5588

Закон сохранения импульса

Контрольная

Физика

Закон сохранения импульса Для простоты рассмотрим движение системы, состоящей из трех точек, на каждую из которых действуют внутренние силы fik и внешние - Fi , где индекс i представляет номер точки. Уравнения движения для каждой точки имеют в...

Русский

2012-12-15

36.5 KB

3 чел.

Закон сохранения импульса

Для простоты рассмотрим движение системы, состоящей из трех точек, на каждую из которых действуют внутренние силы fik  и внешние - Fi , где индекс i представляет номер точки. Уравнения движения для каждой точки имеют вид:

                                                    

                                                                                              

                                                    

Складывая эти уравнения, получим:

                             

По третьему закону Ньютона внутренние силы попарно равны по величине и противоположны по направлению (например, f12 = -f21). Потому сумма всех внутренних сил равна нулю, и

                                                     ,                                            

где через Р обозначен суммарный импульс системы. Обобщая, для любого числа материальных точек, можно записать следующее выражение:

                                                           ,                                               

которое принято называть законом изменения импульса системы материальных точек. Как видно из этого выражения,  изменение суммарного импульса определяется равнодействующей всех внешних сил, действующих на систему. Если же эта равнодействующая равна нулю (или на систему не действуют никакие внешние силы), то суммарный импульс системы остается постоянным - закон сохранения импульса.

У системы материальных точек (возьмем две) есть центр масс: точка С, лежащая на отрезке, соединяющем А и В, на расстояниях l1 и l2 от А и В, обратно пропорциональных массам точек

Другим следствием рассмотренного закона изменения импульса служит теорема о движении центра масс, которая утверждает, что центр масс системы материальных точек под действием внешних сил движется как материальная точка суммарной массы, к которой приложены все внешние силы, и записывается в таком виде:

                                                       МА =.                                          

Примерами закона сохранения импульса могут служить отдача при стрельбе из огнестрельного оружия, реактивное движение, перемещение осьминогов и т.п.

Закон сохранения момента импульса

Запишем уравнение из которого выводился закон динамики вращательного движения твердого тела.

                                  ==,                

Левую часть этого уравнения можно представить по другому, т.к.
величину

[riaimi]=[=

называют изменением момента импульса (радиус ri внесен под знак дифференцирования, т.к. все точки вращаются по окружностям постоянного радиуса).  А так как мы уже записали, что [ri mi vi] = [ri pi] = Li , a cyмму  = L , то можно записать:

Если правая часть уравнения оказывается по каким - либо равной нулю - суммарный момент сил равен нулю, то  и L = constзакон сохранения момента импульса. Это случается, если система замкнута, т.е. внешние силы вообще не действуют, или если моменты внешних сил компенсируют друг друга.

Закон сохранения энергии

Полная механическая энергия системы материальных точек Е складывается из его кинетической энергии Т и потенциальной энергии U, т.е.

                                                          Е = Т + U

При движении точек внутри системы изменяются как скорости точек, так и их взаимное расположение. Пусть скорость произвольной точки ( i - точки ) изменяется под действием сил со стороны других точек. Полное изменение кинетической энергии i - точки в соответствии с выражением ( 6-15 ) определяется работой всех сил, действующих на эту точку - как внутренних так и внешних:

                                                            T i  = A i  

суммированием для всех точек системы, получим:

                                                      .                                             

Левая часть этого уравнения является  кинетической энергией всей системы, которую можно обозначить Т, а правая часть есть общая работа всех сил, которую
можно представить как сумму  трех слагаемых:

  1.  работы всех внутренних потенциальных сил     -    А внутр. пот ;
  2.  работы всех внутренних непотенциальных сил -    А внутр. непот ;
  3.  работы всех внешних сил    -    А внеш . При  этом надо учесть, что суммарная  работа всех внутренних потенциальных сил  с обратным знаком равна изменению потенциальной энергии системы  U. Поэтому равенство  ( 6-18 ) приобретает такой вид:  Т  =  - U  +  А внутр. непотен +  А внеш . Перенося  U  в левую часть этого равенства и замечая, что   Т  +  U  =  Е, получим:

                                          Е  =   А внутр. непотен +  А внеш .                               

данное выражение представляет собой закон изменения механической энергии:

изменение полной механической энергии системы материальных точек за некоторый промежуток времени равно суммарной работе всех внутренних непотенциальных и всех внешних сил за этот промежуток времени.

Если система замкнута, т.е. на нее не действуют никакие внешние силы или сумма всех внешних сил равна нулю, а все внутренние силы являются потенциальными, то Е = 0, и выражение

                                                      Е = Т + U = const                                       

представляет собой закон сохранения полной механической энергии.


 

А также другие работы, которые могут Вас заинтересовать

41187. Тонкие пленки наносимые в вакууме 222 KB
  Таким образом при нанесении тонких пленок одновременно протекают три основных процесса: генерация направленного потока частиц осаждаемого вещества пролет частиц в вакуумном пространстве от их источника к обрабатываемой поверхности осаждение конденсация частиц на поверхности с образованием тонкопленочных слоев. Метод термического испарения основан на нагреве веществ в специальных испарителях до температуры при которой начинается заметный процесс испарения и последующей конденсации паров вещества в виде тонких пленок на обрабатываемых...
41189. Разработка и принятие управленческих решений 86 KB
  Принятие решений это организационный связующий процесс. Если коммуникации своего рода стержень пронизывающий любую деятельность в организации то принятие решений это центр вокруг которого вращается жизнь организации.1 По поводу разработки и принятия решений в менеджменте ведутся продолжительные споры между специалистами.
41190. Учет обязательств МСФО 114 KB
  Определение обязательства Обязательства настоящая задолженность предприятия которая возникает вследствие прошедших событий и погашение которой как ожидается приведет к убытию ресурсов с предприятия которые воплощают в себе будущие экономические выгоды. Обязательства это обязанность или ответственность действовать или поступать определенным образом. Обязательства могут иметь юридическую силу вследствие контрактных обязательств или законодательных требований. Но обязательства также возникают в результате ежедневной деловой практики...
41191. Теплообмен излучением 390 KB
  Природа теплового излучения Излучение это перенос энергии при помощи электромагнитных волн испускаемых излучаемым телом. Последние проявляются в том что испускание и поглощение энергии излучения осуществляется отдельными порциями фотонами света или квантами. Каждое конкретное тело обладает своим спектром излучения с соответствующим распределением электромагнитного излучения по длинам волн. Твердые тела и жидкости как правило имеют непрерывный спектр излучения
41192. Нанесение пленок методом ионного распыления 105 KB
  Принцип действия устройств ионного распыления основан на таких физических явлениях как ионизация частиц газа тлеющий разряд в вакууме и распыление веществ бомбардировкой ускоренными ионами. Таким образом плазма тлеющего разряда является генератором ионов необходимых для эффективной бомбардировки катода и его распыления. Схема ионного распыления Показателем эффективности процесса ионного распыления является коэффициент распыления который выражается числом удаленных частиц распыляемого вещества приходящихся на один бомбардирующий ион и...
41193. Учет собственного капитала за МСФО 139.5 KB
  Бухгалтерский учет капитала в простых товариществах очень похож на учет при единоличном владении. Основное отличие заключается в том что необходимо вести учет по счетам вложения и изъятия капитала каждого из партнеров и распределять между ними прибыли и убытки. В разделе балансового отчета Капитал партнеров необходимо отдельно показывать сальдо по каждому счету. Главное отличие бухгалтерского учета в акционерных обществах от учета в единоличных хозяйствах и товариществах заключается в учете капитала.
41194. Закон Кирхгофа 1.34 MB
  Плотности потока собственного излучения серого и абсолютно черного тел; их поглощательные способности; температуры тел. Рассмотрим случай равновесного излучения когда . расход энергии излучения равен ее приходу. Отношение плотности потока собственного излучения тела к его поглощательной способности одинаково для всех серых тел и равно плотности потока собственного излучения абсолютно черного тела при той же температуре.
41195. КОНТРОЛЬ ПАРАМЕТРОВ ПЛЕНОК И ТЕХНОЛОГИЧЕСКИХ РЕЖИМОВ ИХ НАНЕСЕНИЯ 143.5 KB
  Наиболее важен контроль в камере так как в зависимости от его результатов регулируются режимы процесса роста пленки что позволяет устранить операции подгонки ее параметров после нанесения. Метод микровзвешивания в основном используемый в производстве гибридных ИМС состоит в определении приращения массы Δm подложки после нанесения на нее пленки. При этом среднюю толщину пленки определяют по формуле: где площадь пленки на подложке; удельная масса нанесенного вещества. При измерении толщины пленки взвешиванием считают что плотность...