561

Теория развития систем

Лекция

Логика и философия

Системные представления в практической деятельности человека. Системность как свойство материи. Эволюция системных представлений. Первая естественнонаучная (механическая) картина мира. Немецкая классическая философия. Теоретическое естествознание XIX-XX веках. Общая теория систем Л. Берталанфи.

Русский

2012-11-11

79.5 KB

37 чел.

ТЕМА 1. лекция 1. Введение в дисциплину

Введение

1. Системные представления в практической деятельности человека

2. Эволюция системных представлений

Введение

В современном мире специалисты в различных областях знаний постоянно сталкиваются с необходимостью решать сложные проблемы, порожденные сложностью самого окружающего мира, как естественного (природа), так и искусственного (техносфера). Для того, чтобы успешно с этой задачей справиться, недостаточно рассмотрения каких-то отдельных элементов, отдельных, частных вопросов. Необходимо рассматривать их, как мы говорим, в системе, с учетом множества взаимосвязей, множества специфических свойств. Для решения подобных задач, например, в области экологии (исследование устойчивости популяций животных, распространение загрязнений и т.п.), проектирования техники и т.п. было создано множество подходов, методов, приемов, которые в процессе своего развития и обобщения  оформились в определенную технологию преодоления количественных и качественных сложностей.

Поскольку большие и сложные системы стали предметом изучения, управления и проектирования, потребовалось обобщение методов исследования таких систем и методов воздействия на них. Следовательно, появилась потребность в некоей прикладной науке, которая бы объединила теорию и технологию (практику) решения системных задач. Такие дисциплины возникали в разных областях практической деятельности, например:

в инженерной деятельности: методы проектирования, инженерное творчество, системотехника;

в экономике: исследование операций;

в административном

и политическом управлении: системный подход, футурология, политология;

в прикладных научных исследованиях: «имитационное моделирование, методология эксперимента».

В конечном итоге развития этих дисциплин вызвало к жизни науку, которая получила название «системный анализ». Эта дисциплина для решения своих задач (ликвидации проблемы или выяснения ее причин) использует возможности различных наук и сфер деятельности. Она подразумевает использование математики, вычислительной техники, экспериментов (натурных и численных), моделирования.

На последнем слове следует остановиться. Наш курс называется «Системный анализ и моделирование процессов в техносфере». Таким образом,  мы будем знакомиться с системным анализом не как с абстрактной дисциплиной, а в увязке с тем кругом проблем, которые вам, как специалистам, возможно, предстоит решать в вашей будущей деятельности. е. с разработкой математических моделей тех или иных явлений, происходящих в окружающей среде, в техносфере, или с проектированием систем обеспечения безопасности жизнедеятельности.

1. Системные представления в практической деятельности человека

Системность – это не какое-то придуманное учеными качество. Системен окружающий нас мир. Системно само человеческое мышление. Однако есть разные уровни системности. Применительно к человеческому знанию, человеческой деятельности это особенно заметно. Что такое появление проблемы? Это сигнал о недостаточной системности существующей деятельности. Что такое решение возникшей проблемы? Это успешный переход на новый, более высокий уровень системности. Утверждая это, в 1, авторы подчеркивают, что системность – это не столько состояние, сколько процесс.

Системно ли наше знание, наши представления? Возьмем то же слово «система» или «системность». Все вы, вероятно, смутно, интуитивно понимаете, что это такое, но попытка выразить словами эти понятия покажет, что это не так просто. То есть ваши представления системны, но уровень системности невысок, вы будете его повышать постепенно, в процессе изучения предмета.

Иерархия – структура с наличием подчиненности, т.е. неравнозначных связей между элементами, когда воздействия в одном из направлений оказывают гораздо большее влияние на элемент, чем в другом.

Мы легко употребляем в нашей речи слово «система» («солнечная», «нервная», «экологическая», «система мероприятий», «система уравнений», «система взглядов и т.п.). Самые очевидные и обязательные признаки систем мы можем отметить уже сейчас, а именно определенный состав, структурированность системы, взаимосвязанность составляющих ее частей, иерархичность, подчиненность организации всей системы определенный цели.

Это легко иллюстрируется на «биологическом» материале. Примером может служить организм животного человека. Действительно, организм  – это система. Эта система представляет не простую совокупность составляющих ее элементов, подсистем (клеток, органов и т.д.), но совокупность взаимосвязанную, целью же ее служит поддержание гомеостаза – постоянства внутренней среды организма для обеспечения его жизнедеятельности.

В мире косной материи легко просматриваются все перечисленные признаки системы, за исключением, пожалуй, подчиненности определенной цели. Например,  солнечная система – это не просто девять планет, обращающихся вокруг Солнца; их движения по орбитам взаимосвязаны, взаимозависимы: исчезновение одной из них, или изменение ее орбиты под действием какого-либо гипотетического внешнего воздействия повлияло бы на орбиты остальных составляющих системы, т.е. система в какой-то степени изменила бы свою внутреннюю структуру, оставаясь тем не менее, системой, единым целым. (Возможно, в каком-то смысле мы можем говорить здесь и о цели – сохранения устойчивости, постоянства).

Естествознание не задастся вопросом о цели существования физического мира. Это область телеологии.  Однако, известен так называемый антропный принцип. В своем «слабом» варианте он гласит, что мир устроен таким образом, и значения физических констант таковы, чтобы во Вселенной могла существовать жизнь.  В своем «сильном» варианте он сводится к тому, что устройство мира и значения физических констант приспособлены к условиям наблюдателя, цель Вселенной - возникновение и развития человечества.

Кроме того, современные воззрения на процесс самоорганизации материи («синергетика» - рассмотрим далее) предполагает стремление неустойчивых неравновесных состояний систем к некоторым «точкам» - аттракторам, которые в некотором смысле мы может рассматривать как аналоги цели.

Системность человеческой деятельности. Если мы будет рассматривать практическую деятельность человека, то все перечисленные признаки систем здесь в самом деле очевидны. Действительно:

1) Всякое наше осознанное (неосознанные действия пока оставим в стороне) действие преследует определенную цель.

2) Во всяком действии легко увидеть его составные части, т.е. более мелкие действия.

3) При этом легко убедиться, что эти действия (составные части) должны выполняться не в произвольном порядке, а в определенной последовательности. Это и есть определенная, подчиненная цели взаимосвязанность составных частей, которая и является признаком системности.

Системность человеческой деятельности может быть также выражена через другое понятие – алгоритмичность. В последнее время понятие алгоритма из математики было перенесено на другие виды человеческой деятельности. Говорят об алгоритмах принятия управленческих решений, алгоритмах обучения, игры, алгоритмах изобретательства (г.Альтшуллер), алгоритмах творчества (Ю.Мурашковский, Kien fluas la rojo Kastalie?», Р. Зарипов «Машинный поиск вариантов при моделировании творческого процесса»). Здесь мы допускаем, что в алгоритме данной деятельности могут присутствовать и неформализованные действия, т.е. те, которые выполняются неосознанно.

Роль системных представлений в человеческой практике постоянно увеличивается, а с другой стороны растет сама системность человеческой практики.

Системность познания. Окружающий нас мир бесконечен. Человек же существует конечное время и располагает конечными материальными, энергетическими, информационными ресурсами. Но тем не менее человек получает мир и, идя долгой, извилистой тропой, совершая многочисленные ошибки, все же познает его верно, свидетельством чему является его практическая деятельность. А. Эйнштейн говорил, что самое удивительное в природе то, что она познаваема.

Следовательно, человеческое  познание имеет какие-то особенности, которые позволяют разрешать противоречие между неограниченностью желаний человека познать мир и ограниченностью его возможностей сделать это, между бесконечностью природы и конечностью ресурсов человечества.

Такой особенностью является, прежде всего, наличие аналитического и синтетического образов мышления, т.е. способности к анализу и синтезу.

Анализ – это разделение целого на части, представление сложного в виде совокупности более простых компонент.

Чтобы понять целое, сложное, нужен и обратный процесс – синтез.

Синтез – метод исследования, состоящий в познании изучаемого предмета, явления как единого целью, в единстве и взаимосвязи его частей.

Аналитичность человеческого познания находит выражение, в частности, в выделении из единой натурфилософии различных наук. Процесс дифференциации наук, глубокое изучение все более узких вопросов идет и поныне.

Вместе с тем возникают так называемые «пограничные» науки, образующиеся как бы на стыке различных дисциплин, как, например, биохимия, биофизика.

Это уже процесс «синтеза» знаний. Другая,  более высокая форма синтетических знаний реализуется в виде наук о самых общих свойствах природы (философия, математика). Такие науки как кибернетика, теория систем, теория организации, теория управления, инженерная психология, синтетичны по своей сути. В них соединяются естественные, технические и гуманитарные знания.

Осознание диалектического единства анализа и синтеза наступило не сразу, и в разные исторические эпохи системность мышления имела различный характер. Так, в истории познания человеком природы выделяют 4 стадии:

1-я – синкретическая – стадия нерасчлененного, недетализированного знания.

«…природа еще рассматривается в общем, как одно целое. Всеобщая связь явлений не доказывается в подробности: она является для греков результатом непосредственного созерцания» (Ф. Энгельс). На этой стадии формировалась так называемая натурфилософия – вместилище идей и догадок, ставших к XIIIXY столетиям зачатками естественных наук.

2-я – аналитическая ( с XYXVI вв) – мысленное расчленение и выделение частностей, приведшие к возникновению физики, химии и биологии и др. естественных наук. Для этой стадии характерен метафизический способ мышления.

3-я – синтетическая – воссоздание целостной картины Природы на основе ранее познанных частностей.

4-я – интегрально-дифференциальная (человечество еще только вступает в нее) призвана не только обосновать принципиальную целостность (интегральность) всего естествознания, но и сформировать действительно единую науку о Природе, рассматривая ее (Вселенную, Жизнь, Разум) как единый многогранный объект, с общими закономерностями развития.

Системность как свойство материи. Вернемся к вопросу о системности окружающего нас физического мира. Мы выяснили, что практической деятельности человека и его мышлению присуща системность. Но не специфическое ли это свойство человека, своего рода приспособление, выработанное для собственного удобства, упрощения своей деятельности в окружающем мире, а мир ничего не имеет общего с нашими представлениями о нем.

До самого последнего времени попытки ответить на этот вопрос лежали исключительно в области философии. И философы – материалисты и идеалисты, метафизики и приверженцы диалектики, агностики и те, кто был убежден в познаваемости мира имели по этому вопросу различные мнения. Так, материалист – метафизик Ф.Бэкон считал, что умственные построения полностью произвольны и ничему в природе не соответствуют. Он писал: «…Человеческий разум в силу своей склонности легко предполагает в вещах больше порядка и единообразия, чем их находит. И в то же время, как многое в природе единично и совершенно не имеет себе подобия, он придумывает параллели, соответствия и отношения, которых нет».Голландский философ – материалист XVII в Б.Спиноза высказывался в совершенно противоположном духе: «… порядок и связь идей та же, что порядок и связь вещей…» поскольку «…субстанция мыслящая и субстанция протяженная составляют одну и ту же субстанцию».

И. Кант считал, что мы должны «…предполагать систематическое единство природы непременно как объективно значимое и необходимое», а системность разума призвана искать в природе это вещество.

К.Маркс подчеркивал роль практики как критерия соответствия мышления человека действительности. Ленин неоднократно указывал, что познание есть бесконечный процесс приближения мышления к объекту, сопровождающийся возникновением противоречий и развитию их.

Действительно реальность и ее мысленное отображение не идентичны, не идентичны между собой естественные и искусственные системы. И тем не менее системность нашего мышления вытекает из системности мира Современная наука представляет мир как бесконечную иерархию систем, находящихся в непрерывном развитии.

Подводя некоторый итог, можно сделать следующее заключение.

Системность мира представляется в виде объективно существующей иерархии различно организованных взаимодействующих систем.

Системность мышления реализуется в том, что знания представляются в виде иерархической системы взаимосвязанных моделей.

2. Эволюция системных представлений

Надо сказать, что осознание системности мира и мышления всегда отставало от системности (эмпирической) человеческой практики.

История развития системных представлений шла как бы по разным направлениям и с разных исходных позиций. С одной стороны к современному пониманию шла философия, с другой – конкретные науки. В своем движении к истине они неминуемо должны были сойтись, что, в сущности и происходит в настоящее время.

Результаты философии относятся к множеству всех существующих и мыслимых систем, носят всеобщий характер. Чтобы применить их к конкретным ситуациям мы должны использовать дедуктивный метод.

Конкретные науки большей частью придерживаются противоположного, индуктивного метода, т.е. от исследования реальных, конкретных систем к установлению общих закономерностей.

Особый интерес представляют те моменты в истории, когда системность сама по себе становилась объектом исследования для естественных и технических наук.

2.1. Рождение понятия "система" (2500-2000 г. до н.э). Слово "система" появилось в Древней Греции и означало "сочетание", "организм", "организация", "союз", а также "нечто, поставленное вместе, приведенное в порядок".

2.2. Первая естественнонаучная (механическая) картина мира. Идеи Галилея (1564-1642) и И.Ньютона (1642-1727). Выработана определенная концепция системы с категориями: вещь и свойства, целое и часть.

2.3. Немецкая классическая философия. Глубокая и основательная разработка идеи системной организации научного знания. Структура научного знания стала предметом специального философского анализа.

2.4. Теоретическое естествознание XIX-XX вв. Различение объекта и предмета познания, повышение роли моделей в познании, исследование системообразующих принципов (порождение свойств целого из свойств элементов и свойств элементов из свойств целого).

2.5. Кибернетика. В 1834 году знаменитый физик М.-А. Ампер опубликовал книгу, содержащую классификации всевозможных наук (в том числе и пока не существовавших). Среди них он выделил специальную науку об управлении государством и назвал ее кибернетикой (от слова kbervik, первоначально означавшего управление кораблем, а затем получившего у самих греков более широкое значение искусства управления вообще).

В 1843 году появилась книга польского философа Б.Трентовского (по материалам курса лекций, который он читал ранее). Книга называлась «Отношение философии к кибернетике как к искусству управления народом». Это была попытка построения научных основ практической деятельности руководителя, которого он называл «кибернетом» (подробнее - в 1).

Общество середины прошлого века было не готово воспринять идеи кибернетики. Практика управления тогда еще могла обходиться без науки управления. И кибернетика была забыта.

В дальнейшем идеи системности появлялись и в других областях науки. Так, академик С. Федоров, исследуя явление кристаллизации веществ, установил некоторые закономерности развития систем, в частности, он указывал, что главным средством жизнеспособности и прогресса систем является не их приспособленность, а их способность к приспособлению, не стройность, а способность к повышению стройности.

2.6. Тектология. Следующий крупный вклад в теорию систем был внесен А.А.Богдановым (Малиновским) – личностью талантливой, всесторонней, увлекающейся. (Это его, автора собственной философии – эмпириомонизма критиковал Ленин в книге «Материализм и эмпириокритицизм»). Он активно участвовал в политической деятельности, был в социально-демократической партии, затем вышел из нее, то после революции вошел в состав Коммунистической академии написал «Краткий курс политической экономии». Он, кроме того, является и автором нескольких научно-фактических произведений. Основной же его профессией была медицина.

К 1925 г. он завершил свой трехтомный труд «Всеобщая организационная наука (тектология)». В его основу положена идея о том, что все существующие объекты и процессы имеют определенную степень, уровень организованности. В отличие от конкретных естественных наук, изучающих специфические особенности организации конкретных явлений, тектология должна изучать общие закономерности организации для всех уровней организованности. Все явление рассматриваются как непрерывные процессы организации и дезорганизации. Отмечается, что уровень организации тем выше, чем сильнее свойства целого отличаются от простой суммы свойств его частей.

Основное внимание в тектологии Богданова уделяется закономерностям развития организации, рассмотрению соотношений устойчивого и изменчивого, значению обратных связей, учету собственных целей организации (которые могут как содействовать целям высшего уровня организации, так и противоречить им).

Примеры: человеческое общество – экологический аспект, социально-экономический аспект,   человеческий организм – иммунитет и т.п.

Кроме того, Богданов подчеркивал роль моделирования и математики, как потенциальных методов решения задач тектологии. Таким образом он предвосхитил многие положения современных кибернетических и системных теорий.

Став директором первого в мире института переливания крови (созданного по его же идее и при поддержке В.И.Ленина) он стал проверять некоторые выводы своей теории на примере кровеносной системы, проводя на себе рискованные опыты. Один из них завершился гибелью ученого. Тектология, также как и кибернетика в своем первом явлении миру, была на какое-то время забыта, и о ней вспомнили только тогда, когда и другие стали приходить к тем же результатам.

2.7. Кибернетика Винера

Можно сказать, что мир «созрел» для массового усвоения системных понятий и сознания системности мира к концу 40-х годов нашего века, когда в 1948 г. американский математик Н.Винер опубликовал книгу под названием «Кибернетика». Вначале он определил кибернетику как «науку об управлении и связи в животных и машинах». Однако уже в следующей своей книге «Кибернетика и общество» он расширяет это определение и анализирует с позиций кибернетики процессы, происходящие в обществе. В 1956 г. в париже состоялся Первый международный конгресс по кибернетике.

После того, как кибернетика в СССР перестала называться лженаукой, в ее становлении внесли вклад и наши ученые, при этом появились новые определения, в частности:

«Кибернетика – это наука об оптимальном управлении сложными динамическими системами» (А.И.Берг).

«Кибернетика – это наука о системах, воспринимающих, хранящих, перерабатывающих и использующих информацию» (А.Н.Колмогоров).

Из этих определений видно, что предметом кибернетики является исследование систем, причем для кибернетики в принципе несущественно, какова природа этой системы, т.е. является ли она физической, биологической, экономической, организационной или даже воображаемой. Таким образом «кибернетика» вторгается в совершенно разнородные сферы. в [1] приводится такой аналог:  мир может быть представлен как как «булка», каждая наука, изучающая мир,  – «ломоть» поперек, а кибернетика – это «ломоть» вдоль.

В рамках кибернетики Винера произошло дальнейшее развитие системных представлений, а именно:

  1.  типизация моделей систем;
  2.  выявление значения обратных связей в системе;
  3.  подчеркивание принципа оптимальности в управлении и синтезе систем;
  4.  понятие информации как всеобщего свойства материи, осознание возможности ее количественного описания;
  5.  развитие методологии моделирования вообще и в особенности машинного эксперимента, т.е. математическая экспертиза с помощью ЭВМ.

2.8. Общая теория систем Л. Берталанфи.   Общая теория систем – это как бы параллельный, независимый по отношению к кибернетике, подход к науке о системах. В 1950 г. австрийский биолог Л. Берталанфи  опубликовал книгу «Основы общей теории систем». Берталанфи пытался отыскивать структурное сходство законов, установленных в различных дисциплинах и, обобщая их, выводить общесистемные закономерности.

Берталанфи подчеркивал особое значение обмена системы веществом, энергией и информацией (отрицательной энтропией или  негэнтропией) с окружающей средой. В открытой системе устанавливается динамическое равновесие, которое может быть направлено в сторону усложнения организации вопреки второму закону термодинамики (благодаря вводу негэнтропии извне). В этом случае функционирование системы – это не просто отклик на изменение внешних условий, а сохранение старого или установление нового подвижного внутреннего равновесия системы (гомеостазиса).

Если в кибернетике Винера изучались лишь внутрисистемные обратные связи, а функционирование систем рассматривалось как отклик на внешние воздействия, то Берталанфи, развивая идеи физика Шредингера, разработал концепцию организма как открытой системы и сформулировал программу построения общей теории систем.

2.9. Синергетика

Еще один подход к исследованию систем связан с так называемой бельгийской школой во главе с И. Пригожиным. Этот ученый занимался термодинамикой неравновесных физических систем (Нобелевская премия 1977 г.) и обнаружил, что выявленные им закономерности справедливы для систем любой природы. Он как бы заново открыл уже известные свойства систем, но, кроме этого, предложил новую теорию динамики систем. Суть его теории заключается в следующем.  

Материя не является пассивной субстанцией; ей присуща спонтанная активность, вызванная неустойчивостью неравновесных состояний, в которые приходит система в результате взаимодействия с окружающей средой. Так реализуется механизм самоорганизации систем, причем в особые «переломные» моменты (точки бифуркации) принципиально невозможно предсказать, станет ли система менее или более организованной.

Контрольные вопросы

  1.  Может ли какое-либо явление быть несистемным?
  2.  Что такое проблемная ситуация?
  3.  Какая, по-вашему, деятельность не может быть алгоритмизирована?
  4.  Приведите пример деятельности, которая ранее считалась чисто эвристической, а теперь успешно алгоритмизирована?
  5.  Какие особенности мышления позволяют утверждать, что оно системно?
  6.  Приведите аргументы в пользу системности всей материи.
  7.  Каковы основные события в развитии системных представлений в течение последних 150 лет?
  8.  Что означает греческое слово «система»?
  9.  В чем отличие кибернетики Винера и теории систем Берталанфи?
  10.  Какой взгляд на системность мира выражает синергетика?


Литература

  1.  Ф.И.Перегудов, Ф.П.Тарасов. Введение в системный анализ. М.: «Высшая школа», 1989. 519.8(07)У П27.
  2.  В.А.Губанов и др. Введение в системный анализ. Л., 1988.
  3.  Р.Пэнтл. Методы системного анализа окружающей среды. М.: Мир, 1979.
  4.  Н.В.Чепурных, А.Л.Новоселов. Экономика и экология. Развитие, катастрофы. М.: Наука, 1996.
  5.  Д.Б.Браун. Системы обеспечения техники безопасности. М.: 1979.
  6.  Спицнадель В.Н. Основы системного анализа. - СПб.: Издательский дом «Бизнес-пресса».


 

А также другие работы, которые могут Вас заинтересовать

41391. Базы данных. Основы SQL. Реляционная база данных 120 KB
  SQL Structured Query Lnguge: 1970гг впервые разработан IBM для System R назывался SEQUEL; первый стандарт NSI SQL 1986г; первая коммерческая СУБД поддерживающая SQL была Orcle V2 на машинах VX. SQL 92: SQL 2 ISO 9075 SQL 99: SQL 3 объектноориентированные возможности. SQL 2003 SQL 2006 SQL 2009: XML.
41392. Базы данных SQL. Создание таблиц. 138.5 KB
  Заполнение таблиц Секция WHERE SELECT DELETE UPDTE Ограничение ссылочной целостности CONSTRINT SELECT ORDER BY SELECT TOP SELECT DISTINCT WHERE BEWEEN WHERE IS NULL WHERE NOT WHERE LIKE GROUP BY.
41394. Базы данных SQL 121.5 KB
  LEFT OUTER JOIN RIGHT OUTER JOIN FULL OUTER JOIN INSERT INSERT SELECT INSERT UNIQUEIDENTIFIER IDENTITY INSERT defult deciml вычисляемые столбцы Время дата .
41395. Базы данных. Индексы 126 KB
  Индекс: всегда связан с таблицейс подмножеством столбцов таблицы. Индекс: предназначен для ускорения поиска строк в таблице по индексируемым столбцам Индекс: Microsoft SQL Server бывают кластерные некластерные просто индексы. Некластерный индекс: физически находится отдельно от таблицы список значений индексируемого столбца столбцов в определенном порядке с указателем на строку в таблице; список как правило бинарное дерево поиска.
41397. Базы данных. Повышение производительности запроса. 359 KB
  Query Optimizer: вычисляет несколько планов не все запроса на основе статистики метаданных информации о индексах и др.; на основе статистики предполагает стоимости запроса по различным планам и выбирает план с минимальными затратами на использование ресурсов помещает его кэш; как правило планы хранящиеся в кэше используются повторно. Стоимость запроса: числовая величина характеризующая степень использования ресурсов; Эффективность плана: наличие индексов или сканирование; статистика о распределении данных как правило...
41398. Базы данных. Программные интерфейсы с базой данных 483 KB
  ADO.NET: архитектура, модель поставщиков данных (провайдеров) ADO.NET: Data Provider - набор классов ADO.NET, позволяющих получить доступ к базе определенного типа (MS SQL Server, Oracle, DB2, MySQL) данных (выполнять sql-команды, и извлекать данные). ADO.NET: Data Provider включает следующие классы:
41399. Базы данных. Секционирование таблиц и индексов 67.5 KB
  Секционирование: поддерживается не всеми редакциями Microsoft SQL Server 2008 а только Enterprise Edition Developer Edition. Секционирование: в разных СУБД реализовано поразному; в Orcle очень развита эта технология. Секционирование: в Microsoft SQL Server 2008 все таблицы и индексы секционированы по умолчанию таблица или индекс находятся в одной секции; секции – базовая структура данных совместно со страницами и экстентами.