5602

Кинематика. Механическое движение

Контрольная

Физика

Кинематика Механическим движением называется изменение положения предмета относительно заданной системы отсчета. Понятие системы отсчета включает в себя тело отсчета и систему координат. Для большинства задач нашего курса достаточно ограничиться пря...

Русский

2012-12-15

55.5 KB

4 чел.

Кинематика

Механическим движением называется изменение положения предмета относительно заданной системы отсчета. Понятие системы отсчета включает в себя тело отсчета и систему координат. Для большинства задач нашего курса достаточно ограничиться прямоугольной системой координат и выбрать в качестве тела отсчета Землю. Простейшим объектом для изучения механического движения может служить материальная точка-тело, размерами и формой которого в данных условиях можно пренебречь.

Y

                             

                      

                    A               l

у     rА              rB                  В

        х                              Х

Описание движения точки с помощью радиус-вектора.

Положение точки А описывается радиус - вектором rА, проведенным из начала координат в точку А. Если точка А движется, то кривая, соединяющая положения точки в последующие моменты времени t 1, t2 ...tn (где t1 t2.... tn), называется траекторией движения. При движении точки конец ее радиус-вектора перемещается вдоль траектории. Изменение радиус -  вектора с течением времени называется кинематическим законом движения: r = r ( t ). Координаты точки в этом случае также являются функциями времени: х = х(t), у = у(t) (см.рис.1)  и  z = z(t), которые можно рассматривать как параметрические уравнения движения. Если за время   t  точка переместилась из положения А в положение В (см.рис.1), то радиус - вектор l, проведенный из А в В, называется перемещением точки за время  t. Расстояние, пройденное по траектории, принято называть путем S.

Средняя скорость  v  за промежуток времени  t определяется как:

                                                           .                                                  

При уменьшении величины  t отношение (1-1) стремится к некоторому пределу, который принято называть скоростью материальной точки в данный момент времени:

                                                = ,                                        

поскольку из рис.1 следует, что  l =  r. Другими словами можно сказать, что скорость является первой производной радиуса-вектора по времени. Важно отметить, что S = , и первая производная пути по времени дает лишь абсолютное значение скорости:  =.

Как и любой вектор, вектор скорости можно представить в виде суммы составляющих по координатным осям:

                                                   v = ,                                     

Величина вектора скорости (его модуль)  как и величина любого вектора находится как корень квадратный из суммы квадратов соответствующих проекций:

                                                  .

Для характеристики быстроты изменения скорости вводится понятие ускорения. Ускорением в данный момент времени называется предел отношения приращения скорости к интервалу времени, за который произошло это приращение:

                                                   = v = .                                  (1- 9 )

Вектор ускорения можно также разложить по координатным осям:

                                                    а = а x i + a y j + a z k .                                       ( 1-10 )    

Модуль вектора ускорения равен:

                                                    

                     D

             vA                              B                      vB

                                               v

    A                 vn 

                      

                           E   vt  C                          

Рис.4. Нормальная и тангенциальная составляющие изменения скорости.

Пусть за время t точка переместилась из А в В, и за это время ее скорость изменилась от  vA до  vB . Для того, чтобы найти изменение v перенесем вектор vB в точку начала вектора vA. Тогда разность двух векторов  vB - vA

может быть представлена в виде вектора v = DC. В свою очередь, вектор v мо-
жно представить тоже как сумму двух составляющих
v = vn + vt , где вектор vt находится как разность АС-АЕ ( АЕ=АD, АС= vB ), т.е. как разность модулей векторов vB и vA. Вектор vn характеризует изменение направления вектора vA , т.к. vA = АЕ = АD. Треугольник DAE равнобедренный, поэтому при уменьшении интервала времени t до нуля (t0) угол DAE также стремится к 0, а АDЕ  900,
и
vn оказывается перпендикулярным направлению скорости. В то же время ясно,
что направление вектора
vt при t   0 приближается к направлению касательной в точке А. Поэтому

                                      .                                   (1- 14 )     

Первое из слагаемых в  (1- 14 ) называют нормальной составляющей ускорения или просто нормальным ускорением, а второе - тангенциальным. Таким образом           

                                                          ,                                            (1- 15 )   

                                                           .                                            (1- 16 )

Модуль полного ускорения определяется следующим выражением:

                                                        

                             vA

         vA                        v

                  l            vB             

    

Частным примером нормального ускорения служит центростремительное ускорение, возникающее при равномерном движении точки по окружности. Если за малый промежуток времени t точка успевает повернуться на угол  , то как видно из  рис.5,  между перемещением l , радиусом r , приращением  v  и
самой скоростью
v можно записать следующее соотношение:

                                 

Из этого соотношения приращение скорости v равно:
                                                                                 

деля выражение для приращения скорости на промежуток времени t, имеем:         
                                                 .                                       

Для случая вращательного движения полезными оказываются такие дополнительные кинематические характеристики как угловая скорость и угловое ускорение. Величина угловой скорости определяется как отношение угла , который описывает  радиус-вектор точки за время t, т.е.

                                                   .      

При этом угловой скорости приписывается определенное направление, которое определяется следующим образом: направление отсчета угла определяется направлением вращения, а направление определяется правилом правого буравчика - оно совпадает с движением оси буравчика, когда он вращается в направлении вращения материальной точки.

Вектор углового ускорения определяется через изменение угловой скорости вращения за время t. При этом направление совпадает с направлением , если за время t происходит увеличение скорости и направление противоположно вектору , если за время t угловая скорость уменьшается. Таким образом

                                                               .                                                    

При вращательном движении между линейной скоростью точки, направленной по касательной к окружности вращения существует определенная взаимосвязь. Действительно

                                           [ r  ] ,                             

где квадратные скобки обозначают векторное произведение двух векторов - и r.

                                         

                 


r

 


 

А также другие работы, которые могут Вас заинтересовать

2166. Математическое моделирование тепловых процессов 31.78 KB
  Задание. Разработать математическую модель: процесса теплообмена, позволяющую находить один из параметров процесса в соответствии с вариантом задания.
2167. Виховна система 18.85 KB
  Педагогічний процес здійснюється в рамках певної виховної системи. Виховна система - це сукупність взаємопов'язаних цілей і принципів організації виховного процесу, методів і прийомів їх поетапної реалізації в межах певної соціальної структури.
2168. План воспитательной работы в группе 18.81 KB
  Психолого-педагогическая характеристика группы. Цель воспитательной работы. Содержание воспитательной работы. Индивидуальная работа с учащимися.
2169. Микроклимат семьи и его влияние на социализацию подростка 23.65 KB
  Семья выступает в качестве как положительного, так и отрицательного фактора воспитания. Положительное воздействие состоит в том, что никто кроме самых близких, не относится к ребёнку лучше, и вместе с тем никто не может потенциально нанести столько вреда в воспитании, сколько семья.
2170. Локальні та глобальні мережі 49.5 KB
  Комп’ютерні мережі та їх будова. Локальні комп’ютерні мережі. Глобальні комп’ютерні мережі.
2171. Системи підтримки прийняття рішень 47.61 KB
  Концепції побудови та сфери застосування систем підтримки прийняття рішень (СППР). Архітектура СППР.
2172. Експертні системи 60.89 KB
  Проблеми створення систем із штучним інтелектом. Експертні системи (ЕС) та їх характеристики. Поняття знань та відмінності їх від даних. Структура ЕС.
2173. Лексика русского языка и иноязычные заимствования 56.32 KB
  Исконная лексика русского языка. Заимствованные слова в русском языке. Заимствованные слова в общественно - политической жизни страны. Заимствования из родственных славянских языков. Заимствования из неславянских языков. Характеристики и функции заимствований.
2174. Молодежь на рынке труда: особенность государственного регулирования безработицы и трудоустройства 57.84 KB
  Теоретико-методологические основы исследования государственного регулирования молодежной безработицы. Молодежная безработица в современной России, в Агинском Бурятском Округе и в Республике Бурятия. Нормативно-правовые и организационно-управленческие механизмы государственного регулирования молодежной безработицы.