5602

Кинематика. Механическое движение

Контрольная

Физика

Кинематика Механическим движением называется изменение положения предмета относительно заданной системы отсчета. Понятие системы отсчета включает в себя тело отсчета и систему координат. Для большинства задач нашего курса достаточно ограничиться пря...

Русский

2012-12-15

55.5 KB

4 чел.

Кинематика

Механическим движением называется изменение положения предмета относительно заданной системы отсчета. Понятие системы отсчета включает в себя тело отсчета и систему координат. Для большинства задач нашего курса достаточно ограничиться прямоугольной системой координат и выбрать в качестве тела отсчета Землю. Простейшим объектом для изучения механического движения может служить материальная точка-тело, размерами и формой которого в данных условиях можно пренебречь.

Y

                             

                      

                    A               l

у     rА              rB                  В

        х                              Х

Описание движения точки с помощью радиус-вектора.

Положение точки А описывается радиус - вектором rА, проведенным из начала координат в точку А. Если точка А движется, то кривая, соединяющая положения точки в последующие моменты времени t 1, t2 ...tn (где t1 t2.... tn), называется траекторией движения. При движении точки конец ее радиус-вектора перемещается вдоль траектории. Изменение радиус -  вектора с течением времени называется кинематическим законом движения: r = r ( t ). Координаты точки в этом случае также являются функциями времени: х = х(t), у = у(t) (см.рис.1)  и  z = z(t), которые можно рассматривать как параметрические уравнения движения. Если за время   t  точка переместилась из положения А в положение В (см.рис.1), то радиус - вектор l, проведенный из А в В, называется перемещением точки за время  t. Расстояние, пройденное по траектории, принято называть путем S.

Средняя скорость  v  за промежуток времени  t определяется как:

                                                           .                                                  

При уменьшении величины  t отношение (1-1) стремится к некоторому пределу, который принято называть скоростью материальной точки в данный момент времени:

                                                = ,                                        

поскольку из рис.1 следует, что  l =  r. Другими словами можно сказать, что скорость является первой производной радиуса-вектора по времени. Важно отметить, что S = , и первая производная пути по времени дает лишь абсолютное значение скорости:  =.

Как и любой вектор, вектор скорости можно представить в виде суммы составляющих по координатным осям:

                                                   v = ,                                     

Величина вектора скорости (его модуль)  как и величина любого вектора находится как корень квадратный из суммы квадратов соответствующих проекций:

                                                  .

Для характеристики быстроты изменения скорости вводится понятие ускорения. Ускорением в данный момент времени называется предел отношения приращения скорости к интервалу времени, за который произошло это приращение:

                                                   = v = .                                  (1- 9 )

Вектор ускорения можно также разложить по координатным осям:

                                                    а = а x i + a y j + a z k .                                       ( 1-10 )    

Модуль вектора ускорения равен:

                                                    

                     D

             vA                              B                      vB

                                               v

    A                 vn 

                      

                           E   vt  C                          

Рис.4. Нормальная и тангенциальная составляющие изменения скорости.

Пусть за время t точка переместилась из А в В, и за это время ее скорость изменилась от  vA до  vB . Для того, чтобы найти изменение v перенесем вектор vB в точку начала вектора vA. Тогда разность двух векторов  vB - vA

может быть представлена в виде вектора v = DC. В свою очередь, вектор v мо-
жно представить тоже как сумму двух составляющих
v = vn + vt , где вектор vt находится как разность АС-АЕ ( АЕ=АD, АС= vB ), т.е. как разность модулей векторов vB и vA. Вектор vn характеризует изменение направления вектора vA , т.к. vA = АЕ = АD. Треугольник DAE равнобедренный, поэтому при уменьшении интервала времени t до нуля (t0) угол DAE также стремится к 0, а АDЕ  900,
и
vn оказывается перпендикулярным направлению скорости. В то же время ясно,
что направление вектора
vt при t   0 приближается к направлению касательной в точке А. Поэтому

                                      .                                   (1- 14 )     

Первое из слагаемых в  (1- 14 ) называют нормальной составляющей ускорения или просто нормальным ускорением, а второе - тангенциальным. Таким образом           

                                                          ,                                            (1- 15 )   

                                                           .                                            (1- 16 )

Модуль полного ускорения определяется следующим выражением:

                                                        

                             vA

         vA                        v

                  l            vB             

    

Частным примером нормального ускорения служит центростремительное ускорение, возникающее при равномерном движении точки по окружности. Если за малый промежуток времени t точка успевает повернуться на угол  , то как видно из  рис.5,  между перемещением l , радиусом r , приращением  v  и
самой скоростью
v можно записать следующее соотношение:

                                 

Из этого соотношения приращение скорости v равно:
                                                                                 

деля выражение для приращения скорости на промежуток времени t, имеем:         
                                                 .                                       

Для случая вращательного движения полезными оказываются такие дополнительные кинематические характеристики как угловая скорость и угловое ускорение. Величина угловой скорости определяется как отношение угла , который описывает  радиус-вектор точки за время t, т.е.

                                                   .      

При этом угловой скорости приписывается определенное направление, которое определяется следующим образом: направление отсчета угла определяется направлением вращения, а направление определяется правилом правого буравчика - оно совпадает с движением оси буравчика, когда он вращается в направлении вращения материальной точки.

Вектор углового ускорения определяется через изменение угловой скорости вращения за время t. При этом направление совпадает с направлением , если за время t происходит увеличение скорости и направление противоположно вектору , если за время t угловая скорость уменьшается. Таким образом

                                                               .                                                    

При вращательном движении между линейной скоростью точки, направленной по касательной к окружности вращения существует определенная взаимосвязь. Действительно

                                           [ r  ] ,                             

где квадратные скобки обозначают векторное произведение двух векторов - и r.

                                         

                 


r

 


 

А также другие работы, которые могут Вас заинтересовать

72510. СПОСОБЫ МОДИФИКАЦИИ ЦЕН В ЛС 648.5 KB
  Назначение цены на один продукт или услугу может оказать большое влияние на цены и имидж других продуктов или услуг товарного ассортимента фирмы. Это приведет к тому что ценовая спираль начнет раскручиваться вниз и через некоторое время предприятие окажется в ситуации когда соотношение...
72511. МЕТОДЫ УСТАНОВЛЕНИЯ ЦЕН НА ПРОДУКТЫ И УСЛУГИ 237 KB
  Практическое ценообразование на товары и услуги в условиях рынка означает не только точный расчет производителем своих преимуществ и недостатков, но и в определенном смысле искусство, которым нужно овладеть для учета постоянных изменений спроса и предложения.
72512. ОСНОВЫ ЦЕНООБРАЗОВАНИЯ В ЛОГИСТИЧЕСКИХ СИСТЕМАХ 282.5 KB
  Экономическая природа цены проявляется в двойственной роли которую она играет на рынке. В качестве регулятора цены позволяют ограничивать потребление ресурсов они являются мотивацией производства. В процессе ценообразования учитывается действие различных факторов: текущий спрос ценовая...
72513. ЭКОНОМИЧЕСКИЕ ОСОБЕННОСТИ ЛОГИСТИЧЕСКИХ СИСТЕМ 149.5 KB
  Возникновение и развитие рынка, в рамках которого осуществляется кругооборот ресурсов, доходов и продуктов, происходит при выполнении нескольких обязательных условий. Среди них: общественное разделение труда, которое неизбежно приводит к обмену продуктами и услугами; экономическая обособленность...
72514. Лекция по истории хип-хопа 372 KB
  Что такое хип-хоп в понимании большинства Это рэпперы читающие о золотых цепях машинах клубах и торговле наркотиками. Моя лекция призвана не только разрушить эти стереотипы но и рассказать о многообразии хип-хоп культуры с момента её возникновения и до наших дней.
72516. Классификация ОЭП 58 KB
  Это в первую очередь определяет специфику входящих в состав ОЭП элементов особенности схемного построения этих приборов а также алгоритмов используемых для обработки сигналов. В сущности ОЭП это сложная система включающая такие устройства как оптические фотоэлектрические электронные...
72517. Возрастание и убывание функций 165.5 KB
  Точки максимума и минимума функции называются точками экстремума. необходимое условие существования экстремума Если функция fx дифференцируема в точке х = х1 и точка х1 является точкой экстремума то производная функции обращается в нуль в этой точке.
72518. Экономика строительных материалов Республики Беларусь 64.5 KB
  Строительный комплекс рассматривается как межотраслевая система включающая совокупность предприятий объединений и организаций деятельность которых направлена на создание реконструкцию и освоение объектов производственного и непроизводственного назначения.