отталкивания между электронами двух атомов и протонами атомов и силы притяжения между протонами и электронами.

Если спины электронов антипараллельны, то при сближении атомов происходит уменьшение потенциальной энергии системы и при r= r0 силы притяжения становятся равными силам отталкивания, а энергия системы принимает свое минимальное значение. При дальнейшем сближении атомов силы отталкивания будут больше сил притяжения и потенциальная энергия системы начинает резко возрастать. Графическая зависимость потенциальной энергии системы из двух атомов водорода от межъядерного расстояния, называемая ПОТЕНЦИАЛЬНОЙ КРИВОЙ, представлена на рис.2.

Таким образом, при сближении двух атомов водорода с электронами, обладающими антипараллельными спинами, на расстояние r0 система имеет минимальную энергию и, следовательно, в этом случае образуется устойчивая химическая связь (рис. 2, а).  

В случае, когда спины параллельны, квантово-механические расчеты по уравнению Шредингера показывают, что потенциальная энергия системы при любом расстоянии между сближающимися атомами больше, чем сумма энергий двух отдельных атомов и образование химической связи невозможно. Потенциальная кривая в данном случае выглядит иначе (рис. 2, б).

В заключение отметим, что в рамках этой модели ядро атома не закрепляется неподвижно в точке О, а постоянно колеблется. В реальной же двухъядерной молекуле колеблются оба ядра, достигая определенных предельных состояний. Молекулы все время как бы растягиваются и сжимаются. При этом го — среднее расстояние между ядрами, а Еmin — минимальная энергия молекулы с учетом колебания ядер.

                          

Рис 2. потенциальная кривая


Количественные характеристики химической связи

Химическая связь характеризуется рядом параметров. Чаще всего говорят об ее энергии и длине. Если молекула состоит из трех и более атомов, то к перечисленным параметрам добавляют еще один — валентные углы.

ЭНЕРГИЕЙ СВЯЗИ называют ту энергию, которую необходимо затратить для ее разрыва. При этом молекула должна находиться в основном (невозбужденном) состоянии и при 0оК. Эта величина определяет прочность связи. Чем больше энергия, затрачиваемая на разрыв связи, тем прочнее связь. Единица измерения энергии связи — кДж/моль. Например, энергия связи Н—Н в молекуле водорода равна 436 кДж/моль. Если в молекуле несколько одинаковых связей, то, очевидно, для разрушения каждой следующей потребуется различная энергия и в таком случае говорят о средней энергии связи.

Величина энергии химических связей в большинстве соединений колеблется в пределах 100-1000 кДж/моль. Энергия связи в ряду однотипных молекул постепенно изменяется. Например, энергия связи Н-Г в ряду гало-геноводородов HF, HC1, HBr, HI уменьшается с 565,7 кДж/моль у HF, до 294,7 кДж/моль у HI. Зная энергию связей в молекуле, можно судить также о ее реакционной способности и производить различные термохимические расчеты.

ДЛИНОЙ СВЯЗИ называют среднее расстояние между ядрами, отвечающее минимуму энергии системы. На рис. 2. длина связи между атомами водорода измеряется отрезком гo. Современными методами исследования структуры веществ можно определить длины связей с точностью, которую допускает принцип неопределенности.

В ряду аналогичных по составу молекул длины связей также изменяются закономерно. Например, в ряду HF, НС1, HBr, HI длина связи увеличивается с возрастанием размера атома и соответственно равна 0,091; 0,127; 0,141; 0,160 нм. В молекулах, близких по химической природе, одного гомологического ряда, длины связей между ядрами элементов мало различаются и могут считаться практически постоянными (например, длины связей С - С в предельных углеводородах и т. д.).

Кроме того, на длину связи влияет ее кратность, которая определяется числом электронных пар, связывающих два атома. С увеличением кратности связей происходит их упрочнение, межъядерные расстояния уменьшаются. Так, длина связи С—С равна 0,154 нм, С = С - 0,135 нм и С ≡ С - 0,121  нм.

ВАЛЕНТНЫЕ УГЛЫ. Это углы между связями в молекуле. Их схематически можно представить как углы между прямыми линиями, соединяющими ядра атомов в молекуле. Эти воображаемые прямые, проведенные через два ядра, называют линиями связи. Величины валентных углов зависят от природы атомов и характера связи. Простые двухатомные молекулы всегда имеют линейную структуру. Трехатомные и более сложные молекулы могут обладать различными конфигурациями. Например, в молекуле воды угол между линиями связи Н—О равен 104,5°, а в сходной молекуле сероводорода валентный угол между связями составляет 92°.

Все рассмотренные параметры химической связи можно определить экспериментально при исследовании молекулярных спектров веществ. Их также, в большинстве случаев, можно найти в справочнике.

Для описания и расчета ковалентной связи широко используются два метода — метод валентных связей (МВС) и метод молекулярных орбиталей (ММО).

Метод валентных связей

Основные положения метода валентных связей, базирующиеся на квантово-механической теории строения атома, были разработаны Вальтером Гейтлером и Фритцем Лондоном в 1928 году. В последующем значительный вклад в развитие этого метода внесли Лайнус Полинг и Джон Слейтер. С точки зрения этого метода:

  1.  В образовании связи участвуют только электроны внешней электронной оболочки атома (валентные электроны).
  2.  Химическая связь образуется  двумя  валентными электронами различных атомов с антипараллельными спинами. При этом происходит перекрывание электронных орбиталей и между атомами появляется область с повышенной электронной плотностью, обусловливающая связь между ядрами атомов. Таким образом, в основе МВС лежит образование двухэлектронной, двухцентровой связи.
  3.  Химическая связь осуществляется в том направлении, в котором обеспечивается наибольшее перекрывание атомных орбиталей.
  4.  Из нескольких связей данного атома наиболее прочной будет связь, которая получилась в результате наибольшего перекрывания атомных орбиталей.
  5.  При образовании молекул электронная структура (кроме внешней электронной оболочки) и химическая индивидуальность каждого атома в основном сохраняются.

Известны два механизма образования общих электронных пар: обменный и донорно-акцепторный.

ОБМЕННЫЙ МЕХАНИЗМ объясняет образование ковалентной химической связи участием в ней двух электронов с антипараллельными спинами (по одному от каждого атома).

ДОНОРНО-АКЦЕПТОРНЫЙ МЕХАНИЗМ предполагает образование ковалентной химической связи за счет неподеленной пары (не участвовавшей ранее в образовании связи) одного из связывающихся атомов и вакантной орбитали другого атома. Например, при сближении молекулы аммиака и иона водорода неподеленная пара электронов атома азота занимает вакантную орбиталь иона водорода. Это приводит к образованию общей электронной пары и, следовательно, к образованию химической связи между ними. Первый атом называют ДОНОРОМ, второй — АКЦЕПТОРОМ. Вещества, в которых есть химические связи донорно-акцепторного происхождения, широко распространены среди неорганических соединений. Большая часть таких соединений относится к так называемым комплексным соединениям.

Метод молекулярных орбиталей (ММО)

Метод валентных связей в большинстве случаев позволяет получать правдивую информацию о структуре и свойствах различных молекул и ионов. Однако имеется ряд экспериментальных фактов, которые не могут быть объяснены на основании этого метода. Так, не удается объяснить магнитные свойства ряда веществ (О2, В2 и др.) и существование молекул с нечетным числом электронов (NО и др.).

Эти и другие факты способствовали созданию иного квантово-механического метода описания ковалентной химической связи — МЕТОДА МОЛЕКУЛЯРНЫХ ОРБИТАЛЕЙ (ММО). Основы ММО разработаны Робертом Малликеном и Фридрихом Хундом (1928-1930 гг.).

В методе МО подход к рассмотрению структуры молекулы близок к тому, которым мы пользовались при рассмотрении строения атома. Метод основан на следующих положениях:

  1.   Молекула рассматривается как единая система ядер и электронов, а не как совокупность атомов, сохраняющих некоторую индивидуальность. Она образуется, если энергия такой системы ниже, чем энергия исходных атомов.
  2.   Подобно тому как электроны в атомах располагаются на атомных орбиталях (АО), общие электроны в молекуле располагаются на молекулярных орбиталях (МО). Совокупность молекулярных орбиталей, занятых электронами, определяет электронную конфигурацию молекулы.
  3.   Существует несколько приближенных методов расчета молекулярных орбиталей. Наиболее простой называется   методом линейной комбинации атомных орбиталей (МЛК АО).  С  точки зрения МЛК АО молекулярную орбиталь рассматривают как линейную комбинациюсоответствующих атомных орбиталеи в изолированных атомах, ядра которых входят в состав молекулы.
  4.  В образовании молекулярной орбитали участвуют только те АО, которые имеют близкую по величине энергию и приблизительно одинаковую симметрию относительно оси связи.
  5.  При взаимодействии двух атомных орбиталеи в результате их линейной комбинации образуются две молекулярных орбитали с большей и меньшей энергиями, чемэнергия исходных АО. В результате сложения АО образуется МО с повышенной межъядерной электронной плотностью (меньшей энергией). Такую орбиталь называютсвязывающей. В случае вычитания АО образуется МО с пониженной    межъядерной    электронной    плотностью
    (большей энергией), называемая
    разрыхляющей. Сумма энергии   образовавшихся   МО   в   первом   приближении равна сумме   энергий   АО,   из   которых   они   образовались.
  6.  Число всех образовавшихся МО равно сумме АО исходных атомов. При этом число связывающих и разрыхляющих МО одинаково у гомоядерных молекул (содержащих одинаковые ядра) или равно числу участвующих в
    образовании связи АО того атома, у которого их меньше.
  7.  Молекулярные орбитали по аналогии с атомными обозначаются греческими буквами s, p, d. Каждая МОхарактеризуется набором трех квантовых чисел. В соответствии с принципом Паули на молекулярной орбитали, как и на атомной, не может быть больше двух электронов.
  8.  Все имеющиеся в молекуле электроны распределяются по МО с соблюдением тех же принципов и правил, что и при заполнении электронами орбиталеи в отдельных атомах (принцип наименьшей энергии, принцип Паули, правило Хунда). Электрон, находящийся на связывающей орбитали, увеличивает энергию связи, а электрон, находящийся на разрыхляющей орбитали, ее уменьшает.
  9.  Стабильность молекулы определяется разностью числа связывающих и разрыхляющих электронов. Если эта разность равна нулю, частица не образуется. Для того, чтобы можно было сопоставить число связей по МВС и
    ММО, используют понятие
    порядок связи (кратность). Порядок связи (N) равен разности между числом электронов, находящихся на связывающих орбиталях, и числомэлектронов на разрыхляющих орбиталях, деленной на 2.
    Он может принимать целые или дробные положительныезначения.

Сравнение методов валентных связей и молекулярных орбиталей

Вначале отметим, что методы валентных связей и молекулярных орбиталей являются приближенными. Каждый метод имеет свои преимущества и недостатки.

Метод МО позволяет описывать и прогнозировать свойства молекулы, зависящие от состояния в них отдельных электронов, такие как устойчивость и неустойчивость. Так, например, с точки зрения ММО, устойчив молекулярный ион Щ и, наоборот, неустойчивы Не2, Ве2. С позиций метода ВС это необъяснимо.

В рамках метода МО хорошо объясняются и прогнозируются магнитные свойства молекул, также необъяснимые с позиций МВС. Однако в рассмотренном простейшем варианте ММО не способен передавать насыщаемость ко-валентной  связи  (т. е. состав молекулы). Для МВС этот недостаток менее   характерен.   Расчет геометрической структуры и определение   важнейших параметров молекулы с помощью ММО является трудной математической задачей, для решения которой необходимы мощные ЭВМ.

Из сказанного выше можно сделать вывод о том, что наиболее общим и последовательным методом для описания строения молекул является метод молекулярных орбиталей. Тем не менее, метод валентных связей дает возможность, основываясь на небольшом числе предположений, связывать между собой в стройную систему важнейшие опытные данные, и применение этого метода во многих случаях более наглядно и вполне оправдано. Спор о том, какой из методов вернее, беспредметен. Правильнее считать, что они взаимно дополняют друг друга.

Свойства ковалентной связи

Ковалентная связь обладает рядом важных свойств. К их числу относятся: насыщаемость и направленность.

НАСЫЩАЕМОСТЬ — характерное свойство ковалентной связи. Она проявляется в способности атомов образовывать ограниченное число ковалентных связей. Это связано с тем, что одна орбиталь атома может принимать участие в образовании только одной ковалентной химической связи. Данное свойство определяет состав молекулярных химических соединений. Так, при взаимодействии атомов водорода образуется молекула Н2, а не Н3. С точки зрения МВС третий атом водорода не может присоединиться, так как спин его электрона окажется параллельным спину одного из спаренных электронов в молекуле. Способность к образованию того или иного числа ковалентных связей у атомов различных элементов ограничивается получением максимального числа неспаренных валентных электронов.

НАПРАВЛЕННОСТЬ — свойство ковалентной связи, определяющее геометрическую структуру молекулы. Причина направленности связи заключается в том, что перекрывание электронных орбиталей возможно только при их определенной взаимной ориентации, обеспечивающей наибольшую электронную плотность в области их перекрывания. В этом случае образуется наиболее прочная химическая связь.

Полярность связей и молекул

В молекулах положительные заряды ядер скомпенсированы отрицательными зарядами электронов. Однако положительные и отрицательные заряды могут быть пространственно разделены. Предположим, что молекула состоит из атомов разных элементов (НС1, СО и т. д.). В этом случае электроны смещены к атому с большей электроотрицательностью и центры тяжести положительных и отрицательных зарядов не совпадают, образуется электрический диполь — система из двух равных по величине и противоположных по знаку зарядов q, находящихся на расстоянии l, называемом длиной диполя. Длина диполя — векторная величина. Ее направление условно принято от отрицательного заряда к положительному. Такие молекулы называют полярными молекулами или диполями.

Полярность молекулы тем больше, чем больше абсолютная величина заряда и длина диполя. Мерой полярности служит произведение q . l, называемое электрическим моментом диполя μ:  μ = q . l.

Единицей измерения μ служит Дебай (Д). 1 Д = 3,3 . 10 -30 Кл . м.

В молекулах, состоящих из двух одинаковых атомов μ = 0. Их называют неполярными. Если такая частица попадает в электрическое поле, то в ней под действием поля произойдет поляризация — смещение центров тяжести положительных и отрицательных зарядов. В частице возникает электрический момент диполя, называемый наведенным диполем.

Дипольный момент двухатомной молекулы АВ можно отождествить с дипольным моментом связи А—В в ней. Если общая электронная пара смещена к одному из атомов, то электрический момент диполя связи не равен нулю. Связь в этом случае называется полярной ковалентной связью. Если электронная пара симметрично расположена относительно атомов, то связь называется неполярной.

В многоатомной молекуле определенный электрический момент диполя можно приписать каждой связи. Тогда электрический момент диполя молекулы может быть представлен как векторная сумма электрических моментов диполя отдельных связей. Существование или отсутствие момента диполя у молекулы связано с ее симметрией. Молекулы, имеющие симметричное строение, неполярны (μ = 0). К ним относятся двухатомные молекулы с одинаковыми атомами (Н2, С12 и др.), молекула бензола, молекулы с полярными связями BF3, A1F3, CO2, ВеС12 и др.

Электрический момент диполя молекулы является важным молекулярным параметром. Знание величины μ может указать на геометрическую структуру молекулы. Так, например, полярность молекулы воды указывает на ее угловую структуру, а отсутствие момента диполя СО2 — на ее линейность.

2.2. Ионная связь

Предельным случаем ковалентной полярной связи является ионная связь. Если электроотрицательности атомов различаются очень сильно (например, атомов щелочных металлов и галогенов), то при их сближении валентные электроны одного атома полностью переходят на второй атом. В результате этого перехода оба атома становятся ионами и принимают электронную структуру ближайшего благородного газа. Например, при взаимодействии атомов натрия и хлора, они превращаются в ионы Na+ и Сl-, между которыми возникает электростатическое притяжение. Ионная связь может быть описана в рамках методов ВС и МО, однако обычно ее рассматривают с помощью классических законов электростатики.

Молекулы, в которых существует в чистом виде ионная связь, встречаются в парообразном состоянии вещества. Ионные кристаллы состоят из бесконечных рядов чередующихся положительных и отрицательных ионов, связанных электростатическими силами. При растворении ионных кристаллов или их плавлении в раствор или расплав переходят положительные и отрицательные ионы.

Следует отметить, что ионные связи обладают большой прочностью, поэтому для разрушения ионных кристаллов необходимо затратить большую энергию. Этим объясняется тот факт, что ионные соединения имеют высокие температуры плавления.

В отличие от ковалентной связи ионная не обладает свойствами насыщаемости и направленности. Причина этого состоит в том, что электрическое поле, создаваемое ионами, имеет сферическую симметрию и действует одинаково на все ионы. Поэтому количество ионов, окружающих данный ион, и их пространственное расположение определяются только величинами зарядов ионов и их размерами.

Рассматривая ионную связь, необходимо иметь в виду, что при электростатическом взаимодействии между ионами происходит их деформация, называемая поляризацией. На рис. 2.1, а изображены два взаимодействующие электростатически нейтральных иона и сохраняющие идеально сферическую форму. На рис. 2.1, б показана поляризация ионов, которая приводит к уменьшению эффективного расстояния между центрами положительных и отрицательных зарядов. Чем больше поляризация ионов, тем меньше степень ионности связи, т. е. тем больше ковалентный характер связи между ними. В кристаллах поляризация оказывается невысокой, т. к. ионы симметрично окружены ионами противоположного знака и ион подвергается одинаковому воздействию во всех направлениях.

                                       а                       б

Рис 2.1. Поляризация ионов

4. Металлическая связь

Особенностью всех металлов является их высокая электропроводность и теплопроводность. Эти свойства свидетельствуют о том, что валентные электроны способны свободно перемещаться в пределах кристаллической решетки. Простейшая модель строения металла выглядит так: в узлах кристаллической решетки находятся положительные ионы металла, которые прочно связаны электронным газом. Валентные электроны одновременно находятся на всех доступных орбиталях соседних атомов, осуществляя между ними связь. Такая нелокализованная связь называется металлической. Эта связь является достаточно прочной, т. к. большинство металлов имеет высокую температуру плавления. Указанная модель объясняет также свойственные металлам ковкость (способность расплющиваться в тонкие листы) и пластичность (способность вытягиваться в проволоку). Эти свойства обусловлены тем, что подвижный электронный газ позволяет плоскостям, состоящим из положительных ионов, скользить одна по другой.

Более строгую интерпретацию металлической связи позволяет дать метод молекулярных орбиталей. Напомним, что при взаимодействии двух атомных орбиталей образуются две молекулярные орбитали: связывающая и разрыхляющая. Происходит расщепление энергетического уровня на два. Если взаимодействуют одновременно четыре атома металла, образуются четыре молекулярные орбитали. При одновременном взаимодействии N частиц, содержащихся в кристалле, образуется N молекулярных орбиталей, причем величина N может достигать огромных значений, сравнимых с числом Авогадро   (6 • 1023). Молекулярные орбитали, образованные атомными орбиталями одного подуровня, находятся настолько близко, что практически сливаются, образуя определенную энергетическую зону.

Рассмотрим в качестве примера электронную структуру кристалла лития. Прежде всего, вспомним электронную конфигурацию молекулы Li2, образовавшуюся издвух изолированных атомов. При взаимодействии N ls-орбиталей в кристалле лития образуется внутренняя энергетическая зона, полностью занятая электронами. Эти электроны не принимают участия в металлической связи. Атом лития имеет один валентный электрон на 2s-орбитали. При взаимодействии N атомов лития 2s -орбитали, на которых находятся валентные электроны, образуют валентную зону. Нижняя часть валентной зоны, образованная связывающими 2s -орбиталями, заполнена электронами, которые перемещаются по кристаллу хаотически. Достаточно близко расположенная верхняя часть, образованная разрыхляющими 2s-opбиталями, электронами не занята. При наложении даже незначительной разности потенциалов электроны возбуждаются и переходят в верхнюю часть валентной зоны, где перемещаются в направлении поля, перенося электрические заряды через весь кристалл. Верхнюю часть валентной зоны называют зоной проводимости. Таким образом, у металлов валентная зона сливается с зоной проводимости. Это связано с тем, что число валентных электронов в атомах металлов относительно невелико и всегда недостаточно для заполнения всех валентных орбиталей.

В атомах неметаллов число валентных электронов велико и валентная зона кристалла практически заполнена электронами. Зона проводимости в кристаллах, содержащих атомы или ионы неметаллов, образуется за счет орбиталей, имеющих намного большую энергию по сравнению с валентными орбиталями, т. е. принадлежащих к следующему электронному уровню. В таких кристаллах между валентной зоной и зоной проводимости находится запрещенная зона. Электроны не могут перемещаться вдоль кристалла, даже если к нему приложить высокое напряжение — такие вещества называются изоляторами или диэлектриками.

Промежуточное положение между проводниками электрического тока и диэлектриками занимают полупроводники (кремний, германий, многие сложные вещества). Особенность полупроводников состоит в том, что у них сравнительно небольшая ширина запрещенной зоны. Поэтому даже при незначительном нагревании электроны переходят в зону проводимости и вещество проводит электрический ток. В некоторых случаях переход электронов в зону проводимости происходит при освещении — возникает фотопроводимость.

В диэлектриках ширина запрещенной зоны более 3 эВ, а в полупроводниках она составляет 0,1—3 эВ.

Под действием внешнего электрического поля на диэлектрик часть его электронов, получив достаточное количество энергии, может переброситься из полностью заполненной валентной зоны в зону проводимости и участвовать в переносе электричества. При этом в валентной зоне появится эквивалентное число так называемых дырок (вакантных мест), имеющих положительный заряд. Они также могут участвовать в переносе тока. Такая проводимость называется электронно-дырочной.

5. Межмолекулярные взаимодействия

Межмолекулярное взаимодействие — взаимодействие, не приводящее к разрыву или образованию новых химических связей. Силы притяжения, действующие между молекулами на больших расстояниях (от 5-8 до 100 Å), называются силами Ван-дер-Ваальса и представляют собой кулоновские силы, возникающие между электронами и ядрами двух молекул.

При небольшом смещении отрицательных и положительных зарядов в нейтральной молекуле она перестает быть неполярной, превращаясь в электрический диполь. Имеются молекулы, обладающие постоянным электрическим дипольным моментом и называющиеся полярными. При сближении они стремятся развернуться так, чтобы их обращенные друг к другу стороны были заряжены разноименно. В этом случае суммарная сила притяжения между зарядами больше, чем суммарная сила отталкивания, поэтому полярные молекулы притягиваются. Эти электростатические силы иногда называют дипольно-ориентационными.

Если молекулы не имеют постоянного дипольного момента, то при помещении во внешнее электрическое поле они его приобретают. Во внешнем электрическом поле положительные заряды молекулы несколько смещаются в направлении поля, а отрицательные - в противоположном направлении. Поляризация может быть обусловлена также деформацией электронной оболочки неполярной молекулы под влиянием электрического поля полярной (индуцированный диполь), что всегда приводит к понижению энергии системы и притяжению молекул. Такие силы межмолекулярного взаимодействия называют поляризационными (индукционными). Межмолекулярное взаимодействие может быть связано также с переносом электронного заряда с одной молекулы на другую. Перенос заряда происходит при перекрывании электронных оболочек молекул, если их сродство к электрону различно. Перенос заряда можно рассматривать как предельный случай поляризации.

При сближении неполярных молекул электрические поля составляющих их зарядов быстро меняются во времени и лишь в среднем компенсируют друг друга в различных точках пространства. Поэтому при сближении молекулы поляризуют друг друга, причем обращенные друг к другу стороны поляризованных молекул обладают зарядами противоположного знака.

В результате взаимно поляризованные молекулы притягивают друг друга. Такие силы межмолекулярного взаимодействия называются дисперсионными (лондоновскими). Они действуют между любыми атомами и молекулами независимо от их строения.

Таким образом, различают три вида сил Ван-дер-Ваальса: электростатические (дипольно-ориентационные), поляризационые (индукционные) и дисперсионные.

6. Водородная связь

Водородная связь возникает между молекулами, в которых атом водорода связан с атомом элемента, обладающего высокой  электроотрицательностью.    Так,   атом водорода, образующий в молекуле НХ прочную ковалентную связь с атомом X, может образовывать водородную связь с атомом X (или Y) другой молекулы. Водородную связь принято изображать пунктиром: X - Н …У. Обычно энергия водородной связи (8-80 кДж/моль) значительно уступает энергии химической связи, но намного больше энергии ван-дер-ваальсова взаимодействия (1-5 кДж/моль). Исключением является сильная водородная связь в ионе (FHF) (250 кДж/моль).

Возникновение водородной связи обусловлено двумя причинами:

1. Атом водорода, связанный полярной ковалентной связью с атомом X, фактически не имеет электронов и способен легко внедряться в электронные облака других частиц.

2. Обладая  вакантной  s-орбиталью,   атом   водорода может принимать неподеленную электронную пару атома Y, образуя с ним донорно-акцепторную связь.

Н                      Н

|                        |

Н –  О   · · ·   Н   -    О · · ·

·                        ·

·                        ·

Н -                     Н -

Определенный вклад в образование водородной связи вносит электростатическое взаимодействие между положительно поляризованным атомом водорода в молекуле Н—X и отрицательно поляризованным атомом Y в другой молекуле. Чаще всего водородная связь образуется с участием атомов таких элементов, как кислород, фтор, азот. Наиболее типичный пример соединения с водородными связями — это вода. В жидком состоянии вода находится в виде ассоциатов (Н2О)n, а в кристаллах льда каждый атом кислорода образует по две водородные связи, что определяет его тетраэдрическое окружение.

Водородная связь существенно влияет на свойства веществ. Так, при ее наличии повышаются температура кипения, теплоты испарения и плавления, молекулы веществ в жидком состоянии становятся ассоциированными. Структура и свойства большинства органических веществ определяются образованием таких связей. Так, молекулы протеинов сохраняют свою спиральную форму из-за водородных связей. Они же удерживают вместе двойные спирали ДНК.

Мерой энергии межмолекулярного взаимодействия могут служить температура кипения и теплота испарения ΔНисп жидкости. Для некоторых жидкостей эти величины приведены в табл. 6.1.

Таблица 6.1. температура кипения и теплота испарения некоторых веществ

Вещество

Ткип, К

ΔНисп.

кДж/моль

Вещество

Ткип, К

ΔНисп.

кДж/моль

Аr

87,25

7,607

С2Н6

184,52

14,63

Кr

119,75

9/025

С3Н8

231,09

18,78

Хе

165,05

16,02

С5Н12

309,22

25,79

СН4

111,57

8,197

Н2О

373,15

40,66

Повышение Ткип и ΔНисп при переходе от Аг к Хе обусловлено увеличением поляризуемости, а с увеличением размеров частиц и, как следствие, к усилению дисперсионного взаимодействия. Увеличение Ткип и ΔНисп при переходе от СН4 к С5Н12 связано с тем, что с удлинением углеводородной цепи увеличивается число точек соприкосновения между молекулами и усилением межмолекулярного взаимодействия. Сравнительно высокие значения Ткип и ΔНисп воды — следствие ассоциации в результате возникновения водородных связей.

Лекция 3. СТРУКТУРА МАТЕРИАЛОВ

1. Основные понятия, термины, определения

В строительном материаловедении под структурой понимается совокупность устойчивых связей тела, обеспечивающих его целостность. Такое определение является достаточно общим. Поэтому его стараются конкретизировать, например, путем введения дополнительных понятий: кристаллическая структура, стеклообразная структура, аморфно-кристаллическая структура. Часто при рассмотрении материалов употребляют термины «плотная» или «пористая» структура. Различают микро- и макроструктуру.

При изучении макроструктуры материалов часто используют термин «текстура», который уточняет наше отношение к данному материалу. Например, для уточнения характера структуры применяют термины «волокнистая», «зернистая», «чешуйчатая» текстуры.

Текстура материала – это преимущественно ориентированное расположение элементов, составляющих материал, характеризующих рисунок его внутренних слоев или поверхности. Текстура, в отличие от структуры, не имеет такой логической связи с составом, химическими связями и свойствами и является дополнением к более широкому понятию – «структура материала».

2. Внутреннее строение матерпалов

В зависимости от агрегатного состояния и устойчивости твердые вещества могут иметь строго упорядоченное строение – кристаллическое, или неупорядоченное, хаотическое строение – аморфное.

Природа частиц, находящихся в узлах кристаллической решетки, и преобладающие силы взаимодействия (химические связи) определяют характер кристаллической решетки: атомный с ковалентными связями, молекулярный с ван-дер-ваальсовыми и водородными связями, ионный с ионными связями, металлический с металлическими связями.

Атомная решетка состоит из нейтральных атомов, связанных между собой ковалентными связями. Вещества с ковалентными связями отличаются высокой твердостью, тугоплавкостью, нерастворимостью в воде и в большинстве других растворителях. Примером атомных решеток являются  алмаз и графит. Энергия ковалентных связей составляет от 600 до 1000 кДж/моль

Молекулярная решетка построена их молекул (I2, Cl2, CO2 и т.д.), связанных друг с другом межмолекулярными или водородными связями. Межмолекулярные связи имеют небольшую величину энергии, не более 10кДж/моль; несколько большую величину имеют водородные связи (20-80 кДж/моль), поэтому вещества с молекулярной решеткой имеют невысокую прочность, низкую температуру плавления, высокую летучесть. Такие вещества не проводят ток. К веществам с молекулярной решеткой относятся органические материалы, благородные газы, некоторые неорганические вещества.

Ионная решетка образуется атомами, сильно отличающимися по электроотрицательности. Она характерна для соединений щелочных и щелочноземельных металлов с галогенами. Ионные кристаллы могут состоять и из многоатомных ионов (например, фосфаты, сульфаты и пр.). В такой решетке каждый ион окружен определенным числом его противоионов. Например, в кристаллической решетке NаCl каждый ион натрия окружен шестью  ионами хлора, а каждый ион хлора – шестью ионами натрия. Вследствие ненаправленности и ненасыщенности ионной связи кристалл можно рассматривать как гигантскую молекулу, а обычное понятие молекулы здесь утрачивает свой смысл. Вещества с ионной решеткой характеризуются высокой температурой плавления, малой летучестью, высокой прочностью и значительной энергией кристаллической решетки. Эти свойства сближают ионные кристаллы с атомными. Энергия связи ионной решетки примерно равна, по некоторым источникам меньше,  энергии ковалентной решетки.

Металлические решетки образуют металлы. В узлах решеток находятся ионы металлов, а валентные электроны делокализованы по всему кристаллу. Такие кристаллы можно рассматривать как одну огромную молекулу с единой системой многоцентровых молекулярных орбиталей. Электроны находятся на связывающих орбиталях системы, а разрыхляющие орбитали образуют зону проводимости. Так как энергия связи связывающих и разрыхляющих орбиталей близка, электроны легко переходят в зону проводимости и перемещаются в пределах кристалла, образуя как бы электронный газ.  В табл. 3.1 в качестве примера приведены энергии связи для кристаллов с разным типом связи.

Упорядоченное расположение частиц в кристалле сохраняется  на больших расстояниях, а в случае идеально образованных кристаллов – во всем объеме материала. Такая упорядоченность строения твердых тел носит название дальний порядок. 

Таблица 3.1. Энергия связи в кристаллах

Кристалл

Ar

CH4

Алмаз

SiC

LiF

NaCl

Fe

Na

Энергия связи кДж/моль

7,5

10

750

1180

1000

750

390

110

Тип связи

Ван-дер-вальсовская

Ковалентная

Ионная

Металлическая

В телах с менее упорядоченным или хаотичным расположением частиц, что свойственно аморфным телам, имеет место лишь местная упорядоченность, которая не распространяется дальше данной совокупности частиц. В этом случае говорят, что имеет место ближний порядок. Хаотичность расположения частиц свидетельствует о неустойчивом агрегатном состоянии системы, способном изменяться как под действием внутренних, так и внешних факторов. Аморфные тела, например, не имеют определенной точки плавления.

Каждому агрегатному состоянию соответствует определенное соотношение между потенциальной и кинетической энергиями частиц вещества. У твердых тел потенциальная энергия частиц больше кинетической. Поэтому они занимают в теле вполне определенное положение относительно других частиц и лишь колеблются около этих положений.

В газах кинетическая энергия частиц превышает потенциальную, поэтому молекулы газов всегда находятся в состоянии хаотического движения. Силы сцепления между молекулами отсутствуют, вследствие чего газ заполняет весь предоставленный ему объем.

У жидкостей соотношение между энергиями стремится к единице, т. е. частицы связаны друг с другом, но не жестко. Поэтому жидкости обладают текучестью, но имеют при данной температуре постоянный объем. По строению жидкости напоминают аморфные твердые тела; каждая частица жидкости окружена одинаковым количеством ближайших соседних частиц, т.е. для жидкостей характерен «ближний порядок» взаимодействия частиц.

Итак, что же такое микроструктура и макроструктура? Иногда в строительном материаловедении упоминают «мезоструктуру». Обобщая имеющиеся высказывание по данному вопросу. Г.И. Горбунов справедливо, по нашему мнению, предлагает различать только микроструктуру и макроструктуру строительных материалов. Микроструктура – это структура материала, которую можно рассматривать, изучать с помощью оптических, электронных, рентгеновсих и пр. приборов; Макроструктура – это структура материала, которую можно видеть невооруженным глазом. Традиционно микроструктуру подразделяют на кристаллическую, аморфную и аморфно-кристаллическую.

  1.  Микроструктура
    1.  Кристаллическая структура

Изложенное выше позволяет дать следующее определение понятию «кристаллическая структура». Кристаллическая структура – это такая структура, которой свойственно упорядоченное расположение частиц в строго определенных точках пространства, которые образуют кристаллическую решетку. Эта упорядоченность позволяет экспериментально и теоретически полностью изучить структуру твердого состояния и явления, связанные с природой сил взаимодействия в кристаллических телах.

Для каждого кристалла характерна анизотропность и резко выраженная температура перехода в жидкое состояние. Кристаллы характеризуются внешней симметрией в расположении частиц, которая выражается наличием трех элементов симметрии: центра, оси и плоскости симметрии. Центр симметрии – точка, делящая пополам все соединительные между внешними поверхностями кристалла прямые линии, проведенные через нее по любому направлению. Плоскость симметрии делит кристалл на две части, относящиеся друг к другу, как предмет к своему зеркальному отражению. Ось симметрии – это такая линия, при повороте вокруг которой на определенный угол получается полное совпадение нового положения с прежним. Чем больше элементов симметрии, тем выше внешняя симметрия кристалла. Идеально симметричной фигурой является шар.

В настоящее время все многообразие кристаллических форм по сочетанию элементов симметрии (сингонии) сводится к семи типам: правильная (кубическая), тригональная, гексагональная, тетрагональная, ромбическая, моноклинная и триклинная. В таблице 3.2. приведена классификация кристаллов по сингонии.

Таблица 3.2. Классификация кристаллов по сингонии

Сингония

Класс

Название

Соотношение ребер

Соотношение углов

Название минералов

Высшая

VII

Кубическая

а=в=с

α=β=γ=90о

Алмаз, галит

Средняя

VI

Тетрагональная

а=в≠с

α=β=γ=90о

Апатит

V

Гексагональная

а=в≠с

α=β=90о; γ=120о

Циркон

IV

Тригональная

а=в=с

α=β=γ≠90о

Кварц

Низшая

III

Ромбическая

а≠в≠с

α=β=γ=90о

Муллит

II

Моноклинная

а≠в≠с

α=β=90о; γ≠90о

Гипс, авгит

I

Триклинная

а≠в≠с

α=β=γ≠90о

Полевой шпат

Кристаллы низшей сингонии характеризуются меньшей симметрией; кристаллы  более высокой категории сингонии имеют более совершенную форму кристаллической решетки и, следовательно, являются более устойчивыми в определенных условиях существования.

Многим веществам в кристаллическом состоянии характерен полиморфизм, т.е. способность вещества существовать в виде нескольких кристаллических структур с различными свойствами. Полиморфизм простых веществ называется аллотропией.  Известны полиморфные модификации углерода (алмаз, графит), кварца (α-кварц, β-кварц), железа, вольфрама и др.

Если два разных вещества имеют одинаковую кристаллическую структуру, похожую химическую формулу и не очень сильно различаются по размеру составляющих их частиц, то они могут образовывать смешанные кристаллы. Такие вещества называют изоморфными, их способность образовывать смешанные кристаллы – изоморфизмом. Пример: сходные по составу и структуре, но разные по свойствам являются кристаллы каолинита Al2O3.2SiO2.2H2O, пирофиллита Al2O3.4SiO2.2H2O и монтмориллонита Al2O3.4SiO2.3H2O.

Реальные кристаллы. В свей практической деятельности мы имеем дело с реальными кристаллми, которые отличаются от идеальных нарушениями (дефектами) кристаллической решетки, образующимися в результате изменения равновесных условий роста кристаллов, захвата примесей при кристаллизации, а также под влиянием различного рода внешних воздействий.

Различают следующие дефекты:

  •  точечные или нульмерные – это вакансии, междуузельные атомы и пр;
  •  линейные или одномерные – это дислокации (краевые, винтовые);
  •  поверхностные или двумерные – это границы зерен и двойников, межфазные границы, дефекты упаковки частиц, трещины на поверхности (трещины Гриффитса);
  •  объемные или трехмерные – это пустоты, включения второй фазы и пр.

Точечные дефекты подразделяются на энергетические, электронные и атомные.

К энергетическим дефектам относят фононы – кванты тепловых колебаний, которые заполняют кристаллы и распределяются в них соответственно условиям теплового равновесия. К этому же типу дефектов относят возбуждения решетки в результате облучения кристаллов световыми, рентгеновскими и прочими лучами.

К электронным дефектам относят наличие избыточных электронов или их недостаток.

К атомным дефектам относят нарушения в виде вакансий (дефекты по Шотки), смещений (дефекты по Френкелю), избытка или недостатка атомов, а также примеси посторонних атомов.

Дислокациями называют линейные дефекты, возникшие в процессе роста или пластической деформации кристалла. Различают краевые и винтовые дислокации.

Образование дислокаций в процессе роста кристаллов происходит в тех случаях, когда растущие навстречу блоки и зерна повернуты друг относительно друга. При срастании таких блоков образуются избыточные атомные плоскости – дислокации.  

В процессе пластической деформации происходит не одновременный сдвиг атомов данной плоскости, а последовательное перемещение связей между атомами, лежащими по обе стороны линии скольжения. Такое перераспределение связей предопределяет движение дислокаций от одной группы атомов к другой. Количество дислокаций в твердых кристаллических телах очень велико. Число дислокаций пересекающих 1см2 площади внутри кристалла может достигать 104 –106 и более.

Наличие дислокаций значительно снижает прочность кристаллов, на несколько порядков. Дислокации влияют на электрические, оптические, магнитные и другие свойства материалов.

Вместе с тем замечено, что при определенных условиях дислокации и другие дефекты кристаллов увеличивают прочность материалов. Это происходит тогда, когда накоплено значительное количество дислокаций, которые, взаимодействуя друг с другом, мешают своему развитию и перемещению. Перемещению дислокаций препятствуют также атомы примесей, границы блоков, различные обособленные включения в решетки. Отсюда ряд исследователей делают вывод о положительном влиянии дислокаций на прочностные свойства материалов. Видимо, все таки, лучше вообще не иметь дефектов, чем иметь их в огромном количестве, которое несколько увеличивает прочность материала по сравнению с некоторой минимальной прочностью, которую имеет материал при неблагоприятном числе дефектов. Прочность бездефектного материала в сотни раз больше прочности материала с «оптимальным» количеством дефектов. Необходимо также отметить возможность локального скопления дислокаций, которые могут вызвать местные концентрации напряжений, которые способны образовать зародыши микротрещин (трещины Гриффитса).

3.2. Аморфная структура

Аморфная структура является одним из физических состояний твердых тел, Аморфные вещества характеризуются двумя особенностями. Во-первых, свойства таких веществ при обычных условиях не зависят от выбранного направления, т.е. они - изотропны. Во-вторых, при повышении температуры происходит размягчение аморфного вещества и постепенный переход его в жидкое состояние. Точное значение температуры плавления отсутствует.

Общим  для кристаллического и аморфного состояний веществ является отсутствие поступательного перемещения частиц и сохранение только их колебательного движения около положения равновесия. Различие между ними состоит в наличии геометрически правильной решетки у кристаллов и отсутствии дальнего порядка в расположении атомов у аморфных веществ.

Аморфное состояние вещества, по сравнению с кристаллическим, всегда менее устойчиво и обладает избыточным запасом внутренней энергии. В связи с этим, при определенных условиях, самопроизвольно осуществляется переход из аморфного состояние в кристаллическое.

Твердые тела в аморфном состоянии можно получить двумя путями. Первый путь – быстрое охлаждение расплавов кристаллических веществ, преимущественно ионного и ковалентного строения. Типичный представитель таких аморфных тел – силикатные стекла, битумы, смолы и пр.

Второй путь – диспергация кристаллических структур. В результате диспергации кристаллических тел образуются аморфизованные дисперсии в виде коллоидов и растворов. Разрушаясь или конденсируясь, дисперсии изменяют свое агрегатное состояние. Пересыщенные растворы, например, могут превратиться в гель и образовать полимер или кристаллизоваться.

Аморфные вещества подразделяют на витроиды (стекла), дисперсные системы и полимеры.

Витроиды – это твердые тела в аморфном состоянии, имеющие стекловидную структуру. Как уже отмечалось, стекла образуются в результате быстрого охлаждения, преимущественно силикатных расплавов. Быстрое охлаждение препятствует созданию упорядоченной структуры. Особенно, если молекулы громоздки, а скорость охлаждения велика.

Дисперсные системы – мельчайшие частицы размером 10-7-10-9 м. к ним относятся коллоиды, золи (органозоли, гидрозоли), пасты, клеи мастики краски, латексы и пр. К дисперсным аморфным системам относятся также некоторые горные породы (диатомит, опоки), имеющие общую формулу SiO2.nH2O; а также активный кремнезем, который образуется в результате разложения глин при их нагревании.

Полимеры – вещества, характерной особенностью которых является большой размер и большая молекулярная масса молекул. Кроме того, молекулы объединены в структурные единицы, включающих 103-105 молекул-мономеров.

3.3. Аморфно-кристаллическая структура

Многие природные и искусственные каменные материалы в своем составе содержат и кристаллические, и аморфные фазы. Соотношение между объемами кристаллической и аморфной фазами, а также их взаимное расположение оказывают огромное влияние на свойства материалов, имеющих такую структуру. Типичными представителями подобных материалов являются ситаллы, фарфор и другие керамические материалы. Свойства некоторых материалов, имеющих амрфно-кристаллическую структуру приведены в табл. 3.2.

Таблица 3.2. Свойства материалов с аморфно-кристаллической структурой

Наименование материала

Содержание стеклофазы, %

Плотность, г/см3

Прочность, МПа

Водопоглощение, %

Фарфор

40-60

2.3-2.5

680

< 0,5

Плитка керамическая

10-30

2.0-2,2

20-50

1,5-4,0

Каменное литье

< 5

2,6-3,0

200-250

0

Ситаллы

5-10

2,3-2,5

~ 500

0

Все представленные в таблице материалы обладают аморфно-кристаллической структурой, содержат кристаллы и стекловидную фазы. Как видно из приведенных данных, содержание фаз не оказывает решающего влияния на свойства материалов. Ситаллы и каменное литье имеют небольшое количество стеклофазы по сравнения с керамической плиткой и, видимо, поэтому имеют более высокую (в 10-20 раз большую) прочность, чем плитка. Однако, фарфор содержит стекловидную фазу в большем размере, чем ситаллы и каменное литье, а прочность имеет большую, чем эти материалы. Несомненно, свойства материалов с аморфно-кристаллической структурой зависят не только от количества этих фаз, но и от их качества, и взаимного расположения друг относительно друга – от микро- и макроструктуры.

4. Макроструктура

Макроструктура – это видимая невооруженным глазом или при небольшом увеличении (до 6 раз) внутренняя или поверхностная часть материала. В строительном материаловедении принято различать структуры поверхностного и внутреннего слоев.

4.1. Особенности структуры поверхностного слоя.

Структура поверхностного слоя искусственных строительных материалов, как правило, отличается от структуры внутренних слоев по двум причинам. Первая, атомы и молекулы, расположенные на поверхности, имеют избыточную энергию по сравнению с частицами, расположенными внутри материала.  Вторая, поверхностный слой постоянно взаимодействует с окружающей средой, благодаря чему он претерпевает постоянные изменения, как в процессе изготовления изделий, так и в процессе их эксплуатации.

Избыточная энергия поверхностного слоя возникает вследствие того, что каждая частица на поверхности твердого тела и жидкости имеет некомпенсированные химические связи, которые образуют на поверхности несимметричное силовое поле. Это силовое поле втягивает поверхностные частицы во внутрь материала, создавая на поверхности напряжение сжатия. Поверхностный слой, таким образом, постоянно находится в упруго-напряженном состоянии, а его частицы обладают значительно большим запасом потенциальной энергии, чем частицы внутреннего слоя. Благодаря этому частицы поверхностного слоя более активно реагируют с окружающей средой, более активно вступают в химические реакции.

Величина энергии поверхностного слоя прямо пропорциональна энергии химической связи данного материала и зависит от параметров окружающей среды. Так, например, поверхностная энергия твердого тела на границе с жидкостью, которая его смачивает, уменьшается на величину, равную силе взаимодействия поверхностных частиц с жидкостью.

Большое влияние на строение и поверхностных, и внутренних слоев материала оказывают примеси, смачивание поверхности активными жидкостями, диффузионные процессы.

Примеси оказывают не однозначное влияние на свойства внешних и внутренних слоев. Если примеси имеют меньшую поверхностную энергию, чем материал, то они равномерно распределяются по поверхности, уменьшая его энергию. Если большую, - то концентрируются на отдельных участках поверхности или перемещаются во внутренние слои материала, где могут оказывать как положительное, так и отрицательное влияние на его свойства.

Смачивание имеет большое значение при формировании композиционных материалов, искусственных строительных конгломератов (по определению Рыбьева). Смачивание компонентов искусственных смесей необходимо для уменьшения энергии поверхностей твердых составляющих, что позволяет получать более плотные их упаковки в искусственных конгломератах.

Диффузия представляет собой самопроизвольное перемещение частиц вещества, в результате которого устанавливается равновесное распределение концентрации этих частиц в объеме газа, жидкости, твердого тела. Перенос частиц методом диффузии мы наблюдаем при получении - обжиге строительной керамики, глазуровании керамических плит, получения фарфора и пр. Высокая прочность фарфора не в малой степени определена диффузией расплава в направлении кристаллической части материала, в результате чего уплотняется структура и упрочняется зона контакта.

4.2. Особенности структуры внутреннего слоя.

Макроструктура внутреннего слоя строительного материала достаточно хорошо просматривается на срезе невооруженным глазом или через обычную лупу. В состав структуры входят отдельные твердые тела (зерна) различной крупности, поры и матрица, объединяющая зерна в единый монолит. В качестве матрицы могут быть затвердевший цементный камень, алюмосиликатное или полимерное стекло, затвердевшая глина и пр.

Еще раз подчеркнем, что деление структуры строительных материалов на макро- микроструктуру является весьма условным. Такое деление имеет чисто методологическое значение; оно позволяет упростить реологические модели деформирования систем, характеризующихся разным размером компонентов, и, следовательно, применить для описания процессов более простые математические модели.

Единая и монолитная структура строительного материала может быть оптимальной и не оптимальной.

Оптимальная структура характеризуется равномерным распределением компонентов системы (заполнителей, пор, элементов матрицы и пр.) по строительному материалу; отсутствием или минимальным количеством дефектов; наличием непрерывной пространственной сетки – матрицы; наибольшей плотностью упаковки зерен твердой дискретной составляющей как на микро-, так и на макро-уровне.

Не оптимальными являются структуры, в которых не соблюдается хотя бы одно из перечисленных условий.

4.3. Основные характеристики макроструктуры

Мы рассмотрим те характеристики материалов, которые не вошли в действующие стандарты. Поэтому к ним не сформулированы требования, и они, как бы, не являются свойствами строительных материалов. Но эти характеристики имеют существенное значение для общей оценки качества того или иного материала. Они также помогают повысить объективность тех или иных показателей качества, регламентированных стандартами.

Пористость

Пористость – степень заполнения объема материала порами. Обычно выражают в %:

П = [(VестVп)/Vест].100;

Где Vест – объем твердого тела вместе с порами;

 Vп – объем твердой фазы тела.

Чаще пористость рассчитывают, исходя из кажущейся ρm и истинной ρ плотности материала:

П = (1 – ρm / ρ)100.

Пористость строительных материалов колеблется от 0 до 90-98%. Для сравнения в табл. 3.3. приведены величины пористости некоторых материалов.

Помимо объема пор на свойства материалов большое влияние оказывают геометрическая и структурная характеристики пор. К геометрической характеристике относят размер пор, их общую удельную поверхность, общий объем пор. К структурной характеристике относят форму пор (ячеистая, замкнутая, волокнистая) и характер пор (открытые, замкнутые, сообщающиеся). 

Таблица 3.3. Значения пористости некоторых материалов

Наименование материала

Плотность, кг/м3

Пористость, %

истинная

кажущаяся

Гранит

2700-2800

2600-2700

0,5-1

Тяжелый бетон

2600-2700

2200-2500

8-12

Кирпич

2500-2600

1400-1800

25-45

Керамзит (зерна)

2400-2600

250-1000

60-90

Пеностекло

2350-2450

100-300

88-95

Древесина

1500-1600

400-800

45-70

Пенопласт

900-1200

20-100

90-98

Наиболее стройной и общей для различных видов материалов  является классификация по размеру пор:

  •  макропоры > 10мкм (по Дубинину); > 0,5мкм (по Ф.М. Иванову);
  •  капиллярные поры > 1мкм (по Г.И Горчакову);
  •  контракционные – 1-10-2 мкм (по Горчакову);
  •  поры геля – 10-2-10-4мкм (по Горчакову).

Макропоры и капиллярные поры относятся к элементам макроструктуры. Более мелкие поры – к элементам микроструктуры.

Капиллярами принято называть канальные поры, которые способны впитывать жидкость. Впитывание жидкости происходит, если так называемый капиллярный потенциал в каждой точке соприкосновения жидкости с внутренней поверхностью превышает потенциал поля тяжести.

Капиллярный потенциал зависит от величины поверхностного натяжения, радиуса капилляра, плотности жидкости, краевого угла смачивания жидкости при взаимодействии с данным материалом. Впитывание жидкости происходит, если так называемый капиллярный потенциал φк.п в каждой точке соприкосновения жидкости с внутренней поверхностью капилляра превышает потенциал поля тяжести φк.п.т Эффект впитывания тем выше, чем больше разность потенциалов, т.е. φк.п - φк.п.т → ∞.

Под капиллярным потенциалом понимают потенциальную энергию поля капиллярных сил, отнесенную к единице массы жидкости (плотности).

Для цилиндрического капилляра, один конец которого находится в воде, капиллярный потенциал в Н.м/кг определяют по формуле:

φк.п =(2σп.н.ж).(1/r)

где:  σп.н - коэффициент поверхностно натяжения, Н/м;

ρж - плотность жидкости, кг/м3;

г - радиус кривизны мениска, м.

Потенциал поля тяжести:   

φк.п.т = gh

где: g - ускорение свободного падения, м/с;

 h - высота капилляра, м.

При поднятии уровня жидкости в капилляре разность потенциалов уменьшается и при φк.п.т = φк.п. высота капилляра h — достигает максимума. С учетом краевого угла смачивания максимальная высота капиллярного подъема жидкости в пористом материале может быть вычислена по формуле Жюрена:

h = 2 σп.н соs/ ρж г g,

где г — условный радиус капилляра, м.

Средний радиус капилляра, т.е. поры, в которой имеет место капиллярный подсос, для различных материалов неодинаков, так как основные параметры этого процесса значительно различаются.

В стеновых материалах, где основными взаимодействующими фазами являются вода и цементный камень, верхний критический размер пор, впитывающих воду, не превышает 20 мкм, тогда как в огнеупорных материалах, работающих в среде расплавленных шлаков, этот критерий составляет - 25 мкм. В последнем случае химическое взаимодействие жидкой и твердой фаз уменьшает потенциал капиллярного подсоса.

В стеновых материалах с учетом изменения фазового состояния воды макропоры (по А.С. Беркману и И.Г. Мельниковой — свыше 200 мкм) являются резервными, а микропоры (<0,05 мкм) - безопасными. Но, по В.М. Москвину и Г.И. Горчакову, опасный интервал размера пор несколько уже, так как при уменьшении радиуса капилляра вода в нем замерзает при более низкой температуре.

Интересно отметить, что значения нижних критических радиусов капилляров при заполнении водой и силикатными расплавами практически одинаковы и равны примерно 0,1 мкм. Это указывает на близкие значения длин свободного пробега молекулы воды при тем температуре 20°С и силикатных расплавов при 1500°С.

Однако, практически, в поры размером ниже 5 мкм шлаки не проникают. По-видимому, это объясняется увеличением вязкости в тонких капиллярах как в результате изменения состава шлаков (коррозия), так и под влиянием пристеночного эффекта.

Таким образом, для огнеупорных материалов опасный интервал, связанный с прониканием шлаков в капилляры, находится в пределах 5.. .25 мкм (по данным К.К. Стрелова).

Исходя из вышесказанного, можно констатировать, что основная  проблема оптимизации пористой структуры материалов, в частности повышения морозостойкости для гидратационных и эксплуатационной стойкости обжиговых систем, связана с уменьшением интервала между верхним и нижним критическими радиусами капилляров. А как это осуществить? Есть два возможных варианта:

- исключение из структуры опасного интервала капиллярных пор путем создания преимущественно крупнопористой или мелко пористой структуры;

- уменьшение капиллярного потенциала системы при неизменных пористости и размерах радиусах капилляров.

Рассмотрим первый вариант. Крупнопористая структура (макропоры) без учета некоторых факторов может отвечать требованиям к акустическим, теплоизоляционным и некоторым видам стеновых материалов, а мелкопористая (микропоры) — материалам для несущих, гидротехнических и других конструкций. Однако есть некоторые нюансы. Создание крупнопористой, а значит, высокопористой структуры влечет за собой резкое снижение прочностных характеристик изделий. Получение же плотной структуры с пористостью ниже 10% представляет в настоящее время серьезную проблему, особенно для гидратационных материалов.

Второй вариант. Уменьшение капиллярного потенциала системы теоретически возможно лишь за счет снижения сил поверхностного натяжения, т.е. снижения поверхностной энергии твердой фазы, и увеличения краевого угла смачивания контакта “жидкость — твердая фаза”, т.е. снижения эффекта смачиваемости.

Следует заметить, что оба эти фактора взаимозависимы, и поэтому для снижения капиллярного потенциала φк.п гидратационных систем ограничиваются снижением смачиваемости за счет применения гидрофобных добавок, а для обжиговых материалов, в частности огнеупоров, используют так называемые “спеки”, или специальные покрытия поверхности твердой фазы тонким твердым высокоогнеупорным слоем с низким значением поверхностной энергии, так как снизить смачиваемость самих шлаков практически невозможно Кроме того, для снижения φк.п в технологии огнеупоров используют различного рода “присадки”, вызывающие адсорбционный эффект.

Гигроскопичность

Анализируя вышеизложенное, можно заключить, что при уменьшении радиуса пор ниже критического значения (< 0,5 мкм) исчезает капиллярный подсос, однако жидкость все же заполняет даже мельчайшие поры за счет конденсации паров на их стенки с последующим переходом пленок в столбик жидкости. Такое свойство заполнения пор жидкостью называют гигроскопичностью структуры.

Согласно эмпирическому уравнению Фрейндлиха можно рассчитать количество адсорбированного газа или водяного пара (α):

α = Kpl/n,

где: pl/n — давление газа;

      К и п — эмпирические параметры, постоянные для адсорбента и газа при определенной температуре.

Такие высокопористые материалы, как силикагель, древесина керамзитовый гравий и др., могут быть использованы в качестве регуляторов влажности в замкнутых объемах. Ограждающие конструкции из древесины и керамического кирпича благодаря гигроскопичности структуры и в зависимости от климатических условий регулируют влажностный режим помещения, т.е. они как бы дышат.

П.А. Ребиндер дает следующую классификацию пор по насыщению их жидкостью (табл. 3.4).

Пористость как основная характеристика структуры во многом определяет такие ее свойства, как теплопроводность, прочность и др.

Таблица 3.4. Классификация пор по насыщению их жидкостью

Структура материала

Размер пор, мкм

Характер пор

Характер процесса

Физический смысл явления

Крупнопористая

>10 (20)

Макропоры

(резервные)

Насыщение окунанием

Гравитационное вытеснение газа жидкостью

Пористая

10 (20)…0,5

Капилляры (опасные)

Капиллярный подсос

φкп > φпт

Мелкопористая

< 0,5

Микропоры

(безопасные)

Сорбция и конденсация

α= Кр1/n

Газопроницаемость

Газопроницаемость - свойство пористой структуры пропускать газ при перепаде давлений. Газопроницаемость зависит от размеров и вида пор, поэтому этот показатель часто используют при оценке равномерности структуры.

Наибольшее значение газопроницаемости соответствует размеру пор порядка 20... 100 мкм. Однако проницаемость газов через бетоны может происходить и при более низких значениях размера пор (0,1 мкм и ниже), например, в тонких трещинах.

Газопроницаемость весьма чувствительна к изменению структуры изделий. Так, если при некотором изменении структуры открытая пористость изменилась в 2 раза, то газопроницаемость меняется более чем в 100 раз.

Поскольку материал, как правило, имеет макро- и микропоры, перенос газа может происходить одновременно вязкостным и молекулярным потоками, которые подчиняются соответственно законам Пуазейля и Кнудсена.

Таблица 3.5. Сопротивление воздухопроницанию некоторых материалов и конструкций.

Материал конструкции

Толщина слоя, мм

Сопротивление воздухопроницанию, м2.ч.Па/кг

Кирпичная кладка

120

2000

Обшивка из шпунтованных досок

20…25

15

Плиты минераловатные, жесткие

50

2

Легкий бетон, слитный

400

13000

Цементно-песчаная штукатурка

15

373

Пенобетон автоклавный

100

1960

Бетон тяжелый, слитный

100

19620

Для вывода уравнения газопроницаемости пористость материала условно представляют в виде цилиндрических каналов одинакового сечения, идущих параллельно направлению движения газа.

Уравнение Пуазейля хорошо отражает процесс газопроницаемости, но очень сложно для практических расчетов. Поэтому часто для расчета газопроницаемости строительных изделий и конструкций используют упрощенную формулу Дарси, хотя она описывает лишь перенос газа через стенку:

V = Kr.А. τ.Δр/δ,

где V — объемный или массовый поток газа в единицу времени, м3/c или кг/с;

Kr — коэффициент газопроницаемости. Для объемной газопроницаемости — м2/Па.с;  для массовой — кг/м.Па.с;

А — площадь сечения потока, м2;

τ — время протекания процесса, с;

δ — глубина проникания газа, м.

Δр – Разность давлений газа на входе и выходе из поры, Па.с.

Коэффициент газопроницаемости фактически является той физической константой для каждой пористой структуры, которая оценивает ее способность, при определенных условиях, пропускать газ.

При расчете строительных конструкций учитывают газопроницаемость структуры материалов через сопротивление воздухопроницанию.

Паропроницаемость

Паропроницаемость является разновидностью газопроницаемости с той лишь особенностью, что пар способен в зависимости от условий изменять свое агрегатное состояние, т.е. конденсироваться, вытесняя газовую фазу, и значительно изменять свойство структуры. В табл. 3.6. приведены данные о сопротивлении паропроницаемости некоторых материалов.

Паропроницаемость, как характеристику структуры рассматривают в двух аспектах:

- материаловедческом — защита структуры и конструкции в целом от разрушительного действия конденсата;

- теплофизическом — решение проблемы создания надлежащего телловлажностного режима помещения.

Таблица. 3.6. Сопротивление паропроницанию некоторых строительных материалов

Материал

Толщина слоя, мм

Сопротивление паропроницанию, м2.ч.Па/мг

Плиты древесноволокнистые, твердые

10

0,11

Листы гипсовые (сухая штукатурка)

10

0,12

Пергамин кровельный

0,4

0,33

Толь кровельный

1,9

0,4

Рубероид

1,5

1,1

Пленка полиэтиленовая

0,16

7,3

В обоих случаях устраивают так называемую пароизоляцию с внутренней стороны ограждающих конструкций, в частности наружных стен и покрытий здания, из газопаронепроницаемых материалов. Качество таких материалов характеризуется сопротивлением паропроницанию Rn в м2.ч.Па.с/мг.

 

Водопроницаемость

Водопроницаемость - способность пористой структуры пропускать воду (жидкие среды) под давлением. Как характеристика структуры водопроницаемость аналогична газопроницаемости и подчиняется тем же законам течения жидкости под давлением.

Методы определения водопроницаемости позволяют полнее судить о характере пористой структуры.

Определение водопроницаемости сухих и предварительно насыщенных образцов дает близкие по значению конечные результаты. Однако в первом случае по кинетике проницания воды, характеризуемой изменением электропроводности, можно судить об анизотропии пор, для чего водопроницаемость измеряют в трех взаимно перпендикулярных направлениях, тогда как во втором - такой вывод сделать невозможно.

Фактор анизотропии выражается среднеквадратичным отклонением а выборочной дисперсии коэффициентов водопроницаемости

в трех направлениях  (кь к2, к3), отнесенных к его среднему значению КсР:

Каниз = σ/ КсР

Чем ниже значение этого фактора, тем меньше степень анизотропии структуры. Для изотропной структуры он равен нулю.

Значение водопроницаемости одной и той же структуры значительно ниже, чем газопроницаемости. Это можно объяснить рядом причин:

значительным различием величин вязкости жидкостей и газа;

возможным образованием застойных зон жидкости вследствие
отрыва вязкой жидкости в процессе обтекания твердого тела;

уменьшением фильтрации жидкости, связанным с действием
электростатических сил между жидкостью и твердой фазой.

Свойство, обратное водопроницаемости, - водонепроницаемость. Характеризует структуру плотных материалов, работающих в условиях непосредственного контакта с водой (например, гидротехнический бетон). Такие материалы подразделяются на классы по водонепроницаемости (W2, W4, W6, W8, W12). Цифра показывает величину давления воды в кгс/см2, при котором образец - цилиндр высотой 15 см не пропускает воду.

Лекция 4. СВОЙСТВА МАТЕРИАЛОВ

1. Основные понятия, термины, определения

Свойство - это качественная, отличительная характеристика вещества, материала или изделия. В материаловедении эта характеристика является заключительным звеном во взаимосвязи «состав - химическая связь — структура — свойство», а при разработке технологии и создании нового материала — основным, определяющим параметром или условием его получения.

Совокупность различных свойств предопределяет назначение материала и граничные условия его эксплуатации.

Часто, особенно производственники, используют сходные с понятием “свойство” термины, такие, как “техническая характеристика”, “основные параметры”, “технические показатели” и др., которые в конкретном контексте строительного материаловедения являются не совсем корректными. Эти термины вполне приемлемы в тех случаях, когда они не подменяют понятие “свойство”.

Свойство — это отличительная особенность вещества, материала или изделия, которая проявляется во взаимодействии с окружающей средой или  с другими веществами и соединениями.

В зависимости от вида окружающей среды и характера взаимодействия все свойства объединены в крупные группы. Например, теплопроводность, теплоемкость, температуропроводность и др. от носятся к теплофизическим свойствам; водопоглощение, водопроницаемость и др. часто называют гидрофизическими свойствами; водостойкость, кислотостойкость, коррозионная стойкость и др. составляют группу химических свойств; упругость, пластичность, хрупкость и др. — упругодеформативные свойства, и т.д.

Количественно свойства определяются при испытании и, как правило, выражаются в физических величинах в соответствии с действующими стандартами.

2. Взаимосвязь основных свойств

Так как свойства материала являются производными от его со става, химических связей и структуры, то они взаимосвязаны и находятся в равновесии. Известно, что при изменении какого-либо одного свойства под действием каких-то факторов в большей или меньшей степени изменяются и другие свойства материала. В строительном материаловедении хорошо известны такие зависимости, как плотность — теллопроводность, плотность — прочность, теллопроводность — электропроводность упругость — пластичность и др.

3. Плотность

Плотностью называют физическую величину, определяемую для однородного вещества его массой в единице объема. 

Для неоднородного вещества плотность ρ его в определенной точке есть предел отношения массы m к объему V при объеме, стремящемся к этой точке:

ρ = lim m/V  при V → О.

Для характеристики макроструктуры материала с учетом наличия газовой фазы используют термин «средняя плотность», обозначаемый символом рm. Средняя плотность всегда меньше истинной, так как на одну и ту же единицу массы приходится больший объем (ρ ср < ρ). Разность между этими величинами, отнесенная к большей величине, есть пористость.

При изучении свойств кристаллов, минералов, жидких и газовых сред под плотностью подразумевают (строительное материаловедение) истинную плотность, а при изучении строительных материалов (кроме плавленых) — среднюю или кажущуюся плотность.

С точки зрения химического строения вещества, плотность есть функция его химического состава. Согласно принципу минимальной энергии каждый атом стремится взаимодействовать с максимально большим числом других атомов, что приводит к образованию плотнейших упаковок. Количественно это характеризуется коэффициентом плотности Kпл, который определяется по формуле:

Kпл = n.Vяч /Vмол         

где n - число молекул в ячейке;

Vмол - объем молекулы;

Vяч - объем ячейки.

Характер упаковки атомов и его влияние на плотность хорошо просматриваются на примере плотно упакованных решеток кристалла.

Простейшим типом кристаллической решетки является кубическая, в которой расположение атомов образует пустотность, приблизительно равную 48%. Более плотной является гранецентрированная кубическая упаковка, дающая около 26% пустот. В такой решетке каждый атом имеет 12 ближайших соседей (4 по бокам и по 4 сверху и снизу). Кроме того, она образует два типа пустот: октаэдрические (окружение из 6 атомов) и тетраэдрические (окружение из 4 атом ов). Гексагональная решетка также относится к плотнейшим упаковкам и отличается от гранецентрированной лишь способом наложения слоев (без смещения) (рис. 4.2).

Плотность кристаллических решеток оксидов очень высока, так как пустоты, образуемые ионами, частично или полностью заполнены катионами. Кроме того, при одинаковой упаковке атомов плотность зависит от молекулярной массы оксида. При равных молекулярных массах, например в силикатах, решающее значение имеет координационное число и валентность катиона. для примера сравним характеристики двух оксидов: А12O3 и SiO2 (табл. 4.2).

Из таблицы следует, что в соединениях, имеющих плотную кри сталлическую упаковку и примерно равные молекулярные массы катионов, решающее влияние на плотность оказывают более низкая валентность катиона и высокое координационное число.

Таблица 4.2. Строение оксидов и их плотность

В основе формирования структуры металлов — совсем другие принципы, нежели структуры твердых тел с ковалентной связью. Каждый атом металла окружен столькими атомами, сколько ему позволяет окружающее пространство. Поэтому кристаллическая решетка металлоидов имеет так называемую плотноупакованную структуру.

Соединения одинакового химического состава, имеющие различную структуру, характеризуются, как правило, различной плотностью. Это связано с энергетическим состоянием вещества. Чем ниже значение внутренней энергии и выше устойчивость соединения, тем выше его плотность. Известно, что при поглощении энергии (например, тепловой) телом плотность его уменьшается. Покажем это на примере полиморфных превращений кварца. При нагревании кварца поглощенная тепловая энергия идет на перестройку его кристаллической. решетки: β-кварц переходит в α-кварц и далее — в тридимит, кристобалит и, наконец, в кварцевое стекло. При этом плотность, равная 2,65 г/см3 у -кварца, уменьшается до 2,25 г/см у кварцевого стекла.

Изменение плотности одного и того же соединения при изменении его структуры может быть представлено в виде схемы:

Ркрист. стр > Рам. крист. стр > Рам. стр  или Ркристалла > Рситалла > Рстекла

Если рассматривать различные агрегатные состояния одного и того же соединения, то можно заметить:

Р тв.тела > Ржидк > Ргаза,

что вполне отвечает вышеизложенному. Исключение составляют лишь чугун и вода, у которых плотность в жидком состоянии больше плотности твердого тела.

3. Теплофизические свойства

3.1. Теплоемкость

Основные понятия, термины определения

Теплоемкость является мерой энергии, необходимой для повышения температуры материала. Эта энергия затрачивается на:

- увеличение энергии колебательного движения атомов относительно их равновесного положения в узлах решетки;

- повышение энергетического состояния некоторых электронов в решетке;

- изменение положения атомов (при образовании дефектов структуры или при перестройке структуры).

Теплоемкость вещества С — один из важнейших термодинамических параметров, значение которого используют для определения энтропии, энтальпии, энергии Гиббса и других величин. Например, согласно третьему началу термодинамики определение абсолютного значения энтропии S основано на измерении температурной зависимости теплоемкости в области низких температур и применении уравнения:

С = Т (dS/dТ),

где Т — абсолютная температура.

В термодинамической системе теплоемкость схематически расположена на отрезке прямой между термодинамическими потенциалами Т и S.

Величина С характеризуется отношением количества теплоты сообщенного телу (системе) в каком-либо процессе, к соответствующему изменению его температуры dТ:

С = Q/dT.

Отношение теплоемкости к массе тела m называют удельной теплоемкостью сm, а отношение теплоемкости к количеству вещества M в молях называют молярной теплоемкостью — сM:

сm = С/m [Дж/кг.К] или [ккал/кгС] — удельная теплоемкость;

см = С/М [Дж/моль.К] или [ккал/мольС] - молярная теплоемкость.

Теплоемкость зависит не только от начального и конечного состояний, но и от способа, которым был осуществлен переход между ними.

Обычно различают теплоемкость при постоянном давлении Сp (изобарический процесс) и при постоянном объеме Сv (изохорический процесс).

Различие двух процессов заключается в том, что при нагревании в первом случае (Р = соnst) часть теплоты идет на производство работы по расширению тела, а часть — на увеличение внутренней энергии, тогда как при нагревании во втором случае (V = соnst) вся теплота расходуется на увеличение внутренней энергии тела.

Сp = (dQ/dТ)p = (dH/dT)p;       СV = (dQ/dT)v = (dU/dТ)v

где:      Q - количество теплоты, Дж;

U - внутренняя энергия, Дж;

Т — абсолютная температура, К;

Н — энтальпия, Дж.

Разница между этими величинами у твердых тел невелика при низких температурах, однако, при высоких температурах она может быть значительной.

Теплоемкость зависит не только от способа сообщения телу тепла при нагревании, но и от макроструктуры, химического состава, агрегатного состояния тела.

Теплоемкость при нагревании и переходных процессах

Взаимосвязь тецлоемкость — температура достаточно сложна. Она объясняется основными положениями квантовой теории и характеризуется “температурой Дебая”. При этом теплоемкость пропорциональна температуре лишь при низких значениях температуры.

Теплоемкость резко возрастает при наличии процесса, называемого “переход: порядок — беспорядок”, т.е. при переходе тела из кристаллического состояния в аморфное. Следовательно, можно заключить, что теплоемкость расплава значительно превышает теплоемкость исходного кристаллического соединения. Наблюдения за процессами обжига и плавления керамических материалов наглядно показывают резкое уменьшение скорости подъема температуры в печи в период превращения, так как часть тепловой энергии затрачивается на переход кристаллической фазы в расплав.

При полиморфных превращениях изменение теплоемкости минералов также имеет место, хотя оно не так велико и носит скачкообразный характер.

Теплоемкость не зависит от строения кристаллической решетки, однако, увеличивается при ее разрушении.

Химический состав и теплоемкость

Наиболее отчетливо проявляет себя взаимосвязь «теплоемкость -химический состав» вещества.

Органические вещества имеют значительно большую удельную теплоемкость чем минеральные. Можно представить следующий условный ряд строительных материалов, различающихся химическим составом, по удельной теплоемкости кДж/кг°С при t = 25°С (в сторону увеличения):

железо -                                            045

сталь -                                               0,48

гранит -                                             0,65

стекло -                                             0, 74

бетон, цемент, известь -                  0,84

строит. керамика -                           0,88

известняк -                                        0,92

перлитофосфогелевые изделия -    1,05

пенопласты типа ПВХ -                  1,26

пенополистирол -                             1,34

пенополиуретан -                             1,47

битумы, фенопласты -                     1,68

древесина, древесное волокно -      2,30

вода -                                                  4,18

Возникает вопрос: почему на нагрев единицы массы металла или бетона расходуется значительно меньше тепловой энергии, чем на нагрев полимеров или древесины? Видимо, за счет химической природы одни материалы способны передавать энергию, оставаясь устойчивыми, а другие — накапливать ее до момента их разрушения. Другими словами, неорганические вещества, атомное строение которых имеет волновой характер, являются проводниками тепла, а органические вещества — накопителями или изоляторами.

По этому критерию удельная теплоемкость «с» имёет взаимосвязь с теплопроводностью «λ», температуропроводностью «а» и влияет на теплоусвоение материалов «b»:

с= λ / а ρ ;         b = √ λ. с. ρ

 

Агрегатное состояние и теплоемкость

Агрегатное состояние тела влияет на его теплоемкость. Известно, что при переходе тела из твердого состояния в жидкое теплоемкость увеличивается, так как увеличивается внутренняя энергия тела:

Ср = (dН/dТ)

где Н — энтальпия (внутренняя энергия тела при Р = соnst)

Если сравнивать удельные теплоемкости разных веществ с одинаковыми химическими соединениями в различных агрегатных состояниях, то их значения будут очень близки. Главным фактором является химический состав. Приведем некоторые результаты сравнительной оценки:

- газы (за исключением инертных), такие, как воздух, кислород, водород и азот, имеют равную удельную теплоемкость с ~ 0,92 кДж/кг°С, т.е. как у известняка;

- жидкости ряда от бензола (с = 1,35 кДж/кгС — минимальное значение) до этилового спирта (с = 2,42 кДж/кгС — максимальное значение) имеют примерно такую же удельную теплоемкость, как органические полимерные материалы ряда от пенопластов (с = 1,26 кДж/кг.°С) до древесины (с = 2,30 кДж/кгС). У металлов даже крайние значения «с» для жидкости (ртуть) и твердого тела (свинец) равны и составляют всего 0,13 кДж/кг.°С.

Необходимо отметить аномально высокую удельную теплоемкость воды: с = 4,18 кДж/кг что следует учитывать при проектировании и расчете тепловых установок для сушки и тепловлажностной обработки строительных материалов. Увлажнение материалов приводит к значительному повышению их удельной теплоемкости и, как следствие, к увеличению расхода энергии при тепловой обработке.

Удельную теплоемкость влажных материалов рассчитывают по формуле

с = (со + св. 0,0IW) / (1+0,01W);

где со — удельная теплоемкость материала в сухом состоянии, кДж/кг°С;

св — удельная теплоемкость воды, кДж/кг°С;

W -  влажность материала, % по массе.

Теплоемкость и ее практическое использование

Теплоемкость тела учитывают:

  •  при изучении строения веществ и их свойств;
  •  исследовании фазовых переходов и критических явлений;
  •  расчете суммарного количества примеси в веществе;
  •   определении тепловых эффектов химических реакций.

Выражая, например, Сp = (ΔH /ΔТ) в дифференциальной форме ΔСp = [d(ΔH)/dT], получаем уравнение Кирхгофа: общее изменение теплоемкости системы в результате реакции есть разность сумм теплоемкостей продуктов реакции и исходных веществ:

ΔСp =  Σn.ΔCpпр- Σm.ΔСрив;

где n и m — количество исходных веществ и продуктов реакции.

Тепловой эффект реакции в зависимости от температуры определяется из уравнения

ΔH = ΔH2ΔH1  или ΔH = ∫ ΔСp dT.

Уравнение Кирхгофа позволяет вычислить тепловой эффект реакции при любой температуре, исходя из известных величин теплового эффекта реакции при какой-либо температуре и изменения теплоемкости процесса. Чем больше ΔСp тем в большей степени температура влияет на тепловой эффект реакции.

Удельная теплоемкость с является также важнейшей характеристикой при расчете тепловых потерь ограждающих конструкций и составлении балансов тепловых агрегатов.

Следует заметить, что теплоемкость, так же, как и плотность, не зависит от анизотропии кристаллов.

3.2. Тепловое расширение

Основные понятия, термины, определения

Тепловое расширение — это физическое свойство вещества и материала, характеризующееся изменением размеров тела в процессе его нагревания.

С точки зрения термодинамики тепловое расширение следует рассматривать как изобарический процесс, при котором теплота при нагревании затрачивается на производство работы по расширению и на увеличение внутренней энергии тела. Количественно оно характеризуется изобарным коэффициентом расширения или коэффициентом объемного теплового расширения β:

β = (1/ V)(dV/dТ)p,

где:     V — объем тела (твердого, жидкого или газообразного);

           Т — его абсолютная температура.

Практически значение β определяется по формуле:

β = (V1V2)/V1(T2-T1);

где: Т1 и Т2 — температуры соответственно до и после нагревания;

 V1 и V2 — объемы тела соответственно при Т1 и Т2.

Механизм теплового расширения твердых тел

Механизм теплового расширения твердых тел можно представить следующим образом. Если к твердому телу подвести тепловую энергию, то благодаря колебанию атомов в решетке происходит процесс поглощения им теплоты. При этом колебания атомов становятся более интенсивными, т.е. увеличиваются их амплитуда и частота. С увеличением расстояния между атомами увеличивается и потенциальная энергия, которая характеризуется межатомным потенциалом. Последний выражается суммой потенциалов сил отталкивания и притяжения. Силы отталкивания между атомами с изменением межатомного расстояния меняются быстрее, чем силы притяжения; в результате форма кривой минимума энергии оказывается несимметричной, и равновесное межатомное расстояние увеличивается. Это явление и соответствует тепловому расширению.

Тепловое расширение зависит от химических связей, типа структуры кристаллической решетки, ее анизотропии и пористости твердого тела.

Связь “тип химической связи — тепловое расширение”

Материалы с очень прочными химическими связями, такие, как алмаз, карбид кремния и другие соединения с ковалентной связью, имеют низкие коэффициенты термического расширения — КТР, поскольку при увеличении потенциальной энергии тел с ковалентной связью ее симметричность практически не нарушается и равновесное межатомное расстояние изменяется незначительно.

В соединениях с ионной связью, например МgО, NаСI и др., при повышении температуры потенциальную энергию определяет главным образом сила притяжения. В результате кривая межатомного потенциала становится асимметричной и увеличение межатомного расстояния, т.е. расширение, становится значительным.

КТР металлов из-за слабости химической связи обычно достаточно высок.

Высокомолекулярные соединения со слабыми ван-дер-ваальсовыми связями имеют очень высокий КТР (табл. 4.2.).

Таблица 4.2.  Химические связи и тепловое расширение

№ п/п

Тип материала

Тип хим. связи

Вещество

KTPxl0-6C-1, при 25°С

1

Прир.    минерал

Ковалент-ная

Алмаз

-0,9

2

Керамика

Кордиерит

1,7

3

Муллит

-5,0

4

Карбид кремния

5,6

5

Оксид

Ионная

Периклаз

13,5

6

Соль

Хлористый натрий

40

7

Металлы

Металлическая

Железо

11,6

8

Свинец

29,3

9

Цинк

39,7

10

Полимеры

Ван-дер-ваальсовая

Полиметил-метакрилат

50

11

Сложный полиэфир

55...100

12

Полиэтилен

120

Из таблицы видно, что КТР находится в прямой зависимости от прочности химической связи.

Влияние структуры материала на тепловое расширение

Эту зависимость следует рассмотреть в двух аспектах: на микроуровне (особенности строения — решетки и анизотропия кристаллов) и на макроуровне (влияние состояния твердой фазы и наличия пористости).

КТР тел кристаллической структуры значительно более высокий, чем тел такого же химического состава в аморфном состоянии. Так, КТР кварца примерно в 20 раз выше КТР кварцевого стекла. У более сложных по составу минералов, например альбита, при переходе в стеклообразное состояние также несколько уменьшается значение КТР.

Особенности строения кристаллической решетки сильно влияют на тепловое расширение кристаллических тел. У кристаллов с кубической решеткой тепловое расширение вдоль всех кристаллографических осей одинаково и изменение их размеров при изменении температуры симметрично. Следовательно, КТР, в данном случае линейный (a), оказывается у таких кристаллов однозначным в любом направлении.

У изотропных материалов средний коэффициент объемного термического расширения в ограниченном интервале температур связан с коэффициентом линейного температурного расширения α и выражается соотношением: β = 3α

У анизотропных кристаллов α различен вдоль разных кристаллографических осей, причем при более высоких температурах кристалл становится симметричнее. Другими словами, при повышении температуры кристалла уменьшается его анизотропия, что связано с полиморфизмом, т.е. способностью кристалла при повышении температуры приобретать более устойчивую для данных условий форму. Особенно это отчетливо прослеживается при полиморфных превращениях кварца и диоксида циркония.

Наиболее выраженное анизотропное расширение наблюдается у веществ со слоистой кристаллической решеткой, у которых химические связи настолько сильно направлены, что расширения между слоями и в плоскости слоев отличаются более, чем на порядок (табл. 4.3.).

Таблица 4.3. Коэффициенты линейного температурного расширения некоторых анизотропных минералов

Минералы

α х 10-6, °С-1

перпендикулярно к с-оси

параллельно с-оси

Кварц (SiO2)

14

9

Корунд (А12О3)

8,3

9

Альбит [NaAl (Si3O8)]

4

13

Кальцит (СаСО3)

-6

25

Графит (С)

1

27

У ярко выраженных анизотропных кристаллов коэффициент α в одном из направлений может быть отрицательным, но в целом объеме он компенсируется и становится положительным, и тогда результирующий коэффициент объемного термического расширения, β может быть очень низким. Такие материалы (например, кордиерит, титанат алюминия, алюмосиликаты лития и др.) обладают очень высокой термостойкостью, т.е. способностью многократно выдерживать без разрушения структуры резкие колебания температуры.

Фазовый состав и макроструктура материала оказывают существенное влияние на его КТР. Последний, в свою очередь, при изменении температуры определяет напряженное состояние структуры и, как следствие, прочностные характеристики материала.

Реально на границе двух фаз с разными КТР при изменении температуры одновременно возникают два вида напряжений: сжимающие, действующие на фазу с высоким α, и растягивающие, действующие на другую фазу с меньшим α. При напряжениях сверх некоторого критического значения появляются трещины. В поликристаллическом теле, имеющем много подобных контактов, как правило, появляется множество мельчайших трещин, которые не концентрируют напряжения, а релаксируют их.

Если поверхность контактов различных фаз велика и непрерывна, что имеет место в случае контакта керамического слоя с глазурью, то трещины из-за разности коэффициентов термического расширения слоев не образуются и релаксация не наступает. Тогда напряжения суммируются и происходит отрыв слоев. Во избежание этого явления производят расчет и подбор α глазури по химическому составу с учетом α черепка.

Пористость не влияет на α в случае, если непрерывной средой является твердая фаза. Если материал состоит из слабосвязанных частиц и непрерывной средой являются поры, то α в некоторой степени зависит от размера частиц и сил их сцепления и, следовательно, от величины пор.

  1.  3. Теплопроводность

Основные понятия, термины, определения

Теплопроводность является физическим свойством материалов, связанным с переносом в них тепловой энергии за счет взаимодействия их мельчайших частиц (атомов, ионов, электронов, молекул).

Перенос тепловой энергии осуществляется непосредственно от частиц, обладающих большей энергией, к частицам с меньшей энергией и приводит к выравниванию температуры тела. Взаимодействие частиц происходит в результате непосредственного их столкновения, при перемещении или колебании.

Когда такие условия переноса тепловой энергии выполняются и такой вид переноса является доминирующим, соблюдается закон Фурье, согласно которому вектор плотности теплового потока пропорционален и противоположен по направлению градиенту температуры Т(grad Т):

Q = - λ grad Т;

где λ — коэффициент теплопроводности (теплопроводность), который не зависит от grad Т, а зависит от агрегатного состояния вещества, его атомно-молекулярного строения, состава, температуры, давления и других физических показателей.

Агрегатное состояние вещества и теплопроводность

Механизм переноса тепловой энергии в веществах, находящихся в различных агрегатных состояниях, неодинаков. В газах и жидкостях он осуществляется хаотически движущимися молекулами, образующими однородную среду, в твердых телах — за счет взаимодействия соседних атомов решетки.

Однако внутри каждого вида агрегатного состояния имеют место свои особенности переноса энергии, которые, в свою очередь, зависят от структуры и свойств конкретного вещества.

В газах механизм переноса энергии и величина теплопроводности λ во многом зависят от расстояния между молекулами, т.е. определяются длиной их пробега l. В разреженных газах, когда l сравнимо с расстоянием между стенками L, ограничивающими объем газа, молекулы чаще сталкиваются со стенками, чем между собой. В результате происходит не направленный перенос тепла, а лишь теплообмен между молекулами в газовой среде. Следовательно, не соблюдается закон Фурье.

Если имеет место условие L >> l >> d, где d — диаметр твердой cферической молекулы газа, то согласно кинетической теории газов для теплопроводности идеальных газов справедливо следующее выражение:

λ = 1/3 ρсv.ν.l;

где       ρ — плотность газа, моль/м3;

сv -  удельная теплоемкость газа при V=соnst, Дж/моль°С;

ν — средняя скорость движения молекул, м/с;

1 — средняя длина свободного пробега частиц, м.

Кроме того, в идеальных газах теплопроводность λ связана еще и с вязкостью η соотношением:

λ = 5/2 η. сv

В плотных (реальных) газах расстояние между молекулами сравнимо с размерами самих молекул, а кинетическая энергия движения молекул и потенциальная энергия межмолекулярного взаимодействия — величины одного и того же порядка. В связи с этим перенос энергии столкновениями происходит значительно интенсивнее, чем в разреженных газах, и теплопроводность значительно выше.

В реальных газах зависимость теплопроводности от температуры и давления очень сложна, хотя при их увеличении теплопроводность газов растет.

Теплопроводность λ газов зависит от молекулярной массы М и количества атомов в молекуле n. При прочих равных условиях между λ и М существует следующая зависимость:

λ = 1/M0,5

Поэтому некоторые хлористые соединения, например фреоны, плохо проводят тепло.

Увеличение количества атомов в молекуле повышает теплопроводность в среднем на 2% на каждый атом. По этой причине бутан (n = 14) значительно более теплопроводен, чем сернистый газ (n=3), при примерно равных значениях молекулярных масс.

В жидкостях межмолекулярное расстояние еще меньше, чем в реальных газах. Плотность жидкости высока, а молекулы, хотя и подвижны, но не так хаотичны, как в газах, и перенос тепловой энергии осуществляется практически между слоями жидкости. Скорость такого распространения близка скорости распространения звука в жидкой среде νзв, а теплопроводность жидкости  описывается уравнением:

λ =  ρ.сv. νзв.l;

Как видно из этого уравнения, теплопроводность жидкости λ тем больше, чем выше ее удельная теплоемкость сv и плотность ρ. При повышении температуры жидкости расстояние между молекулами увеличивается, жидкость расширяется, а ее теплопроводность снижается. Исключения составляют вода, тяжелая вода и глицерин.

Химический состав жидкости влияет на теплопроводность через изменение температуры кипения. Чем ниже температура кипения жидкости, тем выше скорость уменьшения ее теплопроводности при нагревании.

В твердых телах перенос тепловой энергии осуществляется с помощью двух основных механизмов:

- за счет взаимодействия между тепловыми упругими колебаниями решетки;

- за счет движения электронов и столкновения их с атомами.

В большинстве случаев теплопроводность твердых тел λ складывается из теплопроводности решетки λреш и теплопроводности электронами λэл т.е. условно λ = λреш + λэл.

В неорганических, неметаллических, тугоплавких материалах (керамика, природные каменные материалы, бетоны и др.) количество свободных электронов, которые могли бы двигаться через кристаллическую решетку и осуществлять перенос энергии, недостаточно и теплота в основном передается за счет колебаний решетки.

Величина теплопроводности зависит от характера колебаний решетки. При гармонических колебаниях сопротивление переносу энергии отсутствует и теплопроводность может достигать огромных значений. Однако в реальных кристаллах колебания имеют ангармонический характер, который способствует частичному затуханию упругих тепловых колебаний и значительному снижению теплопроводности.

В теории теплопроводности предполагается, что колебания нормального вида квантуются и по аналогии с фотонами в теории света эти кванты называют фононами, а механизм переноса тепловой энергии — фононной теплопроводностью.

Таким образом, у твердых неметаллических тел перенос тепловой энергии осуществляется за счет взаимодействия фононов, в результате их движения, сталкивания, рассеивания и т.п. По аналогии с кинетической теорией газов фононную теплопроводность твердых тел можно представить как

λ = с ν l;

где l длина свободного пробега фононов.

с — удельная теплоемкость тела;

 ν — средняя скорость фононов;

В металлах перенос тепловой энергии определяется движением и взаимодействием электронов проводимости, так как решетчатая фононная составляющая теплопроводности исчезающе мала и λэл>> λреш.

Явление переноса тепла в полупроводниках сложнее, чем в диэлектриках и металлах, так как для них существенны как решеточная, так и электронная составляющие теплопроводности. Кроме того, здесь теплопроводность зависит от теплопроводности примесей и многих других факторов.

Влияние состава, структуры и параметров состояния на фононную теплопроводность твердого тела (кристалла)

Анализируя механизм переноса тепловой энергии в неорганических, неметаллических материалах (кристаллах), заметим, что основными факторами, влияющими на величину теплопроводности, являются:

- теплоемкость

- средняя скорость движения частиц (фононов);

- средняя длина свободного пробега частиц (фононов);

- степень гармоничности (ангармоничности) колебания решетки.

По изменениям этих параметров можно объяснить закономерности влияния состава, структуры, температуры и давления на теплопроводность того или иного тела.

Рассмотрим влияние структуры на теплопроводность кристаллов. Напомним, что структура кристаллов определяется типом химических связей и строением кристаллической решетки. Состав и структура кристаллов тесно взаимосвязаны, поэтому и оказывают совместное влияние на теплопроводность.

Известно, что строение кристаллической решетки и характер ее колебания влияют на степень отклонения гармоничности колебаний.

Ангармоничность обусловливается прежде всего различием атомных масс ионов решетки. Это различие вызывает так называемое рассеяние колебания с уменьшением средней длины пробега частиц. В результате этого теплопроводность уменьшается. Так, у оксидов и карбидов с легкими катионами, атомная масса которых близка соответственно атомной массе кислорода и углерода, теплопроводность оказывается более высокой, чем у оксидов и карбидов с тяжелыми катионами.

Расположение атомов в решетке влияет на образование осей симметрии и, как следствие, на анизотропию кристаллов. Теплопроводность в отличие от теплоемкости является анизотропным свойством; для многих кристаллов ее величина λ почти в 2 раза больше при потоке тепла параллельно оси симметрии, а не перпендикулярно к ней.

У кристаллов с простым строением решетки термическое рассеяние мало, а l велико, поэтому их теплопроводность высокая.

Кристаллы с более сложным строением решетки в общем имеют большее рассеяние тепловых упругих волн, увеличивающее ангармоничность ее колебания и, следовательно, пониженную теплопроводность.

Введение второго компонента в основной кристалл (твердые растворы) вызывает:

- усложнение строения кристаллической решетки;

- образование дополнительных центров рассеяния и, как следствие, уменьшение средней длины свободного пробега частиц.

В результате совместного влияния этих факторов теплопроводность нового соединения оказывается значительно ниже теплопроводностей его составляющих. Например, глинозем (Аl2O3) и периклаз (МgO) имеют примерно равные, но очень высокие значения теплопроводности, порядка 30. . .35 Вт/м.К, в то время как теплопроводность алюмомагнезиальной шпинели (МgO.А12O3) значительно ниже — порядка 13...15 Вт/м.К. Другой пример: глинозем (А12О3) и кремнезем (SiO2) — простые компоненты, а муллит (3 А12О3. 2SiO2) — сложное соединение. В обоих случаях примесные компоненты МgO и SiO2 значительно уменьшают теплопроводность соединения за счет усложнения строения кристаллической решетки и уменьшения средней длины свободного пробега частиц.

Взаимосвязь температура и теплопроводность твердого тела сложна и неоднозначна. Она определяется характеристической “температурой Дебая” (температура Дебая – интервал от 100 до 1000о К), которая устанавливает для каждого вещества температурную границу, выше которой не улавливаются квантовые эффекты, и фононовая теплопроводность теряет физический смысл.

Для большинства обжиговых и плавленых материалов эта температурная граница находится в пределах 100... 1000 К. В таком интервале температур составляющие формулы фононной теплопроводности, удельной теплоемкости и скорости распространения фононов практически остаются неизменными, а средняя длина свободного пробега фононов, с учетом теории теплоемкости, должна быть обратно пропорциональной абсолютной температуре, хотя имеются многочисленные исключения.

Итак, с увеличением температуры кристалла средняя длина свободного пробега частиц сокращается, ангармоничность растет и теплопроводность, уменьшается.

При температурах выше 1500оС теплопроводность огнеупорных оксидов обычно увеличивается, так как составляющая переноса тепла излучением значительно превосходит фононную.

Влияние давления на теплопроводность твердых тел выражается линейной зависимостью. Для многих минералов и металлов теплопроводность растет с увеличением давления.

Теплопроводность некристаллических тел

Тела с сильно разупорядоченной кристаллической решеткой, а также с полностью некристаллическим строением имеют очень низкую среднюю длину свободного пробега фононов, которая находится в пределах межатомного расстояния (порядка 3.. .5 Ǻ). Этим в основном объясняется низкая теплопроводность стекол и других аморфных тел и ее слабая зависимость от температуры.

Данные по теплопроводности стекол, приведенные в табл. 4.3., являются типичными для некристаллических твердых тел. Как видно из таблицы, их теплопроводности очень близки, хотя состав стекла все же оказывает некоторое влияние. Например, стекла с высоким содержанием бария или свинца имеют теплопроводность ниже, чем натрий, калий, силикатные стекла.

Таблица 4.3. Теплопроводность различных твердых тел

Тип мате-

Вещество

Теплопроводность,

риала

Вт/м°С

Минералы

Корунд    (А12О3)

-30

Периклаз (MgO)

-36

Шпинель (MgOAl2O3)

-15

Кварц       (SiO2)

0,63

Муллит     (3Al2O3-2SiO2)

5,8

Графит     (С)

180

Стекла

Кварцевое стекло

1,72

Натрий-кальций-силикатное   стек-

ло

1,44

Металлы

Медь           (Си)

397

Алюминий (А1)

230

Железо       (Fe)

73,2

Титан           (Ti)

4,1

Полимеры

Полиэтилен

0,34

Полистирол

0,084

Поливинилхлорид

0,15

Полиметилметакрилат

0,16

Стекловидная фаза, которая обычно выполняет роль связки в традиционной керамике, имеет теплопроводность, близкую к теплопроводности натрий, калий, силикатного стекла.

Природные и синтетические полимеры ввиду особого строения макромолекул обладают самой низкой теплопроводностью из твердых веществ и соединений (см. табл. 4.3), потому что такие легкие элементы, как С, О, Н и др., образуют ковалентную связь, и можно предположить высокую теплопроводность их молекул. Однако из-за слабости и неоднородности молекулярных связей рассеяние фононов оказывается значительным, а теплопроводность низкой.

В зависимости от агрегатного состояния веществ и особенностей переноса ими тепловой энергии условный ряд тел по величине их теплопроводности (по мере возрастания) может иметь следующий вид:

газы <<полимеры<<жидкости<<стекла<<кристаллы<<металлы,

Существенное изменение теплопроводности тел при изменении их состава и температуры и проявление в различных интервалах температур разных механизмов переноса тепла усложняет анализ этого явления ввиду значимости каждого фактора и их взаимосвязей.

Следует заметить, что для каждого агрегатного состояния тела имеется параметр (критерий), определяющий интервал состояния тела, за пределами которого его свойства резко изменяются. Такими параметрами (критериями) являются:

- для газа — соотношение между суммарным объемом частиц и общим объемом, занимаемым газом, т.е. величина, которая определяет его плотность и, следовательно, теплопроводность;

- жидкости — температура кипения, определяющая скорость изменения теплопроводности при изменении температуры;

- кристаллических тел — температура Дебая, которая определяет эффективные параметры упругих колебаний кристаллической решетки, обеспечивающих перенос тепловой энергии.

Теплопроводность гетерогенных систем

В строительном материаловедении теплопроводность λ учитывается при расчете ограждающих конструкций для обеспечения:

- тепловой изоляции зданий и сооружений

- тепловой защиты поверхностей тепловых агрегатов и трубопроводов;

- термостойкости огнеупорных материалов и специальных составов;

- хладоизоляции.

Поскольку ограждающие конструкции по своему назначению многофункциональны, составляющие их материалы, как правило, являются гетерогенными пористыми телами. Общая, или эффективная теплопроводность таких систем определяется теплопроводностями твердых и газовых фаз:

λ = λтв +  λгаз

Однако, учитывая тот факт, что теплопроводность является векторной величиной, ее суммарное значение для гетерогенных систем зависит не только от количественного соотношения фаз, но и от их взаимного расположения, характера пограничного слоя, степени непрерывности или дискретности фаз и т.д., т.е. от структуры и текстуры материала.

Чтобы оценить эффективную теплопроводность системы, рассмотрим влияние каждой составляющей.

Для оценки зависимости теплопроводности системы от сочетания твердых фаз приведем в качестве примера три упрощенных варианта сочетания твердых фаз двухфазной системы:

- параллельное расположение слоев (фаз), свойственное слоистой структуре материалов (рис.4.4, а);

- основная фаза является непрерывной, а другая - в виде отдельных включений, что соответствует структуре стеклокристаллических материалов (рис.4.4. б);

- основная фаза является дискретной, соответствует структуре, подобной конгломератам, например бетонам, (рис.4.4. в).

Рис. 4.4. Схемы распределения фаз:

а - параллельными слоями; б - с непрерывной основной фазой;

в - с дискретной основной фазой; к1 - основная фаза, к2 - вторая фаза;

q1, q2 - направления теплового потока

Вариант 1 Слоистая структура (см. рис. 4.4. а)

Если тепловой поток q направлен вдоль слоев, то λ рассчитывается так же, как и электропроводность цепи с параллельно включенными сопротивлениями. При одинаковом ΔТ во всех слоях большая часть тепла переносится через фазу с более высокой теплопроводностью. Среднюю теплопроводность можно рассчитать по формуле:

λср = V1 λ1 + V2 / λ2

где V1 и V2 — объемные доли каждой фазы.

В этом случае общая теплопроводность системы определяется в основном фазой с более высокой теплопроводностью, и если λ1 >> λ2, то  λср= V1 λ1.

Если тепловой поток направлен перпендикулярно к плоскости слоев, то имеет место случай, аналогичный случаю электрической цепи с последовательным включением сопротивлений. Тепловой поток, проходящий через все слои, остается величиной постоянной, тогда как ΔТ по слоям различна, и общая теплопроводность определяется соотношением:

1 /λср = V11 +V2/ λ2 или λср = λ1 λ2/( V1 λ1 + V2 λ2)

В этом случае общая теплопроводность определяется в основном фазой с меньшёй теплопроводностью, и если λ1 >> λ2, то λср~~ λ2/ V2.

Вариант 2. Структура с непрерывной основной фазой (см. рис.4.4. 6).

Если вторая фаза дискретна и по величине не превышает 10%, то общая (средняя) теплопроводность системы определяется теплопроводностью непрерывной фазы.

Вариант З.  Структура с дискретной основной фазой (см. рис.4.4. в).

Если содержание второй фазы превышает 10%, то главным фактором, определяющим теплопроводность системы, является соотношение фаз, и условно непрерывной фазой становится большая из них. Общую теплопроводность системы определяют исходя из соотношений Максвелла-Эйкена для непрерывной среды с λ1 и диспергированной в нее фазой с λ2:

Если λ1 >> λ2 , то λср = λ1(1- V2)/(1+ V2).

Если λ1<< λ2, то λср = λ2(1 + 2 V2)/(1 - V2).

Как влияет газовая фаза на теплопроводность системы? Выше упоминалось о том, что гетерогенные системы (неорганические, не металлические материалы), как правило, имеют значительную газовую составляющую, которая колеблется от доли процента у плотных природных каменных материалов до 99% у искусственных полимерных материалов.

Тот факт, что с увеличением газовой фазы или пористости теплопроводность системы уменьшается, не вызывает сомнения. Например, теплопроводность воздуха примерно в 20 раз меньше теплопроводности керамического черепка. Однако необходимо выделить два момента:

- при увеличении пористости теплопроводность системы уменьшается за счет сокращения объема более теплопроводной твердой фазы, что не требует доказательства;

- при увеличении пористости теплопроводность системы снижается еще и за счет уменьшения теплопроводности самой твердой фазы.

Такая закономерность объясняется тем, что поры, образуя новые поверхности в плотной структуре, становятся центрами рассеяния, примерно такими, как дефекты решетки, границы зерен примеси и пр. При этом уменьшается средняя длина свободного пробега частиц и снижается фононная теплопроводность системы.

Если пренебречь влиянием границ зерен и другими факторами, а также теплопроводностью самих пор (т.е. газовой составляющей) и допустить, что поры равномерно распределены в непрерывной среде, то можно получить уравнение Максвелла-Эйкена, показывающее влияние пористости на фононную теплопроводность гетерогенной системы:

λ = λср(1-П)(1+0,5П);

где λ, λср — соответственно теплопроводности системы и твердой фазы в абсолютно плотном состоянии;

П — пористость системы, ед.

Приведенное соотношение теплопроводность — пористость условию для непрерывной твердой фазы с изолированными порами. Однако если непрерывной является газовая фаза, как в порошкообразных и волокнистых материалах, то необходимо учитывать и ее теплопроводность, которая определяется конвективным теплопереносом а, а при температурах выше 600°С — еще и излучением  «кч».

При расчете эффективной теплопроводности с учетом конвекции и излучения определяющими факторами являются размер пор и температура. Так, влияние переноса теплоты излучением на теплопроводность пор пропорционально их условному диаметру d и кубу температуры, Следовательно, наличие крупных пор приводит к повышению общей теплопроводности системы, особенно при высокой темпера туре, в то время как мелкие поры являются хорошим препятствием для переноса теплоты.

Следует, однако, снова упомянуть о том, что на теплопроводность  влияет не только размер пор, но и непрерывность поровой среды. Причем влияние последнего фактора значительнее.

Из опыта применения высокотемпературной теплоизоляции известно, что в сыпучих и волокнистых материалах, где непрерывной средой является воздух, размер пор, а, следовательно, и размер зерен или толщина волокон практически не оказывают влияния на теплопроводность материалов при низких температурах.

При высоких температурах размер зерен становится значимым параметром, так как с увеличением конвективной составляющей теплопереноса резко возрастает фактор излучения. Поэтому для высокотемпературной изоляции наиболее эффективными являются мелкозернистые или мелкопористые материалы. Теплопроводность же самой твердой фазы или зерна в данном случае имеет второстепенное значение.

При высоких температурах размер зерен становится значимым параметром, так как с увеличением конвективной составляющей теплопереноса резко возрастает фактор излучения. Поэтому для высокотемпературной изоляции наиболее эффективными являются мелкозернистые или мелкопористые материалы. Теплопроводность же самой твердой фазы или зерна в данном случае имеет второстепенное значение.

  1.  Плавление материалов

Основные понятия, термины, определения

Температура плавления (Тпл) - параметр состояния твердого тела, характеризующий границу его устойчивости. Другими словами, это температура равновесного фазового перехода твердого тела в жидкость при постоянном внешнем давлении.

Наличие определенной температуры плавления - важный признак кристаллического строения тел. По этому признаку их легко отличить от аморфных твердых тел, не имеющих фиксированной температуры плавления.

Механизм плавления твердого тела

Механизм перехода твердого тела в жидкость можно объяснить изменением энергетического состояния твердого тела при нагревании. При подведении к кристаллическому телу теплоты увеличивается энергия (амплитуда) колебаний его атомов, что приводит к повышению температуры и способствует возникновению в кристалле различных дефектов. Постепенный рост числа дефектов и их скопление характеризуют стадию "предплавления" (рис. 4.4.). С Достижением температуры плавления в кристалле создается критическая концентрация дефектов.

Начинается плавление, т.е. кристаллическая решетка распадается на легкоподвижные субмикроскопические фрагменты. Подводимая в этот период теплота идет не на нагрев тела, а на разрыв межатомных связей и нарушение в кристалле дальнего порядка. Когда этот процесс завершится, твердое тело полностью превратится в жидкость. Температура, при которой возникает такое явление, есть температура плавления.

С точки зрения термодинамики, при температуре плавления достигается равновесное состояние, т.е. состояние, при котором выравниваются энергии Гиббса твердой и жидкой фаз.

Рис. 4.4. Стадии фазового перехода твердого тела в жидкость при

нагревании

Для обычных условий, без учета сверхвысоких давлений, также влияющих на Тт, следует считать температуру плавления одной из характеристических констант вещества.

Состав и температура плавления

Поскольку строительное материаловедение в основном рассматривает поликристаллические тела и сложные кристаллы, вызывает интерес влияние составляющих компонентов на температуру их плавления.

Это влияние представляется многофакторным и чрезвычайно сложным, так как при нагревании и плавлении даже простейшей двухкомпонентной системы необходимо рассматривать следующие возможные варианты:

-постоянство  состава  при  фазовом  переходе  (конгруэнтное
плавление);

-образование нового соединения (инконгруэнтное плавление);

- разложение;

- образование твердых растворов, т.е. изоморфных смесей смешанных кристаллов;

- проявление полиморфизма одним или всеми компонентами.

Вещественный состав и температура плавления. Различные химические соединения имеют разную температуру плавления, что вполне очевидно. Однако во многих случаях прослеживается определенная закономерность изменения температуры плавления в зависимости от типа соединений. Так, для соединений одних и тех же металлов температура плавления повышается в последовательности металлы < оксиды < нитриды < карбиды и т.д.

Такую закономерность можно объяснить различием у этих соединений типов химических связей и слабостью или прочностью их структуры (табл. 4.5.).

Тип химической связи и температура плавления материала

Этот фактор является основным при определении порядка (уровня) температуры плавления различных веществ и соединений. Отмечена тенденция повышения температуры плавления с усилением химических связей в следующем порядке:

молекулярные кристаллы < кристаллы с металлической связью < ионные кристаллы <кристаллы с ковалентной связью.

Низкая температура плавления молекулярных кристаллов, к которым можно отнести органические полимеры, объясняется тем, что, несмотря на ковалентный тип связи между частицами, образующими молекулы, межмолекулярное взаимодействие осуществляется слабыми ван-дер-ваальсовыми силами (табл. 4.4.).

Таблица 4.5. Взаимосвязь тип соединения - тип химической связи – температура плавления

Соединения

Химическая связь

Т    °С

Металлы

Оксиды

Нитриды

Карбиды

А1

Металлическая

659

А12О3

Ковалентная

2050

A1N

Ковалентно-ионная

2400

Аl4Сз

Тоже

2800

Ti

Металлическая

1668

TiO2

Ионная

1870

TiN

Ковалентно-ионная

1950

TiC

Тоже

3140

Si

Ковалентная

1417

SiO2

Тоже

1710

Si2N4

»»

-2000

SiC

»»

-2830

Структура твердого тела и температура плавления

Напомним, что структура есть результат совокупного действия химических связей, обеспечивающих единое целое. Поэтому прочность структуры твердого тела зависит от прочности химических связей, так же, как прочность здания зависит от того, из каких кирпичиков оно построено и каким раствором связаны эти кирпичики.

У различных групп веществ и соединений для создания оптимальной структуры имеются определенные условия и особенности. Так, для класса оксидов металлов одной и той же группы или с одинаковой валентностью металла можно отметить следующие особенности:

температура плавления оксида тем выше, чем выше координационное число (к.ч.) катиона;

температура плавления оксида снижается по мере уменьшения к.ч. металла по отношению к кислороду;

температура плавления оксида снижается при уменьшении к.ч. кислорода при неизменном к.ч. ионов металла, равном 6 (пример: к.ч. MgO (2800°С) > к.ч. А12О3(2050°С) > к.ч. ТiO2(1840°С);

температура плавления оксида тем выше, чем выше плотность
упаковки ионов (т.е. выше к.ч. ионов) и выше прочность химической
связи.

Взаимосвязь "температура плавления - тепловое расширение "

Анализ механизмов теплового расширения и плавления, а также влияния на них состава, химических связей и структуры тела выяв ляет в указанных процессах много общего. Особенно это относится к влиянию типа химической связи и ее прочности на интенсивность и результат рассматриваемых процессов.

С увеличением прочности химической связи КТР тел уменьшается (см. табл. 4.3), а их температура плавления растет (см. табл.4.8). Эта взаимосвязь свидетельствует о том, что температура плавления может служить косвенной характеристикой процесса теплового расширения кристаллических тел.

Лекция 5. ДЕФОРМАТИВНЫЕ И ПРОЧНОСТНЫЕСВОЙСТВА МАТЕРИАЛОВ

1. Деформативные свойства

Основные понятия, термины, определения

Деформативные свойства материалов проявляются при воздействии на них механических и термических нагрузок, в результате которых в материале возникают различного рода деформации, напряженное состояние и, наконец, наступает разрушение.

Деформация — это нарушение взаимного расположения множества частиц материальной среды, которое приводит к изменению формы и размеров тела и вызывает изменение сил взаимодействия между частицами, т.е. возникновение напряжений. Заметим, что чаще деформации вызывают напряжения, и поэтому, как правило, строят графики зависимости напряжений от деформаций, а не  наоборот.

Простейшими элементами деформации являются относительное удлинение и сдвиг.

Относительное удлинениё «ε» стержня или материального волокна среды длины «l» есть отношение изменения (l - lo) к первоначальной длине: ε = (l-lo)/lo.

Сдвигом называется изменение угла у между элементарными волокнами, исходящими из одной точки и образующими прямой угол до деформации (см. рис. 5.1).

В твердых телах деформация называется упругой, если она исчезает после снятия нагрузки, и пластической, если она после снятия нагрузки не исчезает; если она исчезает не полностью, то называется упругопластической, если она изменяется во времени и обратима, то называется вязкоупругой.

Разрушение — это ослабление взаимосвязи между частицами при нарушении сплошности структуры.

Различают хрупкое, т.е. мгновенное (без деформации) и пластическое (с деформацией) разрушение твердого тела.

Таким образом, к этой группе свойств можно отнести упругость, пластичность, хрупкость, вязкость, прочность и твердость.

Упругость

Упругость — свойство изменять форму и размеры под действием нагрузок и самопроизвольно восстанавливать исходную конфигурацию при прекращении внешних воздействий.

Упругость тел обусловлена силами взаимодействия атомов, из которых они построены. В твердых телах при температуре абсолютного нуля и отсутствии внешних воздействий атомы занимают равновесное положение, в котором сумма всех сил, действующих на каждый атом со стороны остальных, равна нулю, а потенциальная энергия атома минимальна.

Под влиянием внешних воздействий атомы смещаются относительно своих равновесных положений, что сопровождается увеличением потенциальной энергии тела на величину, равную работе внешних сил на изменение формы и объема тела. В результате возникают напряжения, величины которых пропорциональны произведенной деформации.

Пока отклонения межатомных расстояний и валентных углов от их равновесных значений малы, они пропорциональны силам межатомного взаимодействия, подобно тому, как удлинение или сжатие пружины пропорционально приложенной силе. Поэтому упругое тело можно представить как совокупность атомов-шариков, соединенных пружинами, ориентации которых фиксированы другими пружинами (рис. 5.1), а константы упругости пружин модели подобны модулю упругости материала.

Рис. 5.1. Шариковая модель элементарной ячейки кубического кристалла:

а - в равновесии при отсутствии внешних сил;

б - под действием внешних сил и касательных напряжений

Поле снятия нагрузки конфигурация упругого деформированного тела с неравновесными межатомными расстояниями и валентными углами оказывается неустойчивой и самопроизвольно возвращается в равновесное состояние. Запасенная в теле избыточная потенциальная энергия превращается в кинетическую энергию колеблющихся атомов, т.е. в теплоту.

Константы упругости

Количественно упругость характеризуется константами, свойственными каждому материалу. При этом необходимо учитывать, что большинство свойств, кроме плотности и теплоемкости, связано с анизотропией структуры. Упругость является ярко выраженным анизотропным свойством. Поэтому следует различать упругость кристаллов и анизотпропных материалов и упругость изотропных тел.

Поликристаллические тела и материалы в целом изотропны, анизотропия их свойств проявляется только в результате формования или обработки, например прессования, штампования, прокатки, уплотнения и т.п. Таким образом, формируется анизотропия свойств керамической плитки, черепицы, стального листа и т.д. В дальнейшем рассматривается упругость только изотропных свойств, для которых не применимы представления об ориентированных кристаллографических осях и пр.

С учетом вышеизложенного для большинства природных и искусственных материалов (горные породы, керамика, бетон, металлы и т.д.) при малых деформациях зависимости между напряжениями «σ» и деформациями «ε» можно считать линейными (рис. 5.2) и описывать обобщенным законом Гука:

σ = Еε,

где Е — модуль упругости (модуль Юнга).

Подобным образом напряжение сдвига «τ» прямо пропорционально относительной деформации сдвига или углу сдвига у(рис. 5.3):

τ = G . у

где G — модуль сдвига.

о.

Рис. 5.2. Классическая зависимость напряжение — деформация:

А — керамики; В — металлов; С — полимеров

Рис. 5.3. Упругая деформация твердого тела при сдвиге

Удлинение образца при растяжении сопровождается уменьшением его толщины (рис. 5.4). Относительное изменение толщины Δl/l к относительному изменению длины Δd/d называется коэффициентом Пуассона «μ» или коэффициентом поперечного сжатия:

μ = (Δl/l) / (Δd/d).

Рис. 5.4. Упругая деформация твердого тела при растяжении

Если при деформации тела его объем не изменяется, а это может иметь место только при пластическом или вязком течении, то μ = 0,5. Однако, практически, эта величина значительно ниже теоретического показателя и для разных материалов она различна. Упругие материалы (бетон, керамика и др.) имеют невысокие значения коэффициента Пуассона (0,15-0,25), пластичные (полимерные материалы) — более высокие (0,3-0,4). Это объясняется зависимостью между силами притяжения и отталкивания и изменением межатомного расстояния при деформации.

Модуль Юнга

Модуль Юнга, или модуль продольной деформации Е показывает критическое напряжение, которое может иметь структура материала при максимальной ее деформации до разрушения; имеет размерность напряжений (МПа).

Е =σр/ε;

Где: σр – критическое напряжение.

У поликристаллических материалов обычно наблюдаются отклонение от линейной  σ = ƒ(ε,), не связанное с энергией кристаллической решетки, а зависящей от структуры материала. Для оценки упругих свойств таких материалов применяют два модуля упругости: касательный Е = tgα  и секущий V= tgβ, который называют модулем деформаций (рис. 5.5).

Рис. 5.5. Схематическое изображение деформации огнеупоров:

а — кривая деформации; б — точка разрушения;

σ; — предельное напряжение при разрушении; ε — деформация

Величина модуля упругости двухфазной системы является средней между величинами модулей упругости каждой из фаз, и аналитическое выражения для ее нахождения аналогичны тем, что используются при различных значениях линейного КТР:

Е = Е1V1 + E2V2,

где V1 и V2 — относительные объемные доли первой и второй фаз.

Это соотношение используется при разработке стеклопластиков, т.е. пластмасс, армированных стекловолокном. Е стекловолокна (~7.104 МПа) велик по сравнению с Е пластмасс (Е = 0,7.104 МПа). Поэтому даже при низкой объемной доле стекловолокна в композиции на него как на более прочный компонент приходится большая часть общей нагрузки.

Пористость и модуль Юнга

Увеличение пористости структуры снижает ее модуль упругости, так как пористость представляет собой вторую или п-ю фазу с минимальным модулем упругости. Количественно эта зависимость представляется достаточно сложной, так как кроме суммарного объема пор необходимо учитывать их форму, непрерывность, извилистость и пр. Если принять, коэффициент Пуассона μ равным 0,3, то величина модуля упругости пористого тела в случае наличия замкнутых пор в непрерывной среде достаточно точно может быть определена по следующему эмпирическому уравнению:

Е = Ео (1-1,9П+0,9П2),

где Е и Ео — модули упругости пористого и абсолютно плотного тела;

П — относительная пористость, ед.

Если в пористых материалах пространство пор непрерывно, а твердые частицы могут смещаться относительно друг друга, то влияние пористости оказывается более значительным, чем в результате определения по приведенному уравнению.

Термическое расширение и модуль упругости

Кристаллические тела с высоким КТР имеют, как правило, низкий модуль упругости. С повышением температуры расстояние между атомами увеличивается также за счет термического расширения, и упругая составляющая деформации несколько снижается, уменьшая напряженное состояние и, как следствие, модуль упругости. При высоких температурах упругая составляющая понижается значительно. Наконец, она становится настолько малой, что тело теряет свои упругие свойства, т.е. переходит из состояния неустойчивого равновесия в равновесное состояние, в котором величина напряжения и силы межатомного взаимодействия зависят только от температуры.

В материаловедении такое состояние, называемое пиропластическим, и является необходимым условием для формования (ковка, црокат, горячее прессование, термопластичное формование и пр.) различных материалов и изделий.

Пластичность

Пластичность (от греч. р1аstcos — податливый) — свойство твердых тел и материалов деформироваться (изменять свою форму и размеры) без нарушения сплошности структуры под действием внешних сил и сохранять часть деформации после прекращения действия этих сил. Такие сохраненные (необратимые или остаточные) деформации часто называют пластическими.

Все реальные твердые тела, даже при малых деформациях, в большей или меньшей степени обладают пластическими свойствами, т.е. наряду с упругими деформациями также имеют место пластические. Соотношения между двумя противоположными видами деформации для различных материалов неодинаковы. В керамике это соотношение в пользу упругой деформации, в полимерах — в пользу пластической. По этому показателю условный ряд материалов с повышением доли пластической деформации может быть представлен следующим образом:

керамика → метал → высокомолекулярные соёдинения.

Это соотношение зависит от многих факторов, в том числе от структуры твердого тела. Например, в отформованном глиняном сырце доля упругой деформации невелика по сравнению с пластической. В высушенном глиняном образце доля пластической деформации значительно уменьшилась, а в спеченной керамике эта доля ничтожна. Это объясняется так: под влиянием температурных воздействий структура глиняного сырца претерпела кардинальные изменения: высокодисперсная коллоидная система превратилась в пористую стеклокристаллическую структуру с высоким модулем упругости.

Заметим, что при нагружении любое твердое тело можно считать упругим, т.е. не проявляющим заметных пластических деформаций, до тех пор, пока нагрузка не превысит некоторого предела, после которого часть деформаций становится необратимой. Напряженное состояние этого момента называется пределом текучести σт. После этого предела линейный характер взаимосвязи напряжение — деформация нарушается, в дальнейшем он может восстановиться, но в другом соотношении σ/ε. При пластической деформации, сопровождающейся нарушением связности структуры, наступает разрушение, характеризующееся резким падением напряжения Пограничное состояние между пластической деформацией и разрушением называется предельным напряжением структуры σпр, которое численно равно пределу прочности Rпр твердого тела.

Из графика (рис. 5.6) следует, что при повышении нагрузки до предела текучести σт проявляются только упругие деформации, и напряжение возрастает с большой скоростью. После достижения σпр проявляются только пластические деформации, хотя в обоих случаях имеют место и те, и другие. В этот период напряжение возрастает медленно и только за счет наличия упругих деформаций, вплоть до нарушения сплошности структуры, Rпр.

Таким образом, становится очевидным, что появление пластических деформаций свидетельствует о начале процесса разрушения структуры твердого тела. Этот факт следует учитывать при расчете или выборе конструкций  различного функционального назначения, разработке способов подготовки масс, формования, других технологических переделов.

Рис.5.6. Кривые зависимости напряжение – деформация:

______ упругая деформация;

----------пластическая деформация.

Рис. 5.7. Зависимость упругой и пластической деформаций от времени приложения нагрузки

На рис. 5.7 изображен график временной зависимости деформации при постоянном напряжении и температуре.

В момент нагружения, которое осуществляется со скоростью звука, в твердой непрерывной среде возникает только упругая деформация 4 (отрезок ОА). С течением времени в твердом теле развивается  необратимая деформация. Совокупное развитие обратимой и необратимой деформаций во времени характеризуется отрезком АВ. В момент времени τi, соответствующий т. В, обратимая деформация достигает равновесного значения при действующем напряжении и больше не увеличивается. Если бы наблюдаемая деформация была обусловлена только обратимой (упругой) составляющей деформации, то в дальнейшем она не изменялась бы во времени, и отрезок ВС располагался бы параллельно оси времени. В действительности деформация непрерывно увеличивается, но уже за счет необратимой составляющей, и отрезок ВС характеризует ее изменение во времени.

Если участок ВС прямолинеен, то, экстраполируя его к нулевому моменту времени, получаем графическое выражение закона пластической деформации в виде прямой ВС. Пластическая деформация (отрезок ДЕ), накопившаяся за время τ2 остается после снятия нагрузки, когда со временем гз исчезает упругая составляющая (кривая СД).

Резюмируя сказанное, отметим следующее:

- в момент нагружения (мгновенно) имеет место только упругая деформация (ОА);

- в период достижения упругой деформацией равновесного значения (АВ) имеет место как упругая, так и пластическая деформация,

- в период роста пластической деформации упругая составляющая остается неизменной (ВС);

- после снятия нагрузки исчезает упругая деформация (СД);

- (ДЕ) - пластическая деформация.

Разделение упругой и пластической деформаций, улучшение пластических свойств материала — достаточно сложные, но подчас необходимые операции при создании новых технологий переработки, обработки, формования различных материалов и получении материалов с заданными свойствами.

Причины и механизм образования пластических деформаций

Напомним, что при приложении к твердому телу внешней силы, величина которой превышает предел текучести а возникает пластическая деформация, образующаяся в результате скольжения плоскостей атомной решетки благодаря напряжению сдвига. Напряжение, необходимое для смещения ряда атомов вдоль некоторой плоскости, как показано на рис. 5.8, можно определить по формуле:

σт = (G/2π)(b/h),

где G— модуль сдвига;

b — расстояние между атомами в направлении скольжения;

h — расстояние между плоскостями скольжения.

Рис. 5.8. Отклонения в расположении атомов под воздействием напряжения сдвига

Следует заметить, что во время скольжения плоскостей каждый атом перемещается не вдоль прямой линии расположения соседних атомов, где необходимо преодолевать высокий энергетический барьер, а по зигзагу через места с низкими энергетическими барьерами, и поэтому значение σT должно быть на порядок ниже. Например, для Al2O3 теоретическое значение σT = 1,7х 105МПа, а реальное в 17 раз меньше. Тот факт, что экспериментальные значения оказываются гораздо меньше теоретических, можно отнести почти ко всем другим твердым материалам, а также металлам.

Способность различных материалов к пластической деформации и механизм ее образования можно объяснить с помощью понятия “дислокации”. Если к кристаллу приложить усилие, вызывающее напряжение сдвига, то происходит скольжение его верхней и нижней частей во взаимно противоположных направлениях. В результате этого возникают дислокации, т.е. линии, вдоль и вблизи которых нарушено характерное для кристалла правильное расположение атомных плоскостей.

Поскольку дислокация в кристалле обладает собственным полем напряжений, возникающим от действия внешних сил, она также испытывает силу, под действием которой приходит в движение, результатом чего является взаимное “проскальзывание” атомных плоскостей, или пластическая деформация.

Каждый раз при перемещении дислокации в плоскости скольжения разрываются и возникают новые связи не между всеми атомами на плоскости скольжения, а только между теми атомами, которые находятся у линии дислокации. Поэтому пластическая деформация сдвига происходит при сравнительно малых внешних напряжениях, которые значительно ниже теоретических, т.е. без дислокаций.

Плоскость скольжения образуется в кристалле лишь на участках со слабой связью между атомами. При этом скольжение происходит в направлении самого низкого энергетического барьера, который необходимо преодолеть. Механизм скольжения, основанный на движении дислокаций, можно идентифицировать с перемещением по полу ковра с предварительно созданной складкой. На рис. 5.9. приведен пример систем скольжения в кристалле поваренной соли.

Рис. 5.9. Системы скольжения в кристаллах типа NаСl

Если приложить к кристаллу внешнюю силу в каком-то направлении, то на скольжение в кристалле будут эффективно влиять только те составляющие внешней силы, которые соответствуют системам скольжения. Исходя из этого, можно заключить, что чем больше вероятность реализации системы скольжения, тем выше пластические деформации кристалла. Очевидно, что в металлах такая вероятность значительно выше, чем в природных каменных материалах и керамике.

Подвижность дислокаций, обеспечивающая пластические свойства кристалла, ограничивается не только прочностью межатомных связей, но и рассеянием фононов и электронов проводимости в упругоискаженной области кристалла. Кроме того, движению дислокации мешают также упругое взаимодействие с другими дислокациями и с примесными атомами межзеренными границами в поликристаллах и пр. На преодоление отмеченных препятствий затрачивается часть работы внешних сил. Из этого следует, что реальный кристалл (с дислокациями) «мягче» или пластичнее бездефектного, но если плотность дислокаций становится выше критического значения, то он становится более прочным и «жестким».

Дислокации, как и иные дефекты кристаллов, влияют не только на такие их свойства, как пластичность и прочность, но и на другие физические свойства кристаллов. Например, с увеличением плотности дислокаций возрастает внутреннее трение, изменяются оптические свойства, повышается электрическое сопротивление (металлов). Дислокации увеличивают скорость диффузии в кристаллах, ускоряют процессы старения, увеличивают химическую активность и уменьшают стойкость кристаллических структур в различных средах.

Таким образом, пластичность наряду с упругостью является важнейшей характеристикой твердых тел. Пластические деформации, возникающие в теле под действием внешних сил, позволяют судить о характерных особенностях структуры того или иного материала в двух основных аспектах:

1. Появление пластических деформаций — свидетельство начала разрушения структуры материала. Это позволяет:

- определить запасы прочности, деформируемости и устойчивости структуры;

- снизить материалоемкость изделий и конструкций;

- обеспечить их наиболее рациональное функционирование, надежность и безопасность;

- повысить сопротивляемость тел ударным нагрузкам, снизить концентрацию напряжений в материале.

2. Наличие значительных пластических деформаций — положительный момент для обеспечения качественного формования и обработки твердых тел давлением (прокатка, штамповка, ковка и т. п.).

Хрупкость

Если при нагружении твердых тел возникают преимущественно упругие деформации, а пределы текучести и прочности имеют близкие значения, то такие тела называются хрупкими. (У идеально хрупких тел σТ =Rпр).

Хрупкие тела разрушаются почти мгновенно, с едва заметной деформацией.

Отсюда следует, что хрупкость — свойство материала разрушаться при незначительной, преимущественно упругой, деформации, при напряжениях, средний уровень которых несколько ниже предела текучести.

Эластичность

Эластичность (от греч. е1аstos — гибкий, тягучий) — способность материала или изделия испытывать значительные упругие (обратимые) деформации без разрушения при сравнительно небольших усилиях. Такой способностью обладают каучуки (натуральные и синтетические), резина, некоторые, в основном линейные, полимеры. Благодаря этой способности их обычно называют эластомерами.

В отличие от упругости кристаллических материалов и стекол, обратимые деформации которых составляют доли процента или несколько процентов, упругие деформации эластомеров достигают 100% и более. Это связано с особым состоянием полимеров, которое называется высокоэластическим.

Высокоэластическое состояние является устойчивым в определенном для каждого полимера интервале температур, ниже которого полимер находится в стеклообразном состоянии, а выше — в вязко - текучем состоянии.

2. Прочность

Под прочностью в широком смысле слова понимают способность материалов сопротивляться разрушению, происходящему в результате действия внешних сил. Кроме того, причиной разрушения материала могут быть такие факторы, как неравномерно протекающие тепло- и массообменные процессы, действие электрических и магнитных полей и многие другие физические и физико-химические процессы и явления.

Критерии прочности

Критериями прочности в зависимости от класса материала, вида напряженного состояния (растяжение, сжатие, сдвиг и др.) и условий эксплуатации (температура, время действия нагрузки и пр.) могут быть временное сопротивление, предел текучести, предел усталости и другие виды сопротивления.

Прочность строительных материалов чаще всего оценивают временным сопротивлением, или пределом прочности «R», определяемым при данном виде деформации. для хрупких материалов (природных и искусственных каменных материалов) основными прочностными характеристиками являются пределы прочности при сжатии и изгибе, а для эластичных (полимеры) — предел прочности при растяжении, которые определяются по формулам:

Rсж = Fсж/А;  Rр = Fр /A   Rи = M / W

где Rсж, Rр Rи — соответственно пределы прочности при сжатии, растяжении и изгибе, МПа;

Fсж и Fр — соответственно разрушающее усилие при сжатии и растяжении, Н;

А — площадь поперечного сечения испытуемого образца, м2;

М — наибольший изгибающий момент, Н•м;

W -  момент сопротивления сечения образца, м3.

Факторы, влияющие на показатель прочности

Полученные показатели пределов прочности материалов (особенно предела прочности при сжатии) носят условный характер, так как при испытании на конечный результат существенное влияние оказывают различные факторы:

- размер и форма образца;

- время и скорость приложения нагрузки;

- тепловлажностные условия проведения испытаний;

- методы испытаний и особенности конструкций испытательных машин.

Влияние размера и формы образца на показатели предела прочности при сжатии обусловлено двумя факторами: образованием при сжатии поперечных растягивающих усилий и наличием в большем объеме образца большего количества дефектов структуры, влияющих на прочностные свойства материала.

При одноосном сжатии, благодаря наличию у образца свободных вертикальных поверхностей, образуются поперечные растягивающие усилия. Между опорными гранями образца и плитами пресса эти усилия уравновешиваются силами трения. По мере удаления от поверхности образца действие сил трения уменьшается и растягивающие усилия растут, достигая своего максимума к середине образца (по высоте). Чем больше расстояние между опорными плитами образца при сжатии, т.е. hк  hпр (рис. 5.28), тем меньше силы трения в середине образца и выше результирующие растягивающие усилия. Поэтому предел прочности при сжатии у образцов кубической формы выше, чем у призм.

Случайное распределение структурных неоднородностей по объему и поверхности образца приводит к различным значениям прочности в разных локальных участках структуры. Прёдел прочности всего образца определяется прочностью самого слабого участка.

Рис. 5.10. Схемы сжатия образцов:

а - поперечное расширение при сжатии эластичных тел;

б - изменение сил трения при сжатии хрупких тел кубической и призматической формы

Вероятность встретить в образце слабое место тем больше, чем больше его объем. Поэтому разрушающее напряжение малых образцов выше, чем больших из того же материала. Особенно это заметно при сравнении пределов прочности при растяжении изделий, резко различающихся по сечению, таких, как стержень, проволока, волокно. Чем меньше сечение изделия, тем меньше его удельный объем и поверхность, а следовательно, меньше вероятность наличия в нем дефектов (табл. 5.1).

Ввиду этих особенностей в строительстве все чаще используются тросы и канаты, сплетенные из тонкой проволоки, а в текстильной промышленности - нити, сплетенные из тончайших волокон.

Следует заметить, что значительное количество дефектов в виде микротрещин, выступов, шероховатостей и т. д. образуется на поверхности изделия, так как при формировании структуры поверхность слоя испытывает большие напряжения, чем внутренние слои материала. Полировка поверхности нивелирует эти дефекты, а защитные покрытия препятствуют их развитию, увеличивая прочность изделия.

Таблица 5.1 Предел прочности при растяжении материалов различной формы

Материал

Предел прочности при растяжении, МПа

Стандартная форма

Волокнистое изделие

Графит

-

24000 (нитевидный кристалл)

Сталь

500-3000

4000-5000 (проволока)

Стекло

12-20

3000-3600

Асбест

-

3200-5400

Скорость приложения нагрузки также оказывает влияние на конечный результат при испытании. Значение разрушающего напряжения оказывается, как правило, выше, если образец разрушен в короткий промежуток времени. Напротив, значение разрушающего напряжения такого же образца, разрушенного медленно, оказывается более низким.

Поскольку для хрупких материалов разрушение рассматривается как процесс зарождения и роста трещин, время от момента приложения нагрузки до момента разрушения характеризует жизнеспособность материала, которую в материаловедении принято называть долговечностью.

Исследования многих кристаллических и аморфных материалов показали, что в широком интервале температур и напряжений долговечность «τ» при растяжении определяется соотношением (Журков):

τ = τо.еxp(UoσV) / kT

где τo— период тепловых колебаний атомов в твердом теле, с;

Uo — энергия, близкая к энергии сублимации материала, Дж;

σ— напряжение, МПа;

V—объем, м3;

Т — абсолютная температура, К;

k — постоянная Больцмана, Дж/К.

Установлено, что предельные значения напряжений σо, действующие на образцы из хрупкого материала, почти неизменны при любых практически значимых величинах долговечности τ. Если предельные значения напряжений σо (пределы прочности материалов) превышены, то образец мгновенно разрушается; если эти значения ниже, то срок долговечности материала не ограничен.

Влияние тепловлажностных воздействий. Для большинства хрупких и пластичных материалов повышение температуры при испытании снижает прочностные показатели образцов, особенно при растяжении и изгибе. Это связано с явлением температурного расширения и увеличением межатомного расстояния. Однако следует заметить, что при незначительных отклонениях от нормальной температуры (18.. .20°С) изменения прочности несущественны.

При более высоких температурах (400... 800°С) различные материалы ведут себя по-разному. Например, керамические изделия мо гут увеличивать свою прочность благодаря закрытию (залечиванию) трещин, а безобжиговые изделия, в основном гидратационные материалы, резко снижают свои прочностные показатели.

При температурах выше 1000... 1300 предел прочности керамических материалов при изгибе зависит от содержания и свойств кристаллической фазы, а при сжатии — от содержания и свойств стекловидной фазы. Гидратационные материалы при таких температурах разрушаются.

Для большинства полимерных материалов повышение температуры снижает прочность образцов. Однако для полимеров, реализующих способность макромолекул к деформации (эластики), наблюдается температурный интервал аномалии температурной зависимости. В этом интервале с увеличением температуры возрастает ориентация макромолекул перед разрывом образца. Причем чем больше ориентация, тем выше прочность образца. Это явление перекрывает общую тенденцию понижения прочности при повышении температуры испытания.

Влажность среды и материала оказывает в большинстве случаев негативное воздействие на его прочностные показатели. Снижение прочности материалов вызывается рядом причин:

- действием адсорбционно-активной среды (эффект Ребиндера);

- растворением метастабильных контактов срастания кристаллов, состав-ляющих структуру материала;

- набуханием присутствующих в некоторых материалах глинистых минералов и др.

Паровая среда, т.е. совместное действие температуры и насыщенного водяного пара, оказывает еще большее влияние на прочностные показатели материалов. Результаты испытаний представлены в табл. 5.2.

Следует заметить, что не представляется возможным с достаточной степенью точности определить обособленное влияние каждого из многочисленных факторов на процесс разрушения материала.

Таблица 5.2.  Предел прочности при сжатии (МПа) некоторых материалов в зависимости от тепловлажностных воздействий

Материал

Сухая среда,

240оС

Насыщенный водяной пар

240оС

25оС

Натрий-кальций-силикатное стекло

150

-

77

Кварцевое стекло

453

257

391

Кварц

448

251

367

Гранит

130

42

164

Общие положения относительно прочности и разрушения материала

Учитывая вышеизложенное, можно сформулировать следующие общие положения по вопросам прочности и разрушения строительных материалов.

1. Всякое тело в процессе эксплуатации практически всегда находится под действием механических сил. Если эти силы велики, то тело неизбежно разрушится. Разрушение произойдет тем позднее, чем меньше деформирующие усилия.

2. Практическое воздействие механических сил нередко оказывается столь незначительным, что еще до механического разрушения материал может разрушиться вследствие химических процессов (коррозия, дегидратация, деполимеризация).

3. При разрушении материала разрываются связи, обеспечивающие его целостность. При этом энергии затрачивается больше, чем затрачено на образование связей. Энергия разрушения складывается из энергии теплового движения, преодолевающего притяжение элементов структуры, и работы (энергии) деформации.

4. В процессе разрушения происходит флуктуация тепловой энергии тел, так как постоянно разрушаются одни связи и восстанавливаются другие. Механическое воздействие внешней силы в зависимости от типа твердого тела обусловливает в той или иной степени восстановление или перегруппировку этих связей в новом месте в соответствии с направлением действия силы. Даже при ярко выраженном хрупком разрушении на поверхности заметны следы перенапряжений в виде измененной структуры материала.

5. Наряду с поглощением энергии при механическом нагружении происходит распределение энергии по связям, обеспечивающим сплошность структуры образца. Однако неравномерность распределения объясняется релаксационными свойствами материала или его фаз, т.е. степенью его структурной однородности.

6. При разрушении рассматриваются мгновенный или критический характер разрушения (теория Гриффитса) и постепенное разрушение, отвечающее статистической теории хрупкой прочности (Журков С.Н. и Александров А.П.). Сущность статистической теории состоит в том, что разрыв происходит не одновременно по всей поверхности разрушения, а постепенно, начиная с самого опасного очага, на котором перенапряжение достигает значения, сравнимого с величиной теоретической прочности. Затем разрушение идет в новых дефектных местах.

7. Поверхностные дефекты составляют значительную долю дефектов структуры и фактически определяют величину реальной прочности материала.

8. По мере растяжения образца из пластичного и эластичного материала (металлы и, полимеры) в результате его утончения напряжение сначала возрастает. Однако вследствие перегруппировки частиц, стремящихся занять менее напряженное положение, скорость роста напряжения замедляется. далее наступает момент, когда частицы не справляются с возрастающим напряжением, и происходит разрыв.

Следовательно, можно заключить, что разрушение твердых тел связано в основном с диссипативными явлениями, обусловленными необратимостью процесса разрыва перенапряженных межатомных связей тепловыми флуктуациями. При этом механизм рассеяния энергии для низкомолекулярных соединений связан с созданием новых поверхностей, а для высокомолекулярных соединений — обусловлен еще и цепным строением молекул.

2. Твердость

Твердость - свойство материала, которое характеризует сопротивление упругой и пластической деформации при вдавливании в него стандартного тела в условиях неравномерного сжатия. Эта величина, отражая энергию связи и особенности структуры, зависит от некоторых физико-механических, а также таких свойств, как прочность и пластичность.

Факторы, влияющие на твердость материала

Твердость является структурной характеристикой материала, ее связь с электронной структурой сложна и неоднозначна. Более очевидно влияние на твердость температуры и пористости.

При увеличении температуры твердость материала снижается из-за увеличения подвижности дислокаций и, как следствие, роста пластических деформаций.

Влияние пористости на твердость материалов неоднозначно. Пористость в интервале от 0 до 4% природных каменных материалов группы гранита и керамического фарфорового черепка, практически, не оказывает влияния на твердость, однако при показателе пористости 13% (обычный тяжелый бетон) влияние пор весьма существенно, особенно при высоких температурах.

Способы оценки твердости

Оценку твердости материала связывают с поведением его поверхностного слоя при механическом воздействии на материал. При этом используют два различных метода:

- качественный, или сравнительный метод, когда пластическая деформация поверхности осуществляется при взаимном царапании сравниваемых материалов;

- количественный метод, при котором пластическая деформация поверхности материала достигается вдавливанием в нее так называемых инденторов, т.е. стандартных твердых тел различной геометрической формы.

В первом случае в качестве ориентира применяют шкалу твердости по Моосу, т.е. обозначают стандартные материалы твердых тел 10 видов (от талька до алмаза), которые ступенчато классифицированы от 1 до 10 в зависимости от твердости, определяемой при взаимном царапании. Более мягкими считают те материалы, на которых остается царапина, а более твердыми — те, на которых следы царапин отсутствуют (см. табл. 5.3).

Таблица 5.3. Влияние структуры и типа химической связи на твердость минералов (шкала Мооса)

Шкала твердости

Минерал

Химическая формула

Структура

Химическая связь

1

Тальк

Mg3[Si4O10][OH]2

Листовая

Ионно-мол.

2

Гипс

CaSО4 • 2Н2О

Пластинчатая

Ионная

3

Кальцит

СаСО3

Призматическая

Ионная

4

Флюорит

CaF2

То же

Ионная

5

Апатит

Ca5[P04]3F

То же

Ионная

6

Ортоклаз

К[А1 Si3O8]

Ромбическая

Ионно-ковал.

7

Кварц

SiO2

Тетраэдрическая

Ковалентная

8

Топаз

Al2[Si40][F,0H]2

То же

Ковалентная

9

Корунд

A12O3

Октаэдрическая

Ковалентная

10

Алмаз

С

Тетраэдрическая

Ковалентная

В табл. 5.3 явно просматривается зависимость показателя твердости от класса минерала и типа химической связи Наибольшей твердостью обладают кристаллы с высокой направленностью ковалентной связи. Простые кристаллы за редким исключением (например, SiС) имеют более высокую твердость.

Как ориентир твердости материалов показатель твердости по Моосу является весьма качественным экспериментальным показателем.

Количественный метод определения твердости связан с приложением нагрузки посредством вдавливания индентора из алмаза или другого материала в поверхность испытуемого образца. По величине образующегося отпечатка рассчитывают показатель твердости. В зависимости от типа и формы индентора различают показатель твердости по Бринеллю (символ Нв), по Виккерсу (Нv), по Кнуппу (НN) и по Роквеллу (НR).

Величину твердости в зависимости от высоты отскока стального Шарика при падении на поверхность твердого тела называют показателем твердости по Шору.

Рис. 5.29. Схемы определения твердости материалов методом вдавливания индентора:

а — по Бринеллю (Нв); б — по Виккерсу (НV); в — по Кнуппу (HN)

Результаты испытаний на твердость одних и тех же материалов, проведенных различными методами, как правило, неодинаковы, хотя cходимость их во всех случаях имеет место. Так, зависимость между твердостью по Моосу М и твердостью по Виккерсу НV выражается формулой:

lg НV = kМ,

где k — константа (для керамики k = 1,6; для металлов k = 1,2).

При испытаниях материалов по методу вдавливания большое влияние на результат оказывают величины прикладываемой нагрузки:

- при усилиях вдавливания ниже определенного для каждого материала значения возникают только упругие деформации и отпечатка от индентора не остается, а следовательно, замерить показатель твердости не удается;

- при усилиях вдавливания выше критического значения на поверхности образуется отпечаток, глубину которого можно замерить и, следовательно, установить величину сопротивления пластической деформации, т.е. показатель твердости.

Таким образом, при увеличении усилия вдавливания сверх предела текучести для некоторых материалов, например металлов, происходит пластическая деформация, но так как металлы с большим модулем Юнга характеризуются большим пределом текучести, можно предположить, что пластичные материалы с большим модулем Юнга должны обладать большей твердостью.

Хрупкие материалы, например керамика, плохо подвергаются пластической деформации и во многих случаях разрушаются в пределах упругости. Следовательно, если усилие вдавливания индентора в поверхность керамики выше некоторого предела и образуется отпечаток, то не только осуществляется пластическая деформация, но и возникают трещины, которые могут быть причиной локального разрушения материала.

Таким образом, - твердость — это характеристика материала, отражающая его пластичность и прочность.

Твердость связана четкой корреляционной зависимостью с модулем Юнга. У минералов, обладающих химической связью одного типа, с увеличением модуля Юнга твердость увеличивается.

Завершая анализ деформативных и прочностных свойств строительных материалов еще раз отметим четко выраженную взаимосвязь в системе: состав — химические связи — структура — свойства.

Лекция 6.  ЭКСПЛУАТАЦИОННЫЕ СВОЙСТВА

6.1. Основные понятия, термины, определения

Эксплуатационными принято считать такие особенности материала, которые проявляются во взаимодействии с окружающей средой в период его работы в конструкции в тех или иных условиях. К таким условиям можно отнести:

- переменные температурные воздействия при эксплуатации тепловых агрегатов;

- атмосферные условия, связанные с переменными тепловлажностными воздействиями;

- влияние агрессивных жидкостных и газовых сред.

К материалам, работающим в таких условиях, предъявляют повышенные требования, связанные с сохранением специально созданной структуры. Материалы, работающие в условиях воздействия агрессивных сред, должны обладать стойкостью к тем или иным воздействиям. Например: они должны характеризоваться водостойкостью; морозостойкостью; термостойкостью, или температуростойкостью; огнестойкостью; коррозионной стойкостью; и др. Рассмотрим некоторые из них.

6.2. Водостойкость

Водостойкость — способность материала сопротивляться агрессивному воздействию на него воды. Результатом такого воздействия может быть снижение прочности материала, связанное с частичным разрушением структуры вследствие разрыва наиболее слабых химических связей.

Причинами частичного разрушения структуры могут быть следующие:

- адсорбционно-активное воздействие тонких водных пленок на микротрещины, имеющиеся в пористой структуре материала;

- химическое воздействие воды на метастабильные контакты различных фаз;

- деформация структуры в результате процессов набухания и усадки гидрофильных составляющих материала.

Критерием водостойкости принято считать 20%-ное снижение прочности в результате водонасыщения материала. Количественно водостойкость характеризуется коэффициентом размягчения Кразм, который определяется по формуле

Кразм = (RсухRнас) / Rсух,

где Rсух и Rнас пределы прочности при сжатии соответственно сухих и водонасыщенньхх образцов материала, МПа.

Из формулы видно, что чем больше потеря прочности материала, тем выше коэффициент размягчения и ниже водостойкость материала. Таким образом, материалы, имеющие коэффициент размягчения выше 0,2, т.е. потеря прочности которых составляет более 20%, следует считать неводостойкими.

Примечание. Коэффициент снижения прочности при водонасыщении по ГОСТ 9479-84 «Блоки из природного камня для облицовочньтх изделий. Методы испытаний» принято определять как соотношение пределов прочности при сжатии водонасыщенных и сухих образцов».

6.3. Морозостойкость

Морозостойкость плотных и пористых материалов

В строительном материаловедении понятие «морозостойкость» связывают с воздействием на материал двух основных факторов:

- влияние низких температур - для абсолютно плотных материалов (стекло, металлы, полимерные изделия и др.);

- совокупное влияние низких температур и воды - для материалов мелкопористой структуры (природные и искусственные каменные материалы, в том числе строительная керамика, бетоны, растворы и др.).

Таким образом, для плотных материалов морозостойкость — способность материала сохранять эксплуатационные свойства при низких температурах. К таким материалам предъявляются требования в зависимости от их назначения с учетом условий эксплуатации. В большинстве случаев основным требованием является сохранение целостности структуры.

Механизм разрушения структуры материала при перепадах температуры связан с явлением расширения — сжатия и изменением упругих свойств материала. При низких температурах материал становится более хрупким, ломким; резко снижается его ударная прочность.

Это в большей степени относится к полимерным материалам и металлам.

Морозостойкость природных и искусственных каменных материалов — способность материала выдерживать многократное попеременное замораживание и оттаивание в насыщенном водой состоянии (без видимых признаков разрушения и допустимого понижения прочности).

Разрушительное воздействие мороза на ограждающую конструкцию можно условно разделить на три основных периода: водонасыщение, промерзание и, собственно, разрушение.

В наиболее влажный период года происходит водонасыщение поверхностного слоя ограждающей конструкции

Рис. 6.1. Распределеление температуры в наружной стене здания (а) и заполнение пор водой (б) вблизи наружной поверхности:

1 - адсорбированная вода; 2 - конденсат; З - устье; 4 - дождевая вода

При понижении температуры окружающей среды наружные слои конструкции постепенно охлаждаются, фронт низких температур распространяется внутрь конструкции. Водяной пар, находящийся в противоположной зоне конструкции, перемещается от тепла к холоду, поскольку давление влажного воздуха при отрицательной температуре ниже, чем при положительной. Попадая в зону низких температур, водяной пар конденсируется в порах, вблизи наружной поверхности ограждающей конструкции (рис. 6.1.).

При наступлении даже небольших морозов (-5..-8оС) вода, находящаяся в крупных порах, замерзая и превращаясь в лед, создает напряженное состояние в материале.

Механизм разрушения структуры пористых тел при замораживании

Существует несколько гипотез, объясняющих причины разрушения структуры материала при замораживании:

- вода, находящаяся в крупных порах материала при температуре ниже 0,01оС, превращается в лед с увеличением в объеме около 9%. Если при этом коэффициент насыщения приближается к 1, то в стенках пор могут возникнуть растягивающие напряжения, являющиеся основной причиной разрушения структуры;

- давление расширения воды при замерзании заставляет мигрировать еще не замерзшую воду, создавая большое гидростатическое давление, которое усиливает напряжения на стенки сообщающихся пор;

- перемещение незамерзшей воды в направлении поверхности из тонких пор в крупные в момент образования в них льда и понижение при этом давления пара (эффект вспучивания грунта при замерзании).

Анализируя вышеперечисленные гипотезы, отметим, что, несмотря на некоторые противоречия (например, между двумя последними причинами в плане направления миграции воды), главным фактором разрушения следует признать изменение фазового состояния воды при изменении температуры или давления.

С точки зрения термодинамики, процесс замораживания сопоставим с процессом сушки пористых материалов по двум основным положениям:

- изменение агрегатного состояния воды или установление равновесного состояния «вода —лед» при замораживании и «вода — пар» при сушке (рис. 4.31);

- возникновение массообменных процессов внутри материала в результате высоких градиентов давлений над водой при замораживании и высоких градиентов влажности при сушке.

Известно, что процесс диффузии влаги внутри материала при сушке зависит от характеристики структуры материала и свойств воды, а также градиентов температуры, влажности и давления.

Проводя аналогию между процессами диффузии влаги при сушке и замораживании материалов, отметим следующие основные моменты:

- если при сушке основной движущей силой влагопроводности является градиент влажности, который во многом зависит от интенсивности испарения воды, то при замораживании — градиент давления, который зависит от изменения температур и скорости кристаллизации воды;

- направление движения влаги в обоих случаях одинаковое — в сторону расположения критической точки превращения воды: в первом случае — в пар, во втором — в лед, т. е. к поверхности;

- роль воздуха в пористой структуре материала в двух этих процессах неодинаковая, но положительная: при сушке, особенно во время интенсивного нагрева, влага в порах испаряется и за счет избыточного давления пара увеличивает диффузию, а при замораживании наличие свободного воздушного пространства уменьшает гидростатическое давление и снижает напряжение в материале.

Факторы, влияющие на морозостойкость

Анализ механизма при замораживании показывает, что морозостойкость пористых строительных материалов связана в основном с двумя характеристиками структуры: водопоглощением и способностью сопротивляться растягивающим напряжениям.

Водопогющение — косвенная характеристика пористости, которая показывает способность материалов впитывать и удерживать влагу в период эксплуатации. Водопоглощение характеризуется коэффициентом насыщения пор водой, который определяется по формуле:

Кн = W / П,

где:  Кн — коэффициент насыщения, ед.;

W - водопоглощение по объему, %;

П — общая пористость материала, %.

Коэффициент насыщения может изменяться от 0 (все поры в материале замкнутые) до 1 (все поры открытые), и тогда W = П. Уменьшение коэффициента насыщения при неизменной пористости свидетельствует о сокращении открытой пористости, что значительно повышает морозостойкость структуры.

Предел прочности при растяжении зависит от природы химических связей и наступает при нарушении равновесия между силами притяжения и отталкивания с последующим нарушением связности структуры. Эта характеристика является константой для каждого материала.

Однако следует заметить, что в условиях замораживания в локальных участках пористой структуры имеет место не классическое осевое растяжение, а гидростатическое давление расширения, которое меняет характер и механизм разрушения структуры.

Главной проблемой повышения морозостойкости пористых материалов является снижение растягивающих напряжений при замораживании, которое может быть достигнуто:

- при уменьшении водопоглощения за счет создания микропористой структуры с преимущественно замкнутыми порами;

- путем воздухововлечения, когда в материале образуются воздушные резервуары, гасящие избыточное давление мигрирующей воды;

- посредством введения в структуру материала высокодисперсного армирующего компонента, увеличивающего пластическую составляющую в целом упругой деформации.

Количественно морозостойкость материала оценивается циклами замораживания и оттаивания. Количество циклов определяется по потере прочности материала, которая не должна превышать 25%, или по потере массы, которая не должна превышать 5%.

Показатель морозостойкости (марка) обозначается символами:

F15; F25; F50.. F500, где цифры показывают количество циклов замораживания и оттаивания материала при испытании.

Условия испытания, установленные российскими и международными стандартами, являются значительно более суровыми, чем реальные условия эксплуатации материала, особенно в части интенсивности замораживания и оттаивания, что в значительной мере связано со сроками проведения этих испытаний. В табл. 6.2 представлены показатели морозостойкости некоторых строительных ма териалов.

Таблица 6.2. Морозостойкость строительных материалов в зависимости от водопоглощения и предела прочности при разрыве

Материал

Водопо-глощение, %

Плотность,

г/см3

Rразр, МПа

Морозостой-кость, циклы

Керамический кирпич

8...15

1,6...1,9

0,9..3,5

15...50

Кер. фасадная плита

1..5

1,9...2,2

4..6

35...50

Клинкерный кирпич

< 1

2,3...2,5

6...10

50...100

Ячеистый бетон

40...60

0,5...1,2

0,078... 1

15...75

Легкий бетон

-

0,8...1,8

0,8..3,2

25...400

Тяжелый бетон

3...10

2,2...2,5

0,8..3,2

50...500

Асбестоцемент

20...25

1,6...1,8

10..15

50...100

Анализ таблицы позволяет сделать следующие выводы:

- водопоглощение и сопротивление растяжению являются основными факторами, влияющими на морозостойкость любого вида пористых каменных материалов;

- с увеличением водопоглощения и уменьшением сопротивления растяжению морозостойкость материалов уменьшается;

- мера влияния водопоглощения и сопротивления растяжению на морозостойкость зависит от вида материала и особенностей его структуры:

- керамические материалы: оба фактора имеют примерно равное значение;

- тяжелые бетоны: главным является водопоглощение;

- легкие бетоны: главный фактор — особенность структуры, связанная с наличием резервной пористости заполнителя; водопоглощение и сопротивление растяжению, практически, влияния не оказывают;

- ячеистые бетоны: наличие преимущественно крупных (10.. .200 мк), неопасных пор; водопоглощение и сопротивление растяжению второстепенны;

- асбестоцементные материалы: высокое сопротивление растяжению и снижение напряжения расширения благодаря увеличению доли пластических деформаций при разрушении; водопоглощение — второстепенный фактор.

6.3. Коррозионная стойкость

Основные понятия, термины, определения

Коррозионная стойкость — способность материала противостоять действию агрессивных сред (коррозии).

Коррозия (от лат. соrrоsiо — разъедание) — разрушение материалов вследствие химического или электрохимического взаимодействия со средой.

Строительные материалы, и в первую очередь их поверхности, в течение длительной эксплуатации разрушаются в основном в результате двух видов воздействия: коррозионного, связанного с влиянием на материал внешней, агрессивной среды, и эрозионного, вызываемого механическим воздействием.

Эрозионное разрушение интенсивно протекает при относительно быстром перемещении среды или материала. Особенно большой величины эрозия достигает при контакте материала с расплавами металлов и шлаков, а также с газообразными окислителями и пр.

Явления коррозии и эрозии часто сопутствуют друг другу, и поэтому их не всегда удается разделить. В строительном материаловедении эти явления рассматривают раздельно. Эрозионные процессы рассматриваются при изучении эксплуатационных свойств покрытий полов, дорожных покрытий и пр.

Виды коррозии строительных материалов

Коррозия строительных материалов различается по виду коррозионной среды, характеру разрушения и процессам, происходящим в них:

коррозионная среда:

газовая: (инертный газ; химически активный газ);

жидкостная: (кислотная; соленая; щелочная, морская; речная; в расплаве металлов, силикатов)

характер разрушения: (равномерное,  солевая,  неравномерное, избирательное, поверхностное, растрескивание, местное, межкристаллитное);

виды воздействий (процессов):(химические; электрохимические;  биологические).

Газовая коррозия представляет собой коррозию в газовой среде при полном отсутствии конденсации влаги на поверхности материала. Этому виду коррозии подвержены материалы, работающие в условиях высоких температур в среде осушенного газа (керамика). Газовая коррозия относится к химическим процессам разрушения. Скорость ее зависит от природы материала, его структуры и свойств новообразований на его поверхности.

Жидкостная коррозия природных и искусственных каменных материалов, происходящая под действием растворов электролитов и не электролитов, а также различных расплавов, носит в основном химический характер, хотя, в зависимости от вида и свойств жидкости отличается рядом особенностей. Важнейшей особенностью жидкостей является наличие в них сил межмолекулярного взаимодействия. Этим обусловлены два свойства жидкого состояния: молекулярное давление и связанное с ним поверхностное натяжение. Поверхностное натяжение жидкости оказывает большое влияние на интенсивность разрушения материала, которое определяется так же смачивающими свойствами жидкости.

Равномерная коррозия возникает в результате действия агрессивной среды при достаточной толщине изделия и равномерном распределении напряжений сжатия, изгиба или растяжения. Коррозия этого вида в отличие от других в значительно меньшей степени влияет на прочностные свойства материала.

Неравномерная, или местная коррозия (пятна, язвы, разводы) происходит при различной концентрации агрессивной среды на от дельных участках или неоднородности самого материала (его состава и структуры). Так, в результате неравномерного распределения кристаллической и стекловидной фаз в керамическом материале коррозионное разрушение на его отдельных участках протекает с разной скоростью. При этом в стекловидной фазе процесс развивается значительно быстрее, чем в кристаллической. Наличие в материале неоднородной пористости также способствует образованию в нем неравномерной коррозии.

Избирательная коррозия характерна для материалов, в которых один из компонентов при формировании структуры образует легко растворимые соединения. В период эксплуатации эти соединения могут переходить в раствор, образуя на поверхности материала так называемые «высолы».

Межкристаллитная коррозия возникает в результате разрушения материала по границам зерен и быстро распространяется в глубь материала, резко снижая его свойства. Этот вид коррозии присущ некоторым обжиговым материалам, при спекании которых образуются новые фазы, твердые растворы и пр. и, следовательно, границы раздела.

Коррозионное воздействие в общем случае может иметь два принципиально различных механизма: химическое взаимодействие и растворение.

Химическое взаимодействие сводится к реакции между средой и материалом с образованием новых соединений. При наличии в агрессивных средах примесей, а в материале — добавок химические реакции могут протекать между всеми элементами взаимодействия. Поскольку каменные материалы являются диэлектриками и взаимодействие их с агрессивной средой не сопровождается возникновением электрических токов, процесс разрушения материалов называют химической коррозией.

При воздействии агрессивных сред на металлы происходит электрохимический процесс передачи электронов из слоя металла с более низким электрическим потенциалом к слою с более высоким потенциалом и восстановление электроположительных ионов с последующим разрушением поверхностного слоя. Такой процесс разрушения принято называть электрохимической коррозией.

Биологическая коррозия — разрушение материала под непосредственным воздействием растительных и животных организмов, а также микроорганизмов. Высшие растительные организмы (корневая система, стебли, листья, семена и пр.) в процессе жизнедеятельности продуцируют различные виды веществ, большинство из которых по отношению к строительным материалам являются агрессивными. Животные организмы вызывают биоповреждения материалов как непосредственно своим механическим воздействием (грызуны, птицы и пр.), так и продуктами своей жизнедеятельности. Низшие растительные организмы и микроорганизмы (водоросли, лишайники, мхи, грибки, бактерии и пр.) разрушают поверхностные слои бетонов и создают условия для гниения конструкций из древесины.

Коррозию, возникающую в результате воздействия на строительные материалы продуктов технологической переработки органических веществ как биогенного (фрукты, овощи, растительные масла, кровь, соки, жиры и пр.), так и небиогенного происхождения (нефть, уголь, сланцы, известняки-ракушечники, выхлопные газы, копоть и пр.), принято называть органогенной коррозией.

Факторы, влияющие на коррозионную стойкость строительных материалов

Коррозионная стойкость строительных материалов зависит от многих факторов, которые подразделяются на внешние и внутренние.

Внешние факторы определяют агрессивность среды и ее влияние на материал. К ним можно отнести рН среды, температуру и ее перепад, а также интенсивность воздействия среды на материал.

Водородный показатель раствора электролита, характеризующий активность в нем ионов водорода, является весьма важным фактором, влияющим на процесс химической коррозии. Скорость коррозии силикатов в растворах электролитов в значительной степени зависит от характера растворов и протекает по-разному в кислых, щелочных или нейтральных средах.

Вода как участник технологического процесса рассматривается в двух аспектах: как нейтральный компонент, служащий для придания смеси необходимых свойств, и как растворитель и переносчик ионов.

Причиной коррозии многих строительных материалов в воде или в других электролитах является термодинамическая неустойчивость соединений, содержащихся в этих материалах, которая связана с развитием процессов гидратации, сопровождающихся экзотермическими или эндотермическими эффектами.

Экзотермический эффект свидетельствует о созидательном процессе в материале, например при гидратации цемента, а эндотермический эффект — о разрушительном, например при гидратации керамического черепка.

Поведение химических элементов в растворах во многом зависит от величины радиусов ионов и их валентности, а точнее, от величины отношения валентности иона к его радиусу, называемой ионным потенциалом:

РI = V/R,

где РI — ионный потенциал, Å-1 ;

V — валентность, ед.;

R — ионный радиус, Å..

Чем меньше ионный потенциал, тем сильнее проявляются основные свойства элементов, чем он больше — кислотные. Например, К и Na характеризующиеся малыми ионными потенциалами, соответственно 0,75 и 1,02, обладают резко выраженными щелочными свойствами. Элементы, имеющие ионный потенциал в пределах 4,7... 8,6, обладают амфотерными свойствами, а при РН> 8,6 кислотными свойств

Сравнивая активность элементов по ионному потенциалу, получим следующее распределение катионов в порядке убывания:

SiO2 TiO2MgOFeCu

Высокий ионный потенциал катиона кремния обусловливает образование прочных анионных групп с ионами кислорода.

Температура — одна из важнейших переменных, влияющих на коррозионную и эрозионную стойкость. Повышение температуры, как правило, способствует усилению коррозионного воздействия за счет увеличения предельной растворимости, скорости диффузии и интенсивности химических реакций.

Перепады температур в системе вызывают термический перенос массы, что может сделать непригодным применение материала, который в нормальных условиях имеет малую растворимость.

Интенсивность воздействия среды влияет на скорость коррозионных процессов. Увеличение объема среды, находящейся в контакте с материалом, может усилить коррозионное воздействие за счет увеличения средней скорости растворения материала.

Внутренние факторы — это состав, структура материала и его свойства.

Ввиду особенностей строения различных материалов влияние на них внешних факторов неодинаково, и поэтому коррозионную стойкость обжиговых, плавленых, гидратационных материалов, а также металлов и древесины рассматривают раздельно. И мы с Вами начнем изучение свойств конкретных материалов со следующей лекции.

Общие принципы повышения коррозионной стойкости

Коррозионная стойкость определяется массой материала, превращенного в продукты коррозии в единицу времени с единицы площади, находящегося во взаимодействии с агрессивной средой, а также размером разрушенного слоя в мм за год.

Основными принципами повышения коррозионной стойкости строительных изделий и конструкций являются:

- подбор состава композиций, отличающегося низкой активностью в агрессивных средах;

- использование специальных покрытий для химической, тепловой и механической защиты изделий и конструкций от воздействия агрессивных сред.

Следует отметить, что основным критерием, определяющим эксплуатационные свойства строительных материалов, является время. Поэтому такие характеристики материала, как водостойкость, морозостойкость и коррозионная стойкость, являются не истинно физическими свойствами, а лишь условными показателями изменения состояния его структуры при продолжительном постоянном или циклическом воздействии на материал агрессивной среды.

Сохранение эксплуатационных характеристик во времени принято называть долговечностью строительных материалов.

ЗАКЛЮЧЕНИЕ

Рассматривая последовательно цепочку «состав — химические связи — структура — свойства», следует выделить следующие основные моменты:

1. Состав - это качественная и количественная характеристика веществ, составляющих сырьевые материалы или готовые изделия. Состав является химической и энергетической основой вещества или материала. Он определяет химический потенциал системы, ее энергетическое состояние, термодинамику ее состояния или перехода, а, следовательно, тип и энергию химической связи.

Состав — это первое, основополагающее звено в цепочке выше указанной взаимосвязи, которое играет главенствующую роль в создании требуемой структуры материала и определяет основные параметры технологии его получения.

2. Химические связи — это результат взаимодействия атомов, ионов, молекул, обусловливающий их устойчивое состояние в виде различных веществ и материалов.

Тип химической связи определяет характер и устойчивость конденсированной системы, предопределяет механические, физические, химические свойства материала, такие, как прочность, растворимость, реакционная способность, теплопроводность, темпе плавления и др., а также устойчивость кристаллической или аморфной структуры.

Современное материаловедение, в том числе строительное материаловедение, рассматривает взаимосвязь «химические связи — свойства» в аспекте повышения качества материалов. Все свойства строительных материалов, их поведение в период эксплуатации, устойчивость, инертность или подверженность взаимодействию со средой, приводящая к коррозионным процессам, связаны с особенностями электронного строения атома, характером связи с другим атомом. Зная особенности электронно-атомного строения вещества, можно изменять и совершенствовать химическую связь, изменяя, совершенствуя структуру и свойства материалов.

3. Структура — совокупность устойчивых связей, обеспечивающих соединению (материалу) единое целое.

Структуру тела (материала) можно классифицировать по двум основным признакам: по процессу формирования и по определенному состоянию.

По первому признаку структура подразделяется на коагуляционную, конденсационную и кристаллизащюнную, а по второму — на кристаллвческую (устойчивую), аморфвую (неустойчивую) и аморфно-кристаллическую (сложную).

Большинство гидратационных материалов образует кристаллическую структуру, большинство обжиговьих материалов — аморфно - кристаллическую или стеклокристаллическую, а большинство плавленых — аморфную или стеклообразную структуру.

Стеклокристаллическая структура подразделяется на два вида:

образующаяся из кристаллической структуры по разрушительному процессу (традиционная керамика);

образующаяся из стеклообразной структуры по созидательному процессу (ситаллы).

Тип и характер структуры определяют весь комплекс свойств строительных материалов.

4. Свойство — особенность вещества или материала, проявляющаяся при взаимодействии с окружающей средой или другим веществом (материалом).

Любой материал с определенным внутренним строением, микро- и макроструктурой и свойствами можно представить в виде системы (наподобие термодинамической), элементы которой взаимосвязаны и роль каждого элемента строго определена.

В данном случае координатами такой системы могут быть: масса, определяющая химические поля взаимодействия, а следовательно, химические свойства; объем, определяющий поля напряжения, а следовательно, механические свойства; температура, определяющая тепловые поля, а следовательно, термические свойства материала.

Свойства материала взаимосвязаны и выполняют роль индикаторов, которые в любой период его существования характеризуют то или иное состояние системы, т.е., по аналогии с термодинамической системой, являются основными параметрами материала как системы.

Взаимосвязь свойств наглядно прослеживается при рассмотрении теллофизическмх и деформативных свойств материала.

Свойство — это качественная, отличительная характеристика вещества, материала или изделия. В материаловедении эта характеристика является заключительным звеном в цепи “состав — химическая связь — структура — свойство”, а при разработке технологии и создания нового материала — основным, определяющим параметром или условием его получения.


 

А также другие работы, которые могут Вас заинтересовать

62783. Наблюдаем за изменениями слов 18.28 KB
  Задачи: Образовательная: познакомить с изменением названий предметов по числам; Развивающая: развивать умение громко рассуждать и доказывать; Воспитывающая: воспитывать интерес любовь и уважение к родному языку.
62784. Протест против «футлярной жизни» в «маленькой трилогии» А.П.Чехова 15.92 KB
  Оборудование: Портрет Чехова с надписью Его врагом была пошлость. Чехова не всегда легко понять если не помнишь жизненной позиции писателя который был строг прежде всего к себе. Горького горячее желание видеть людей простыми красивыми и гармоничными...
62786. Рвана аплікація: Гроно калини 16.83 KB
  Якого кольору листочки у калини зеленого А ягідки якого кольору червоного Як ви розумієте вислів Похолоднішало риба не ловиться калина у цвіт вбирається. Як ви розумієте вислів Без верби та калини нема України. Сьогодні ми з вами робитимемо рвану аплікацію Гроно калини.