55882

Поляризация световых волн

Лекция

Педагогика и дидактика

Степенью поляризации называется величина 31 где Imx и Imin – соответственно максимальная и минимальная интенсивности частично поляризованного света пропускаемого поляризатором. Для естественного света Imx=Imin и P = 0 для плоскополяризованного Imin= 0 и P = 1.

Русский

2014-03-30

537 KB

2 чел.

ЛЕКЦИЯ  № 3

9. Поляризация световых волн

– поляризованная и неполяризованная волны;

световая волна – колебания светового вектора (вектора напряженности электрического поля).

-  неполяризованная световая волна – естественный свет.

Свет, в котором колебания светового вектора каким-либо образом упорядочены, называется поляризованным.

Плоскость поляризации – плоскость, в которой совершает колебания световой вектор (вектор напряженности электрического поля).

– устройство «поляризатор».

Степенью поляризации называется величина

                                      (3-1)

где Imax и Imin – соответственно максимальная и минимальная интенсивности частично поляризованного света, пропускаемого поляризатором. Для естественного света Imax=Imin и P = 0, для плоскополяризованного Imin= 0 и P = 1.

Поляризация волн при отражении и преломлении:

При падении луча света на границу раздела двух сред с разными показателями преломления происходит частичное отражение и преломление света. Кроме этого отраженный и преломленный лучи оказываются частично поляризованными.

При изменении угла падения степень поляризации лучей изменяется.

При определенном угле падения (угол Брюстера), при котором угол между отраженным и преломленным лучами становится равным 90, отраженный луч оказывается 100% поляризованным в плоскости перпендикулярной плоскости падения, а поляризация преломленного луча достигает максимального значения.

Тогда из закона преломления света следует:

    (3-2)

закон Брюстера.

У большинства прозрачных кристаллов существует плоскость (плоскость пропускания кристалла), пропускающая колебания только определенного направления и полностью задерживающая колебания, перпендикулярные этой плоскости.

Из природных кристаллов, давно используемых в качестве поляризатора, следует отметить турмалин.

            (3-3)

закон Малюса

естественный свет:

,   но   .

тогда .

                                  П                            А

поглощение

     (3-3а)

Двойное лучепреломление

Большинство прозрачных кристаллов обладают способностью двойного лучепреломления, т.е. раздваивания каждого подающего на них светового пучка. Это явление, впервые обнаруженное датским ученым Э. Бартолином в 1669 г. для исландского шпата (разновидность кальцита CaCO3), объясняется особенностями распространения света в анизотропных средах и непосредственно вытекает из уравнений Максвелла.

Если на такой кристалл направить узкий пучок света, то из кристалла выйдут два пространственно разделенных луча, параллельных друг другу и падающему лучу. Даже в том случае, когда первичный пучок падает на кристалл нормально, преломленный пучок разделяется на два, причем один из них является продолжением первичного, а второй отклоняется.

В основу работы поляризационных приспособлений, служащих для получения поляризованного света, лежит явление двойного лучепреломления. Наиболее часто для этого применяют призмы и поляроиды.

Поляризационные призмы построены по принципу полного отражения одного из лучей (например, обыкновенного) от границы раздела, в то время как другой луч с другим показателем преломления проходит через эту границу. Типичным представителем поляризационных призм является призма Николя (николь).

Двоякопреломляющие кристаллы обладают свойством дихроизма, т.е. различного поглощения света в зависимости от ориентации электрического вектора световой волны, и называются дихроичными кристаллами.

Дихроичные кристаллы приобрели еще более важное значение в связи с изобретением поляроидов.

Примером поляроида может служить тонкая пленка из целлулоида, в которую вкраплены кристаллы двоякопреломляющего вещества с сильно выраженным дихроизмом. Такая пленка уже при толщине 0,1 мм полностью поглощает обыкновенные лучи видимой области спектра, являясь в таком тонком слое совершенным поляризатором. Преимущество поляроидов перед призмами – возможность изготовлять их с площадями поверхностей до нескольких квадратных метров.

Пленки на фарах и лобовых стеклах автомобилей!

Искусственная оптическая анизотропия

ячейка Керра (оптический затвор)

Вращение плоскости поляризации 

Оптически активные вещества:

кристалл (кварц)   = d,  = const.

раствор сахара   = Cd, = const;

  C – концентрация.

Явление поляризации света и особенности взаимодействия поляризованного света с веществом нашли исключительно широкое применение в научных исследованиях кристаллохимической и магнитной структуры твёрдых тел, оптические свойства кристаллов, природы состояний, ответственных за оптические переходы, структуры биологических объектов, характера поведения газообразных, жидких и твёрдых тел в полях анизотропных возмущений (электрическом, магнитном, световом и пр.), а также для получения информации о труднодоступных объектах (в частности, в астрофизике).

Поляризованный свет широко используется во многих областях техники, напр. при необходимости плавной регулировки интенсивности светового пучка (закон Малюса), при исследованиях напряжений в прозрачных средах (поляризационно-оптический метод исследования), для увеличения контраста и ликвидации световых бликов в фотографии, при создании светофильтров, модуляторов излучения и пр.

PAGE   \* MERGEFORMAT9


n1

n2

B

90

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

I0

I1 =  EMBED Equation.DSMT4  

2 = EMBED Equation.DSMT4  

e

I0

I1

I2

oe

o  обыкновенный луч

e  необыкновенный луч

I0

I1

I2

N1

N2

o

o

e

e

П

Электрическое поле

EMBED Equation.DSMT4  

А

d


 

А также другие работы, которые могут Вас заинтересовать

40803. Сущность операторного метода 83.67 KB
  В результате этого производные и интегралы от оригиналов заменяются алгебраическими функциями от соответствующих изображений дифференцирование заменяется умножением на оператор р а интегрирование – делением на него что в свою очередь определяет переход от системы интегродифференциальных уравнений к системе алгебраических уравнений относительно изображений искомых переменных. Изображения типовых функций Оригинал А Изображение Некоторые свойства изображений Изображение суммы функций равно сумме изображений слагаемых: . Законы...
40804. Применение кривых второго порядка в компьютерных системах 158 KB
  Программа для построения графиков является наукой, но простой в использовании. Она позволяет создавать анимированные 3D графики уравнений в табличных данных. В одной системе координат может быть неограниченное количество графиков, каждый из которых может отображаться при помощи точек, линий и поверхностей.
40805. Частотный (спектральный) метод анализа электрических цепей 67.46 KB
  Поскольку частотные характеристики являются характеристиками установившегося режима гармонических колебаний то целесообразно произвольное воздействие представить в виде совокупности гармонических и реакцию линейной цепи искать как совокупность реакций вызванных каждым гармоническим воздействием в отдельности. Таким образом частотный метод анализа включает в себя задачу частотного или спектрального представления воздействия в виде суммы гармонических составляющих с определенными амплитудами начальными фазами и частотами а также задачу...
40806. Цепи с распределенными параметрами 65.82 KB
  Однако на практике часто приходится иметь дело с цепями линии электропередачи передачи информации обмотки электрических машин и аппаратов и т. уже при к линии следует подходить как к цепи с распределенными параметрами. Для исследования процессов в цепи с распределенными параметрами другое название – длинная линия введем дополнительное условие о равномерности распределения вдоль линии ее параметров: индуктивности сопротивления емкости и проводимости. Уравнения однородной линии в стационарном режиме Под первичными параметрами линии...
40807. Линии без искажений 80.64 KB
  Пусть сигнал который требуется передать без искажений по линии является периодическим т. Таким образом для отсутствия искажений что очень важно например в линиях передачи информации необходимо чтобы все гармоники распространялись с одинаковой скоростью и одинаковым затуханием поскольку только в этом случае сложившись они образуют в конце линии сигнал подобный входному. Однако искажения могут отсутствовать и в линии с потерями.
40808. Переходные процессы в цепях с распределенными параметрами 63.07 KB
  Пример такого сведения на основе принципа наложения для задачи на подключение в конце линии нагрузки схематично иллюстрирует рис. Таким образом если к линии в общем случае заряженной подключается некоторый в общем случае активный двухполюсник то для нахождения возникающих волн необходимо определить напряжение на разомкнутых контактах ключа рубильника после чего рассчитать токи и напряжения в схеме с сосредоточенными параметрами включаемой на это напряжение при нулевых начальных условиях. При отключении нагрузки или участков линии для...
40809. Нелинейные электрические цепи 59.57 KB
  Нелинейными называются цепи в состав которых входит хотя бы один нелинейный элемент. полюсов с помощью которых они подсоединяются к электрической цепи. Нелинейные электрические цепи постоянного тока Нелинейные свойства таких цепей определяет наличие в них нелинейных резисторов.
40810. Расчет нелинейных электрических цепей 63.85 KB
  Если в сложной электрической цепи имеется одна ветвь с нелинейным резистором то определение тока в ней можно проводить на основе теоремы об активном двухполюснике методом эквивалентного генератора. Ветвь содержащая нелинейный резистор выделяется из исходной цепи а вся остальная уже линейная схема представляется в виде активного двухполюсника АД. Если необходимо также найти токи в линейной части исходной цепи то после расчета нелинейной схемы на рис. 1б в соответствии с теоремой о компенсации нелинейный резистор заменяется...
40811. Магнитные нелинейные электрические цепи 57.18 KB
  Для концентрации магнитного поля и придания ему желаемой конфигурации отдельные части электротехнических устройств выполняются из ферромагнитных материалов. Векторные величины характеризующие магнитное поле Наименование Обозначение Единицы измерения Определение Вектор магнитной индукции Тл тесла Векторная величина характеризующая силовое действие магнитного поля на ток по закону Ампера Вектор намагниченности А м Магнитный момент единицы объема вещества Вектор напряженности магнитного поля А м где Гн м магнитная постоянная Основные...