56523

Тригонометричні підстановки в показникових рівняннях

Конспект урока

Педагогика и дидактика

Як література розвиває емоції взаєморозуміння так математика розвиває спостережливість уяву і розум. Представники кожної із чотирьох груп заздалегідь заготували на дошці запис...

Украинкский

2014-04-07

151 KB

1 чел.

ПЛАН-КОНСПЕКТ

УРОКУ АЛГЕБРИ В 11 КЛАСІ (математичного профілю)

НА ТЕМУ:

«Тригонометричні підстановки в показникових рівняннях»

вчителя математики

Мереф’янської ЗОШ І-ІІІ ступенів №1

Харківської районної ради Харківської області

Луценко Інни Вікторівни


  1.  Мета та завдання уроку: систематизувати та узагальнити знання і вміння  

учнів з теми; познайомити з нетрадиційними методами розвязування   

показникових рівнянь; розвивати навички колективної та самостійної роботи;

застосовувати вивчене до розвязування завдань; виховувати увагу,   

старанність, культуру математичного мовлення.     

  1.  Тип уроку урок систематизації та поглиблення знань і умінь учнів  
  2.  Технології, методи, прийоми, які використовуються на уроці

Семінарське заняття, структурно-логічні технології, інтерактивні технології


Хід уроку.

І. Повідомлення теми, мети і мотивація навчальної діяльності.

Як література розвиває емоції, взаєморозуміння, так математика розвиває спостережливість, уяву і розум.

В.Чанселор

ІІ. Перевірка домашнього завдання. 

Представники кожної із чотирьох груп заздалегідь заготували на дошці запис розвязування одного із домашніх рівнянь.

№1

A0amx+k0 + A1amx+k1 + Anamx + kn = M

52x + 52x+2 + 52x+4 = 651,

52x(1+52+54) = 651,

52x*651 = 651,

52x = 1; 2x = 0; x = 0.                                     Відповідь: 0.

№2

(a + )f(x)  (a - )f(x) = K, якщо (a + )* (a - ) = 1

(7 + )x + (7 - )x + 14.

Нехай (7 + )x = у, у < 0,  тоді  (7 - )x = ,

тобто у +  - 14 = 0;   у2 - 14у + 1 = 0,     у = 7 +    або  у = 7 - .

х = 1 або х = -1.                                   Відповідь: -1; 1.

№3

9х + 6х = 22х+1;                                +  - 2 =0,     = t,    t > 0.

9х + 3х2 х – 22 = 0;                    t2 + t - 2 = 0,  t1 = 1,  t2 = -2  < 0.

3+ 3х 2 х - 22 = 0;                  = 1, x = 0.

Відповідь: 0.

№4

27х - 139х + 133х+1 - 27 = 0,

3 - 133 + 393х - 27 = 0,

3х = у, у < 0,   у3 - 13у2 + 39у - 27 = 0,

перевіримо, чи є корнем даного рівняння у = 1.

1 - 13 + 39 - 27 = 0. Так, у1 = 1 – корінь.

Розкладемо на множники ліву частину рівняння:

(у - 1)(у2 - 12у + 27) = 0,    у2 = 3,  у3 = 9.

у2 - 12у + 27 = 0,                (у - 1)(у - 3)(у - 9) = 0

                             Відповідь: 0; 1; 2.

Учні коментують свої розвязки, пояснюють, відповідають на запитання вчителя та своїх товаришів.

ІІІ. Актуалізація опорних знань.

Фронтальне усне опитування.

1) Яка функція називається показниковою?

2) Сформулювати властивості показникової функції (користуючись графіком на таблиці).

3) Наведіть приклади показникових рівнянь.

4) Які ви знаєте способи розвязування показникових рівнянь?


ІV. Робота по темі уроку.

1. Кожен учень отримує лист з завданнями до уроку.

1.  Тригонометричні підстановки в показникових рівняннях

1) 1 + 3 = 2х;

2) ()х + ()х= 2х;

3) ()х + ()х= (2)х;

4) (( +) ()х + 3 =  (- cos - cos)-x.

2. Метод математичного підбору.

5) 3х +4х = 5х;                7) 2х  = 3 - х

6) 8х +27х = 125х;           8) 3х +4х = 91.

3. Рівняння поглибленого рівня.

9) 81sinx + 81cosx = 30;

10) (x2 +2x - 7)x + 2x - 15 = 1;

11) x-2x = 2--x;

12) 2 -  - 6(2х - ) = 1

4. Завдання для самоперевірки.

13) 2cosx = x2 + 2;

14) () = x2 + 1;

15) 2 = cos x;

16) 4tgx + 8 = 32;

17)  = (3 - x) 3 - x;

18) 212x-1 - 46x-1 + 84x-1 - 163x-1 = 1280;

19) x x+3 = x5, x > 0

20) 8x - 4 x+0.5 - 2x + 2  = 0.

2. Розв’язування опорного рівняння на дошці:

1. 1+3х/2 = 2х

Розв’язання:

Поділимо обидві частини даного рівняння на 2х.

.   Нехай  (такий кут α обов’язково існує), тоді , , звідки х=2.

Відповідь: 2.

3.Розв’язування рівняння з коментуванням.

2.  .

Розв’язання

Поділимо обидві частини рівняння на 2х.

, .

Нехай , , тоді , звідки , х=2.

Відповідь: 2.

4.Розв’язуємо самостійно

3.,

, , х=2.

Відповідь: 2.

5.Розв’язують учні, які відвідували факультатив або гурток

4.

Розв’язання.

Перетворюємо окремо вирази, що входять у ліву і праву частини даного рівняння:

.

.

, , .

Тоді дане в умові рівняння рівносильне рівнянню:

, , звідки див. рівняння (1) х = 2.

Відповідь: 2.

6. Розгляд графічного способу розв’язування рівнянь – метод «Мозковий штурм» (графіки функцій проектуються за допомогою мультимедіапроектора)

5. 3х+4х=5х, х=2, , - спадна функція. Горизонтальна пряма у=1 може перетнути графік функції f(x) не більш як в одній точці.

6.  8х+27х=125х, (2)+(3)=5, 3х=1, х=1/3. Доведення аналогічне.

7.  2х=3-х, х=1. Графіки функцій у=2х та у=3-х перетинаються не більш як в одній точці.

ІІ спосіб: у=2х – зростаюча функція, у=3-х – спадна, тому якщо х>1, 2x>2, 3-x<2;  якщо х<1, 2x<2, 3-x>2, тобто крім х=1 рівняння коренів не має.

8.  3х+4х=91х/3, х=1, , х/3=1, х=3. Доведення аналогічне.

7.Рівняння поглибленого рівня. Учням надається можливість самостійно обрати завдання з виданого листа.

9.  , , ,

. Нехай , t>0, тоді t2-30t+81=0, t1=3, t2=27.

1) , , 4cos2x=1, 2+2cos2x=1, cos2x=-1/2, 2x=±(π-π/3)+2πk, k є z.

2x=±2π/3+2πk, k є z, x=±π/3+πk, k є z.

2) , , 4cos2x=3, 2+2cos2x=3, cos2x=1/2, 2x=±π/3+2πn, n є z.

x=±π/6+πn, n є z.

Загальний розв’язок: x=±π/6+π/2l, l є z.

10. ,

1) х2+2х-7=1, х2+2х-8=0, х1=-4, х2=2.

2) , . Відповідь: -5, -4, 2, 3.

11. ,

1) , х=1 або х=3,

2) , , , х≠2, х=-1.           Відповідь: -1, 1, 3.

12.                              

(а-в)333-3ав(а-в)

Нехай , тоді

, звідси .

Маємо рівняння: у3+6у-6у=1, у3=1, 2х- 2/2х=1, 2-2х-2=0, 2х=t, t>0, t2-t-2=0. t1=2. t2=-1 – сторонній корінь, 2х=2, х=1.

Відповідь: 1

8. Робота в групах.

Завдання для групової роботи

І група

1) 2 cos x = x2 + 2;                  4) 3х + 4х = 5х

2) 76-х = х + 2;                         5) 2sinx + 2 cos x = 3;

3) 5х =                         6) (x - 3)x+ x = (x - 3)7x-5

ІІ група

1) 2х + 5х = 7х;                          4) 5х = ;

2) 76-х = х + 2;                           5) 2cos2x = 32 cosx - 4;

3) 3х + 4х = 5х;                          6) (х + 2)х = (х + 2)3х-2.

ІІІ група

1) () = х2 + 1;                      4) 3х + 4х = 5х;

2) 76-х = х + 2;                            5) 4 tgx + 8 = 32;

3) 5х = ;                          6) (x + 1)x+3 x = (x + 1)10x-12.

ІV група

1) 2 = x2 + 1;                             4) 3х + 4х = 5х;

2) 76-х = х + 2;                               5) 2arcsin x = 1 - х2;

3) 5х = ;                             6) (x + 5)x- x - 1 = x + 5    

Перевірку можна провести за допомогою кодоскопу, мультимедіапроектора або просто за відкидною дошкою заготувати таблицю відповідей.

V. Підводимо підсумок. Виставляємо оцінки за допомогою консультантів.

VI. Домашнє  завдання:

Рівняння із розділу ІV. Завдання для самоперевірки ( див. лист з завданнями, що видавався на початку уроку).


 

А также другие работы, которые могут Вас заинтересовать

68688. Понятие и содержание конкурентного права. Механизм правового регулирования отношений в сфере конкуренции 25.5 KB
  В российской юридической науке эта тема широко не обсуждается. Тем не менее отечественная доктрина в настоящее время формирует понимание «конкурентного права» в узком и широком смысле. В узком смысле «конrрентное право» российскими юристами используется для обозначения актов антимонопольного...
68690. Філософія давньої Еллади (досократівська доба) 28 KB
  Антична філософія, філософія стародавніх греків і римлян, зародилася в VII-VI ст. до н. е. у Греції і проіснувала до VI ст. н. е. У період античності був закладений фундамент не тільки європейської філософії, але й європейської культури загалом. Ранній чи досократівський (поч.VI-кiн.V ст) включав в себе такі школи...
68691. Аналитическая функция маркетинга 17.78 KB
  Аналитическая функция содержит такие составляющие части: изучения рынка как такого; изучение потребителей; изучение фирменной структуры рынка; изучение товара; анализ внутренней среды предприятия. Изучения рынка как такого это аналитическая работа для выбора из множественного числа...
68692. Законадательное обеспечение БЖД 18.44 KB
  Устанавливаются права и обязанности работодателей и радотников в отношении охраны труда; оговариваются ограничения к труду в особо тяжелых условиях некоторых групп населения (беременных женщин и т.д.)
68694. Венский конгресс и формирование «Европейского концерта» как системы межгосударственных отношений 13.13 KB
  Венский конгресс был призван положить конец «наполеоновским» войнам и проходил с октября 1814 г. по июнь 1815 г. Главные лица конгресса – Александр I (Россия), Каслри (шеф МИД Англии), Франц I (Австрия), Фридрих Вильгельм III (Пруссия). На конгрессе были представлены более 200 европейских государств.
68696. Современные системы менеджмента 59.82 KB
  Поэтому при переходе от теории менеджмента к практике необходимо использовать такие системы модели менеджмента которые наиболее полно отвечают местным особенностям ведения бизнеса. Начиная с момента получения политической и экономической независимости в период формирования рыночной экономики...