5593

Измерение расстояния по времени прохождения сигнала

Контрольная

Коммуникация, связь, радиоэлектроника и цифровые приборы

Измерение расстояния по времени прохождения сигнала Рассмотрим три метода измерения расстояния, основанные на определении времени прохождения сигнала между объектом и приемником. Два из них - лазерные, один - ультразвуковой. Первый метод...

Русский

2012-12-15

416 KB

46 чел.

Измерение расстояния по времени прохождения сигнала

Рассмотрим три метода измерения расстояния, основанные на определении времени прохождения сигнала между объектом и приемником. Два из них – лазерные, один – ультразвуковой.

Первый метод – измеряется время, в течение которого посланный вдоль оси световой импульс возвращается вдоль той же оси от отражающей поверхности. Расстояние до объекта определяется по формуле , где Т – время прохождения сигнала и с – скорость света (0,3 м/нс). Частота отсчета должна быть 50 Гц для достижения точности измерения порядка мм.

      Лазерные измерители дают двухмерный массив со значениями, пропорциональными расстоянию. Двухмерное сканирование выполняется путем отклонения лазерного луча вращающимся зеркалом. Рабочая зона этого устройства находится в пределах 1-4 метра, точность мм.

      Во втором случае вместо импульсного светового сигнала используется непрерывный луч лазера и измеряется задержка (т.е. фазовый сдвиг) между посылаемыми и возвращенными лучами (рис. 21-1).

      Луч лазера с длиной волны  расщеплен на два луча. Один из них (опорный «луч отсчета») проходит расстояние L к фазометру, а другой проходит расстояние D до отражающей поверхности. Общее расстояние, пройденное отраженным лучом, составляет . Фазовый сдвиг между двумя лучами в точке измерения (рис. 21.1,б) возникает в случае, если отраженный луч проходит путь больший, чем исходящий. В этом случае имеем:

                                                    .                                        (21-1)

      Так как , подставив это значение в уравнение (21-1), получим:

                                                    ,                                          (21-2)

что определяет расстояние через фазовый сдвиг, если известна длина волны (632,8 нм у гелий-неонового лазера). При такой малой длине волны метод, схема которого показана на рис. 21.1, нецелесообразно применять в робототехнике из-за сложности определения малых фазовых смещений.

      Наиболее приемлемым решением является амплитудное модулирование лазерного луча волной с гораздо большей длиной, например, 30 метров (f=10 МГц) (рис. 21.2). Основная процедура остается прежней, но сигнал отсчета является теперь функцией модулирования. Модулированный лазерный сигнал посылается на объект, а возвращенный сигнал демодулируется и сравнивается с отсчетным сигналом для определения фазового сдвига.

Рисунок 21.1. Принцип измерения расстояния по фазовому сдвигу (а) и сдвиг между исходящей и отраженной световыми волнами (б)

Рисунок 21.2. Волновой сигнал, модулированный по амплитуде модулирующей функцией с гораздо большей длиной волны

      Равенство (21-2) все еще имеет силу, но теперь работа происходит в более удобном диапазоне длин волн.

      Третьим методом измерения является ультразвуковой метод, реализующим идею измерения расстояния по времени прохождения сигнала.

      Ультразвуковой сигнал передается за короткий промежуток времени и, так как скорость звука известна для определенной среды, простое вычисление, включающее интервал времени между посылаемым и отраженным сигналами, дает оценку расстояния до отражающей поверхности.

      Например, в ультразвуковой измерительной системе, выпускаемой фирмой Polaroid, сигнал длительностью 1 мс, состоящий их 56 импульсов четырех частот (50, 53, 57, 60 кГц), передается датчиком диаметром ~38 мм. Сигнал, отраженный объектом, улавливается тем же датчиком и, проходя через усилитель и схему индикации, способен измерять расстояние в диапазоне ~0,3-10 м с точностью до 2,5 см. Смешанные частоты сигнала используются для улучшения устойчивости сигнала. Отклонение в направленности этого прибора составляет ~30°. Ультразвуковые датчики применяются в робототехнике преимущественно в навигации и для обхода препятствий.

Очувствление в ближней зоне

      Датчики измерения в дальней зоне дают оценку расстояния между датчиком и отражающим объектом. Датчики измерения в ближней зоне обычно имеют дискретный пороговый сигнал, который определяет наличие объекта в пределах установленного пространства, например, при захвате объекта или при его обходе.

      Существует несколько методов очувствления в ближней зоне.

Индуктивные датчики

Индуктивные датчики – датчики, основанные на изменении индуктивности при взаимодействии с металлическим объектом, наиболее широко используются в промышленных роботах. Принцип работы этих датчиков можно объяснить по рис. 21.3. На рис.21.3,а представлена схема индуктивного датчика, который состоит из катушки, размещенной за постоянным магнитом в корпусе. Когда датчик приближается к ферромагнитному материалу, изменяется расположение силовых линий постоянного магнита (рис. 21.3,б и в). При отсутствии движения силовые линии не изменяются и, следовательно, в катушке ток не индуцируется. Изменение напряжения на выходе катушки обеспечивает эффективное очувствление в ближней зоне на расстояниях ~1 мм (рис. 21.4).

      Так как для получения выходного сигнала на датчике требуется наличие относительного движения датчика и объекта, одним из методов получения дискретного порогового сигнала является интегрирование выходного сигнала.

Рисунок 21-3. Индуктивный датчик (а), форма магнитных линий при отсутствии ферромагнетика (б) и при наличии ферромагнетика в зоне измерения датчика(в)

Рисунок 21.4. Зависимость выходного сигнала индуктивного датчика

от скорости

      Пороговый сигнал остается на нижнем уровне, пока значение интеграла остается ниже установленного порога. После превышения порога сигнал переходит на верхний уровень, что соответствует наличию объекта в зоне измерения.

Датчики Холла

      Эффект Холла связывает напряжение между двумя точками в проводнике или полупроводниковом материале в магнитном поле, воздействующим на этот материал. Используемые сами по себе датчики Холла могут уловить только намагниченные объекты. Однако, если их использовать вместе с постоянным магнитом (рис. 21.5), они способны установить наличие всех ферромагнитных материалов.

 

Рисунок 21.5. Работа датчика Холла (а), снабженного постоянным

магнитом (б)

      Датчики Холла основаны на возникновении силы Лоренца, действующей на заряженную частицу, движущуюся в магнитном поле. Эта сила направлена по оси, перпендикулярной плоскости, образованной направлением движения заряженной частицы и направлением поля. Сила Лоренца определяется как , где q – заряд; v – вектор скорости; В – вектор магнитного поля; а × - знак пересечения векторов. Предположим, что ток проходит через полупроводник  n-типа, который находится в магнитном поле (рис. 21.6). Поскольку электроны являются основными носителями в материалах n-типа, а движение дырочного тока противоположно потоку электронов, сила, действующая на движущиеся отрицательно заряженные частицы имеет направление, показанное на рис. 21.6. Эта сила действует на электроны, которые скапливаются в нижней части материала. При внесении ферромагнетика в зону действия датчика Холла напряженность магнитного поля увеличивается, а сила Лоренца уменьшается. На полупроводнике возникает падение напряжения.

Рисунок 21.6. Возникновение эффекта Холла

      Дискретный выходной сигнал, определяющий наличие объекта, реализуется пороговым ограничителем выходного напряжения датчика.

      В качестве чувствительного элемента используется кремний, имеющий ряд преимуществ: малые размеры, высокую чувствительность, устойчивость к влиянию электрических помех, возможность использования электронного усилителя и обработки сигналов непосредственно на датчике, уменьшая тем самым размеры и стоимость.

Лекция 22

Емкостные датчики

      Емкостные датчики обладают способностью обнаруживать все твердые и жидкие материалы. Как видно из названия, эти датчики основаны на изменении емкости, которая зависит от расстояния до поверхности объекта в зоне действия чувствительного элемента (рис.22.1).

      Существует ряд методов обнаружения в ближней зоне, основанный на изменении емкости:

  •  конденсатор представляет собой элемент колебательного контура, колебания в котором возникают только в том случае, если емкость датчика превышает заданное пороговое значение. Колебания преобразуются затем в выходное напряжение, которое указывает на присутствие объекта в зоне измерения. Этот метод обеспечивает дискретный выходной сигнал, переключение которого зависит от значения заданного порога;
  •  емкостной элемент в контуре, по которому постоянно проходит синусоидальный сигнал частоты. Изменение емкости вызывает фазовый сдвиг между сигналом эталонной частоты и сигналом от емкостного элемента. Фазовый сдвиг пропорционален изменению емкости и следовательно, может быть использован для обнаружения объекта в ближней зоне.

Рисунок 22.1. Емкостной датчик измерения в ближней зоне

На рис. 22.2 показано изменение емкости в зависимости от расстояния.

Рисунок 22.2. Зависимость процентного изменения емкости датчика

в ближней зоне от расстояния

      Форма характеристики зависит от материала объекта измерения. Обычно такие датчики работают  в дискретном пороговом режиме. Изменение емкости выше заданного порога Т соответствует наличию объекта, а ниже – его отсутствию в зоне, установленной величиной Т.

Ультразвуковые датчики

      Характеристики всех рассмотренных датчиков измерения в ближней зоне сильно зависят от материала объектов измерения. Эта зависимость может быть в значительной степени уменьшена  путем использования ультразвуковых датчиков (рис. 22.3).

Рисунок 22.3. Ультразвуковой датчик измерения в ближней зоне

      Основным элементом датчика является электроакустический преобразователь, в качестве которого часто используется пьезоэлектрический керамический элемент. Подложка из смолы защищает преобразователь от влажности, пыли и других внешних воздействий. Она служит также  как переходное акустическое сопротивление. Поскольку один и тот же преобразователь используется обычно как для передачи, так и для приема сигналов, для обнаружения объектов в ближней зоне необходимо быстрое демпфирование акустической энергии. Это достигается путем применения акустических поглотителей и развязкой преобразователя от корпуса. Конструкция корпуса позволяет получить узкий акустический поток, дающий мощный направленный сигнал.

      Для лучшего понимания работы ультразвукового датчика измерителя в ближней зоне надо провести анализ сигналов, используемых как для передачи, так и для приема акустической энергии (рис. 22.4).

Рисунок 22.4. Сигналы, используемые в ультразвуковом датчике измерения

в ближней зоне

Сигнал А является запорным сигналом, используемым для управления посылаемыми сигналами.

Сигнал   В содержит выходной и отраженный сигналы.

Сигнал С – выделяет сигналы передачи или приема. Для того, чтобы установить различие между посылаемыми и принимаемыми сигналами, вводятся временные окна (сигнал D). Временной интервал  является минимальным временем измерения, а - максимальным. Эти временные интервалы соответствуют прохождению определенных расстояний со скоростью распространения звука в используемой рабочей среде.

      После получения отраженного сигнала (в то время, когда сигнал D имеет максимальное значение), вырабатывается сигнал Е, величина которого принимает нулевое значение после окончания действия передающего импульса А.

Сигнал F вырабатывается при появлении положительного импульса Е и сбрасывается в случае отсутствия сигнала Е и появления импульса А.

      Таким образом, сигнал F будет иметь максимальное значение при наличии объекта на расстоянии, определяемом параметрами сигнала D, т.е. сигнал F является выходным сигналом ультразвукового датчика, работающего в бинарном режиме.

Оптические датчики измерения в ближней зоне

    Оптические датчики измерения в ближней зоне подобны ультразвуковым датчикам в том смысле, что они определяют близость объекта по его влиянию на волновой сигнал, проходящий от источника к приемнику. Один из наиболее распространенных методов измерения расстояния в ближней зоне с помощью оптических средств показан на рис. 22.5.

Рисунок 22.5. Оптический датчик измерения в ближней зоне

      Датчик состоит из светодиода, который выполняет роль источника инфракрасного излучения, и фотодиода, используемого в качестве приемника. Пучки света, сформированные оптическими системами источника и приемника в одной плоскости, пересекаются в вытянутой конусовидной зоне. Эта зона определяет рабочий диапазон датчика, так как отражающая поверхность, которая находится в зоне, освещается источником и одновременно «просматривается» приемником.

      Хотя данный метод в принципе похож на метод триангуляции, имеются и различия. Зона измерений (рис. 22.5) обеспечивает не только точечное измерение. Поверхность, находящаяся в любом месте указанной зоны, будет идентифицирована. Для объекта с известной ориентацией и характеристиками отражения можно осуществить калибровку интенсивности изображения в функции расстояния, однако обычно систему, приведенную на рис. 22.5, используют в режиме, при котором формируется дискретный выходной сигнал при достижении интенсивности отраженного светового потока определенного порогового значения.

Лекция 23

Тактильные датчики

      Тактильные датчики используются в робототехнике для получения информации о контакте манипулятора с объектами в рабочем пространстве. Тактильная информация может использоваться, например,  для определения местоположения объекта или его распознавания, а также для управления усилием захватного устройства, воздействующего на объект манипулирования.

      Тактильные датчики подразделяются на два основных типа: дискретные и аналоговые. Дискретные датчики, как правило, срабатывают при наличии или отсутствии объекта, в то время как выходной сигнал аналоговых датчиков пропорционален прикладываемому усилию.

Дискретные пороговые датчики

      Дискретные тактильные датчики являются контактными приборами типа микропереключателей. В простейшем случае переключатель размещен на внутренней поверхности каждого пальца манипулятора (рис. 23.1).

Рисунок 23.1. Простой схват робота с бинарными тактильными датчиками

      Этот вариант очувствления используется для определения наличия детали между пальцами схвата. Перемещая манипулятор над объектом и последовательно производя контактирование с его поверхностью, можно также осуществить центрирование манипулятора относительно объекта для его схвата и переноса.

      Путем размещения нескольких дискретных тактильных датчиков на внутренней поверхности каждого пальца схвата достигается расширение получаемого объема информации. Кроме того, они часто ставятся на внешней поверхности конечного звена манипулятора для получения управляющих сигналов, используемых при формировании траектории движения манипулятора в рабочем пространстве («ощупывание»).

Аналоговые датчики

      Аналоговый тактильный датчик является регистрирующим прибором, выходной сигнал которого пропорционален прикладываемой силе. Простейший из таких приборов состоит из подпружиненного стержня (рис. 23.2), который механически связан с вращающейся осью.

Рисунок 23.2. Типичный аналоговый тактильный датчик

      Горизонтальная сила, действующая на стержень, преобразуется в пропорциональный поворот оси. Этот поворот непрерывно измеряется с помощью потенциометра или кодовым устройством с дискретным выходом. При известной жесткости пружины сила соответствует указанному перемещению.

      Для увеличения объема информации о процессе взаимодействия робота с объектом на схвате робота размещают матрицы тактильных датчиков, параметры которых меняются в зависимости от давления («графитовые столбики») (рис. 23.3).

Рисунок 23.3. Схват робота, оснащенный матрицами тактильных датчиков

      В таких устройствах, обычно называемых «искусственной кожей», давление от объекта вызывает соответствующие деформации, которые измеряются как непрерывно меняющееся сопротивление. Изменение сопротивления легко преобразуется в электрический сигнал, амплитуда которого пропорциональна силе, действующей на соответствующую точку поверхности матрицы.

      Рассмотренные тактильные датчики измеряют силы, перпендикулярные к чувствительной поверхности датчика. Определение проскальзывания путем измерения тангенциального движения является другой важной задачей тактильного очувствления. Датчик для определения проскальзывания включает свободно вращающийся зубчатый шар, который отклоняет тонкий стержень, установленный на оси проводящего диска (рис. 23.4). Под диском равномерно расположены электрические контакты. Вращение шара, вызванное проскальзыванием по нему объекта, приводит к вибрации стержня и диска с частотой, пропорциональной скорости вращения шара. От направления вращения зависит, какой контакт будет задействован вибрирующим диском. Усредненное направление проскальзывания определяется по импульсам в соответствующих выходных электрических контурах.

Рисунок 23.4. Устройство для определения величины и направления проскальзывания

Силомоментное очувствление

      Силомоментные датчики используются в основном для определения сил реакции, возникающих при механической сборке. Основные методы в этой области направлены на очувствление сочленений и схвата робота.

      Датчик сочленения измеряет в декартовых координатах силы и моменты, которые действуют на робот, и производит их векторное сложение. Для сочленения, перемещаемого с помощью двигателя постоянного тока, очувствление производится простым измерением тока якоря.

      Датчики схвата размещаются между конечным звеном манипулятора и схватом. Они состоят из измерителей напряжений, которые определяют отклонение механической системы под действием внешних сил.

Элементы датчика схвата, встроенного в запястье

      Датчики представляют собой небольшие, чувствительные, легкие (~370 грамм) и относительно компактные конструкции диаметром 10 см и толщиной 3 см с динамическим диапазоном до 90 кг. Для уменьшения гистерезиса и увеличения точности измерения датчик обычно выполняют из одной твердой металлической заготовки (как правило, алюминиевой).

Рисунок 23.5. Силовой датчик схвата, встроеный в запястье

       Например, датчик, показанный на рис. 23.5, содержит восемь пар полупроводниковых измерителей механических напряжений, установленных на четырех отклоняющихся стержнях – по одному измерителю на каждой стророне стержня. Дифференциальное включение измерителей обеспечивает автоматическую компенсацию изменений температуры. Это первичная грубая компенсация. Так как восемь пар измерителей напряжения расположены нормально к осям  х,  у  и  z системы координат сил, три компоненты силы F и три компоненты момента М могут быть определены соответствующим сложением или вычитанием выходных напряжений (токая компенсация). Важно, чтобы движения в схвате, производимые силовыми датчиками, не влияли на точность позиционирования манипулятора.

      Требования к датчикам:

  1.  Высокая жесткость. Частота собственных колебаний механического устройства связана с его жесткостью, следовательно, высокая жесткость обеспечивает быстрое демпфирование возникающих колебаний при измерении сил и точность показаний на коротких временных интервалах. Это снижает величину отклонений от действия сил и моментов, которая может привести к ошибке позиционирования манипулятора.
  2.  Компактность конструкции.  Это позволяет облегчить движение манипулятора в условиях навала деталей, а также уменьшить вероятность столкновения датчика с объектами, находящимися в рабочем пространстве. Компактный датчик  можно размещать ближе к расположенному в схвате технологическому оборудованию, благодаря чему уменьшается ошибка позиционирования оборудования из-за неадекватности рабочих условий оборудования и датчика. Желательно расширить диапазон измерения сил и моментов. Этому способствует минимизация расстояния между манипулятором и датчиком, приводящая к уменьшению величины рычага прикладываемых к манипулятору сил.
  3.  Линейность. Хорошая линейность выхода чувствительных элементов от прикладываемых сил и моментов позволяет выделить силы и моменты с помощью простых матричных операций. Упрощается процесс калибровки датчика силы.
  4.  Малые величины гистерезиса и внутреннего трения. Внутреннее трение уменьшает чувствительность измерительных элементов. Это также уменьшает гистерезисные эффекты при возвращении измерительного прибора в исходное положение.

Выделение сил и моментов

      Предположим, что взаимовлияние различных измерителей пренебрежимо мало, силовой датчик схвата работает в диапазоне упругих деформаций и измерители напряжения дают показания, которые линейно зависят от их отклонения. Тогда датчик выдает восемь рядов измерений, которые должны быть обработаны программным путем на ЭВМ с использованием простого метода выделения трех ортогональных компонент сил и моментов относительно системы координат датчика силы. Такая обработка может быть реализована путем определения матрицы размерностью 6×8, называемой матрицей разделения силы (или матрицей калибровки датчика) , которая составляется на основе измерений силы для выделения трех ортогональных компонент силы и момента. Вектор силы, направленный вдоль координатных осей датчика силы:

                                                       ,                                       (23-1)

где ,

     ,

и                                            .                                       (23-2)

     В выражении (23-2) - являются членами, требующими преобразования ряда измерений W (в вольтах) в силы и моменты (в ньютонах и ньютонах  на метр соответственно).

      Для датчика, представленного на рис. 23.5 матрица разделения силы по уравнению (23-2) примет вид:

                            .                               (23-3)

      Погрешность измерения сил и моментов достигает 5 %. Недостатком  использования силового датчика схвата, встроенного в запястье, является то, что он обеспечивает измерение векторов силы, разделяемых в процессе контакта элементов при сборке только в одной точке.

Лекция 24

Системы технического зрения

      Техническое зрение играет решающую роль в информационном обеспечении робота. Зрение робота можно определить как процесс выделения, идентификации и преобразования информации, полученной из трехмерных изображений. Этот процесс, называемый техническим или машинным зрением, делится на 6 основных этапов: 1) снятие информации; 2) предварительная обработка информации; 3) сегментация; 4) описание; 5) распознавание; 6) интерпретация.

      Снятие информации – процесс получения визуального изображения.

      Предварительная обработка информации заключается в использовании таких методов, как понижение шума или улучшение изображения отдельных деталей.

      Сегментация – процесс выделения на изображении интересующих объектов.

      Описание – определение главных параметров (размер, форма).

      Распознавание – процесс идентификации объектов (например, гаечного ключа, болта, шайбы и т.п.).

      Интерпретация – выявление принадлежности к группе распознаваемых объектов.

      Выделяют три уровня технического зрения: низкий, средний, высокий.

      Низкий уровень – процесс, являющийся простым с точки зрения осуществления автоматических действий, не трбующий наличия искусственного интеллекта. К низкому уровню технического зрения относится снятие и предварительная обработка информации. Этот уровень охватывает процессы, начиная непосредственно от формирования изображения и кончая процессами компенсации (уменьшение шума, выделение простейших параметров изображения, например, разрыва интенсивности).

      Средний уровень содержит процессы выделения, идентификации и разметки элементов изображения, полученного на нижнем уровне. К ним относится сегментация, описание и распознавание отдельных объектов.

      Высокий уровень содержит процессы, относящиеся к искусственному интеллекту. В то время, как алгоритмы, используемые на нижнем и среднем уровнях технического зрения, разработаны достаточно хорошо, знания о процессах высокого уровня еще недостаточны. Это приводит к введению ограничений и предположений для уменьшения сложности задач.

      Техническое зрение отражает трехмерное пространство, используя его плоское изображение. Объемную информацию получают с помощью специальных методов: метода структурного освещения и метода стереоизображения.

Получение  изображения

      Визуальная информация преобразуется в электрические сигналы с помощью видеодатчиков. После пространственной дискретизации и квантования по амплитуде эти сигналы дают цифровое изображение. Рассмотрим основные методы получения изображения при использовании технического зрения в роботах, влияние дискретизации на пространственное разделение и влияние квантования по амплитуде на разделение по интенсивности.

      Основными устройствами, используемыми в техническом зрении роботов, являются телевизионные камеры на основе видиконов или твердотельными  приборами с зарядовой связью (ПЗС).

      Видикон  представляет собой цилиндрическую трубку, содержащую с одного конца электронную пушку,   а с другого – экран и мишень (рис. 24.1). Электронный луч фокусируется и отклоняется с помощью напряжения, прикладываемого к катушкам. Отклоняющий контур обеспечивает сканирование луча по внутренней поверхности мишени для «считывания» изображения. Внутренняя поверхность стеклянного экрана покрыта прозрачной металлической пленкой, которая образует электрод, формирующий электрический видеосигнал. На металлическую пленку нанесен  тонкий фоточувствительный слой мишени, состоящий из мелких шаровидных частиц, сопротивление которых обратно пропорционально интенсивности светового потока. За фоточувствительной мишенью расположена положительно заряженная тонкая проволочная решетка, которая тормозит электроны, испускаемые пушкой, так что они попадают на мишень со скоростью, близкой к нулю.

Рисунок 24.1. Схема трубки видикона (а) и сканирование

электронным  лучом (б)

      В нормальном режиме на металлическое покрытие экрана подается положительный потенциал. При отсутствии света фоточувствительный материал ведет себя как диэлектрик, так как потенциал на внутренней поверхности мишени, вызываемый электронным лучом, компенсируется положительным зарядом на металлическом покрытии. Когда на поверхностный слой мишени попадает свет, его сопротивление падает и появляется электрический ток, нейтрализующий положительный заряд. Величина тока пропорциональна числу перемещающихся электронов и, следовательно, интенсивности светового потока. Это изменение тока после его обработки в электронном блоке формирует видеосигнал.

      Частота сканирования, принятая в системах технического зрения, 30 раз в секунду. Полный объем сканирования (кадр)  состоит из 525 линий, 480 из которых содержат информацию об изображении. Для повышения четкости изображения сканируют полукадры (262,5 линии) с удвоенной скоростью (60 раз в секунду).

      Устройства ПЗС подразделяются на два типа:

  •  датчики линейного сканирования;
  •  датчики с плоскостной  структурой.

      Основной частью ПЗС-датчиков является ряд кремниевых чувствительных элементов, называемых фотоячейками. Фотоны от отображаемого объекта проходят через входную прозрачную поликристаллическую кремниевую структуру и абсорбируются в кристаллах кремния, образуя пары «электрон-дырка». Полученные фотоэлектроны собираются на фотоячейках, при этом величина заряда на каждой фотоячейке пропорциональна соответствующей интенсивности светового потока. Типичный датчик линейного сканирования (рис. 24.2) состоит из ряда фоточувствительных элементов, из двух шин, используемых для передачи содержимого с фоточувствительных элементов в транспортные регистры, а также из выходной шины, служащей для передачи содержимого из транспортных регистров на усилитель. На выходе усилителя формируется сигнал напряжения, величина которого пропорциональна содержимому фотоячеек.

Рисунок 24.2. ПЗС-датчик линейного сканирования

      ПЗС-датчики с плоскостной структурой аналогичны датчикам линейного сканирования с тем отличием, что в них фотоячейки расположены в форме матрицы, а между рядами фотоячеек имеется комбинация переходных транспортных регистров (рис. 24.3).

      Датчики линейного сканирования имеют от 256 до 2048 фотоэлементов. Датчики с плоскостной структурой имеют от 32×32 до 1024×1024 элемента и больше.

Рисунок 24.3. ПЗС-датчик с плоскостной структурой

      Обозначим через  двумерное изображение (рис. 24.4)., получаемое телевизионной камерой или другим устройством, дающим изображение.

Рисунок 24.4. Обозначения координат при описании изображения

      Здесь  х  и  у  – пространственные координаты (т.е. координаты плоскости изображения), а величина f  в произвольной точке (х, у) пропорциональная яркости (интенсивности) изображения в этой точке.

      Предположим, что непрерывное изображение дискретизировано равномерно на  N рядов  и  M  столбцов, причем каждая дискретная величина проквантована по интенсивности. Такая система, называемая цифровым изображением, может быть представлена в виде:

                          ,             (24-1)

где х и у теперь дискретные переменные:

                               ;   .

      Каждый элемент системы называется элементом изображения, элементом картинки или пикселом.  В соответствии с рис. 24.4 можно отметить, что является пикселом начала координат изображения, - правый от него пиксел и т. д.

      Например, изображение дискретизировано в систему пикселов размером  N×M  с  N=512, интенсивность каждого пиксела квантована по одному из 256 дискретных уровней. Для получения качественной черно-белой телевизионной картинки требуется 512×512 пикселов со 128 уровнями интенсивности. Приемлемая структура технического зрения должна иметь как минимум разрешающую способность 256×256 пикселов с 64 уровнями интенсивности.

 

Лекция 25

Методы освещения

      В системах технического зрения используются 4 основных схемы освещения:

  •   метод рассеянного освещения (для объектов с гладкими поверхностями правильной формы) (рис. 25.1,а);
  •  теневое освещение (рис. 25.1, б) дает черно-белое (дискретное) изображение;
  •  метод структурного освещения (25.1, в) заключается в проецировании на рабочую поверхность световых точек, полос или решеток;
  •  метод направленного освещения (рис. 25.1, г) используется в основном для обследования объекта (обнаружение трещин, впадин и пр.).

Рисунок 25.1. Четыре основные схемы освещения

      Метод структурного освещения имеет два важных преимущества перед другими. Первое преимущество заключается в упрощении задачи нахождения объекта за счет подачи в рабочее пространство известного светового рисунка, по искажению которого определяется наличие объекта. Второе преимущество – возможность получения пространственных характеристик объекта по анализу формы искажений светового рисунка.

Стереоизображение

      При необходимости получения глубины изображения используют стереоизображение. Стереоизображение включает два отдельных вида изображаемого объекта (рис. 25.2), например пространственной точки w.

Рисунок 25.2. Схема получения стереоизображения

      Расстояние между центрами двух линз называется базовой линией. Требуется определить координаты (X, Y, Z) точки w, заданной точками ее изображения   и .  Предполагается, что камеры идентичны и системы координат обеих камер полностью совпадают, отличаясь только расположением их начал.

      Допустим, что первая камера совмещена с декартовой системой координат(рис. 25.3).

Рисунок 25.3. Вид сверху на рис. 25.2 при совмещении первой камеры

с декартовой системой координат

      Тогда точка w лежит на линии с координатами:

                                                ,                                         (25-1)

где индексы у X  и  Z обозначают, что к началу декартовой системы координат передвинута первая камера, а вторая камера и точка w также переместятся в этой системе. При этом сохраняется относительное расположение элементов системы, показанное на рис. 25.1. Если вместо этого  к началу декартовой системы координат передвинута вторая камера, то точка w лежит  на линии с координатами:

                                                 .                                        (25-2)

      Однако благодаря наличию расстояния между камерами и тому, что координаты  Z  точки w одинаковы в обеих системах координат камер, имеем:

                                                                                               (25-3)

и                                                   ,                                            (25-4)

где В –базовая линия.

      Подставляя уравнения (25-3) и (25-4) в уравнения  (25-1) и (25-2), получим:

                                                                                  (25-5)

и                                              .                                        (25-6)

      Вычитая уравнение (25-6) из уравнения (25-5) и решая его относительно Z, получим:

                                                  .                                       (25-7)

      Отсюда видно, что координата Z точки w легко вычисляется при известной разности между соответствующими координатами  и   изображения, а также значений базовой линии и фокусного расстояния.

Системы технического зрения высокого уровня

      Системы технического зрения можно отнести к классу «интеллектуальных» машин, если они обладают следующими признаками «интеллектуального поведения»:

  1.  возможностью выделения существенной информации из множества независимых признаков;
  2.  способностью к обучению на примерах и обобщению этих знаний с целью их применения в новых ситуациях;
  3.  возможностью восстановления событий по неполной информации;
  4.  способностью определять цели и формулировать планы для достижения этих целей.

      В основе технического зрения лежит  аналитическая формализация, направленная на решение конкретных задач, связанных с задачами сегментации, описания и распознавания отдельных объектов.

Сегментация

      Сегментацией называется процесс подразделения сцены на составляющие части или объекты. Сегментация является одним из основных элементов работы автоматизированной системы технического зрения, так как именно на этой стадии обработки объекты выделяются из сцены для дальнейшего распознавания и анализа. Алгоритмы сегментации основываются на двух фундаментальных принципах: разрывности и подобии.

      В первом случае основной подход базируется на определении контуров, а во втором – на определении порогового уровня и расширении области. Эти понятия применимы как к статическим, так и к динамическим (зависящим от времени) сценам.

Проведение контуров и определение границ

   Основой проведения контуров является определение разрывов в интенсивности представления образа объекта. В идеальном случае эти методы определяют пикселы, лежащие на границе между объектом и фоном. На практике данный ряд пикселов редко полностью характеризует границу из-за шума, разрывов на границе вследствие неравномерности освещенности и других эффектов, приводящих к размытию изображения. Таким образом, алгоритмы обнаружения контуров сопровождаются процедурами построения границ объектов из соответствующих последовательностей пикселов, например, методом локального анализа.

      Локальный анализ. Одним из наиболее простых подходов соединения точек контура является анализ характеристик пикселов в небольшой окрестности (например, в окрестности размером 3×3 или 5×5) каждой точки (х, у) образа, который уже подвергся процедуре обнаружения контура. Все точки, являющиеся подобными, соединяются, образуя границу из пикселов, обладающих некоторыми общими свойствами.

      Для установления подобия пикселов контура необходимо определить:

  1.  величину градиента, требуемого для построения контурного пиксела;
  2.  направление градиента.

      Первая характеристика обозначается величиной . Пиксел контура с координатами  подобен по величине в определенной ранее окрестности  пикселу с координатами , если справедливо неравенство:

                                  ,                  (25-8)

где Т – пороговое значение.

      Направление градиента устанавливается по углу вектора градиента:

                                                   ,                                      (25-9)

где - угол (относительно оси х), вдоль которого скорость изменения имеет наибольшее значение.

      Тогда можно сказать, что угол пиксела контура с координатами  в некоторой окрестности  подобен углу пиксела с координатами  при выполнении следующего неравенства:

                                                         ,                                      (25-10)

где А – пороговое значение угла.

      Основываясь на этих предположениях, мы соединяем точку в некоторой окрестности  с пикселом, имеющим координаты , если удовлетворяются критерии по величине и направлению. Двигаясь от пиксела к пикселу и представляя каждую присоединяемую точку как центр окрестности, процесс повторяется для каждой точки образа. Так воссоздается контур объекта.


 

А также другие работы, которые могут Вас заинтересовать

40742. Організація роботи менеджера 244.83 KB
  Джерело світла повинно розташовуватися так щоб світло не сліпило очі. Найкраще щоб джерело світла знаходилося ліворуч. Джерело світла повинно розташовуватися так щоб світло не сліпило очі відбиваючись від блискучої поверхні стола. Раціональне розміщення робочих місць стосовно джерела світла.
40743. Налично-денежный оборот и денежное обращение 62.13 KB
  Наличный денежный оборот непрерывный процесс движения наличных денег в форме банкнот банковских билетов казначейских билетов металлических монет. Наличный оборот начинается с указания ЦБ о переводе наличных денег которое передается РКЦ из резервных фондов в оборотные кассы из которых наличные деньги направляются в операционные кассы кредитных организаций банков. Эмиссию наличных денег осуществляет ЦБ РФ. Часть этих денег обслуживает межбанковские расчеты часть направляется в качестве кредитов другим банкам но большая часть...
40744. Диагностирование и лечение кожных заболеваний 122.02 KB
  Гигантская крапивница похожа на обычную лихорадку отличие в том что при первой опухлость появляется под кожей а не на поверхности кожи. Гистамин – химическое вещество выделяемое определенными клетками которые расположены вдоль кровяных сосудов кожи. Дермографизм: сыпь возникающая после механического повреждения кожи удар царапание. Дерматиты Дерматиты воспалительные реакции кожи в ответ на воздействие раздражителей...
40745. Информация об интеллектуальной собственности 32.3 KB
  Патентные исследования патентные исследования это исследования технического уровня и тенденций развития объектов техники их патентоспособности патентной чистоты конкурентоспособности на основе патентной и другой информации. Патентные исследования проводят при: разработке научнотехнических прогнозов; разработке планов развития науки и техники; создании объектов техники; освоении и производстве продукции; определении целесообразности экспорта промышленной продукции и экспонировании ее образцов на международных выставках и...
40746. Наука як сфера людської діяльності 59.51 KB
  Поняття зміст і функції науки Курс: 1 Факультет: 4й медичний Поняття зміст і функції науки Актуальність теми. Необхідність надання загальних відомостей про завдання курсу а також про науку як систему знань і уявлень про сутність науки аналіз змісту та функцій науки диктується вимогами розвитку та становлення сучасної науки і є необхідною передумовою формування наукового світогляду необхідного майбутнім спеціалістам. Цілі лекції мета Навчальні: ознайомитись з...
40747. Філософія Середньовіччя, Відродження та Нового часу 49.79 KB
  Центральна проблема філософії – проблема взаємовідносин людини та світу – у середньовічній філософії набирає специфічного змісту: це взаємовідносин Бога людини та світу. Завдання людини – зробити правильний вибір між цими двома світами. Утверджуючи переконання що істинне буття людини – це її духовне буття християнська теософія від Теос – Бог скеровує увагу філософів середньовіччя на дослідження внутрішнього духовного світу людини на освоєння безмежних глибин людської душі. Якщо ж людина знає розуміє те в що вірить її віра...
40748. Суб’єкти кримінального процесу 68.21 KB
  Інші учасники кримінального провадження. Відводи суб’єктів кримінального провадження. Поняття і класифікація суб’єктів кримінального процесу Кримінальний процесуальний кодекс України прийнятий 13 квітня 2012 року чітко не визначає поняття і не подає класифікацію суб’єктів кримінального провадження тому їх називають порізному: 1 особи які беруть участь у процесуальній дії – статті 104 107 КПК; 2 учасники кримінального провадження – статті 27 113 237 КПК та ін.; 3 учасники судового провадження – статті 34 107 317 347 КПК та ін.
40749. Сучасні види та способи друку 175.54 KB
  Класифікація видів та способів друку. Спеціальні види та способи друку. Класифікація видів та способів друку. Вид друку оприділяється конкретними особливостями роз положення друкарських елементів відносно пробільних на друкарських формах.
40750. АХОДИ ЗАБЕЗПЕЧЕННЯ КРИМІНАЛЬНОГО ПРОВАДЖЕННЯ 107.41 KB
  Затримання особи та обрання їй запобіжного заходу у вигляді взяття під варту : у чинному КПК України та у його проекті О. Поміщення особи у медичний заклад : пропозиції до нового КПК України В. 131 КПК заходами забезпечення кримінального провадження є: 1 виклик слідчим прокурором судовий виклик і привід ст. 133−143 КПК; 2 накладення грошового стягнення ст.